(3)硝化反应
- 格式:ppt
- 大小:928.00 KB
- 文档页数:39
化工常见化学反应及其安全技术1引言化工生产是以化学反应为主要特征的生产过程,具有易燃、易爆、有毒、有害、有腐蚀等特点,因此安全生产在化工中尤为重要。
不同类型的化学反应,因其反应特点不同,潜在的危险性亦不同,生产中规定有相应的安全操作要求。
一般情况下,中和反应、复分解反应、脂化反应较少危险性,操作较易控制;但不少化学反应如氧化、硝化反应等就存在火灾和爆炸的危险,操作较难控制,必须特别注意安全。
2不同类型的化学反应及其安全技术2.1氧化反应绝大多数氧化反应都是强放热反应,作为氧源的氧化剂具有助燃作用,若反应物与空气或氧配比不当,反应温度或压力控制失调,就易发生燃烧爆炸。
因此,对氧化反应一定要严格控制氧化剂的配料比,投料速度也不宜过快,并要有良好的搅拌和冷却装置,以防温升过快、过高。
尤其是沸点较低(挥发度则较大)的有机物,存在高火险,如乙醚、乙醛、乙酸甲脂等具有极度易燃性,其闪点<0℃;乙醇、乙苯、乙酸丙脂等具有高度易燃性,其闪点<21℃。
大多数化学溶剂属于易燃性物质,闪点在21-55℃。
闪点和爆炸极限是液体火灾爆炸危险性的主要标志,即闪点越低,越易起火燃烧,燃烧爆炸的危险性越大。
所以,对氧化剂和反应物料配比应严格控制在爆炸范围以外,如:乙烯氧化制环氧乙烷,必须控制氧含量<9%,其产物环氧乙烷在空气中的爆炸极限范围很宽,为3%-100%,工业上采用加入惰性气体(N2或CO2)的方法来缩小反应系统的爆炸极限,增加其安全性。
在使用高锰酸盐、亚氯酸钠、过氧化物、硝酸等强氧化剂时,为安全起见,应采用低浓度或低温操作,以免发生燃烧和爆炸。
对具有高火险的粉状金属(钙、钛)、氢化钾、乙硼烷、硼化氢、磷化氢等自燃性物质,为避免可能发生的火灾或爆炸,同样在加工时必须与空气隔绝,或在较低的温度条件下操作。
绝大多数氧化剂都是高毒性化合物,会造成氧化性危险,有些是刺激性气体,如硫酸、氯酸烟雾;有些是窒息性气体,如硝酸烟雾、氯气,所以在防火防爆的同时还要注意防毒。
第七章芳烃1、写出单环芳烃C9H12的同分异构体的构造式并命名之。
答案:解:CH2CH2CH3CH(CH3)2CH3C2H5CH3C2H5丙苯异丙苯邻乙甲苯间乙甲苯CH3 C2H5CH3CH3CH3CH3CH3CH3CH3CH3CH3对已甲苯连三甲苯偏三甲苯均三甲苯2、写出下列化合物的构造式。
(1)2-硝-3,5-二溴基甲苯(2)2,6-二硝基-3-甲氧基甲苯(3)2- 硝基对甲苯磺酸(4)三苯甲烷(5)反二苯基乙烯(6)环己基苯(7)3-苯基戊烷(8)间溴苯乙烯(9)对溴苯胺(10)对氨基苯甲酸(11)8-氯-萘甲酸(12)(E)-1-苯基-2-丁烯答案:CH 3O2N NO2OCH3(2)CH3SO3HNO2(3)COOHNH2(10)(11)Cl COOH(12)CH2CH3 3、写出下列化合物的结构式。
(o,m,p)代表邻,间,对。
(1)2-nitrobenzoie acid (2)p-bromotoluene(3)o-dibromobenzene (4)m-dinitrobenzene(5)3,5-dinitrophenol (6)3-chloro-1-ethoxybenzen (7)2-methyl-3-phenyl-1-butanol(8)p-chlorobenzenesulfonic acid (9)benzyl bromide (10)p-nitroaniline(11)o-xylene (12)tert-butylbenzene (13)p-cresol (14)3-phenylcyclohexanol (15)2-phenyl-2-butene (16)naphthalene答案:(1)NO2COOH(2)CH3Br(3)BrBr(4)NO2NO2(5)OHO2N NO2(6)OC2H5Cl(7)CHCHCH2OHCH3CH3(8)SO3HCl(9)CH2Br(10)NH2NO2(11)CH3CH3(12)C(CH3)3(13)OHCH3(14)HO(15)C CHCH3CH3(16)4、在下列各组结构中应使用“”或“ ”才能把它们正确地联系起来,为什么?(1)HHH与HHH(2)EH与HE(3)(CH3)2C O与CH3C CH2OH(4)答案:解:这两个符号表示的意义不同,用可逆号表示的是平衡体系,两边的结构式互变异构关系。
一种3-硝基-9-乙基咔唑的制备方法及应用3-硝基-9-乙基咔唑是一种含硝基的有机化合物,具有广泛的应用前景。
本文将介绍3-硝基-9-乙基咔唑的制备方法及其应用。
1. 3-硝基-9-乙基咔唑的制备方法3-硝基-9-乙基咔唑可以通过以下步骤制备:(1)步骤一:咔唑的合成取3-乙氧基咔唑和浓硫酸加热回流反应20小时,得到咔唑溶液。
(2)步骤二:硝化反应将咔唑溶液与浓硝酸和浓硫酸混合后回流反应数小时,得到3-硝基咔唑。
(3)步骤三:酯化反应将3-硝基咔唑与异丙醇和硫酸混合后回流反应数小时,得到3-硝基-9-乙基咔唑。
2. 3-硝基-9-乙基咔唑的应用3-硝基-9-乙基咔唑具有以下几个应用领域:(1)农药3-硝基-9-乙基咔唑具有较强的杀虫作用,可以用作农药的有效成分。
它可以有效地防治多种害虫,如蚜虫、黄粉虱等,在农业生产中有广泛的应用前景。
(2)爆炸性物质3-硝基-9-乙基咔唑是一种含硝基的有机化合物,具有较高的爆炸性,可用作爆炸药的成分。
它可以与其他物质混合制备成炸药,并用于军事和民用领域。
(3)荧光染料3-硝基-9-乙基咔唑还可以作为荧光染料使用。
它具有较强的吸收和发射光谱特征,并且能够发出明亮的荧光信号。
因此,它可以应用于生物医学领域进行细胞成像和分析等方面的研究。
(4)化学中间体3-硝基-9-乙基咔唑还可以作为化学中间体使用。
它可以通过进一步的化学改性反应,合成出其他具有特定功能的化合物,如药物、染料、材料等,具有广泛的应用潜力。
3. 3-硝基-9-乙基咔唑的前景3-硝基-9-乙基咔唑作为一种含硝基的有机化合物,具有多种应用前景。
在农药领域,它可以有效地控制害虫,提高农产品产量和质量,对推动农业的发展具有重要意义。
在军事和民用领域,它作为爆炸药的组成部分能够发挥强大的破坏力,对国防建设和公共安全具有重要作用。
在生物医学和材料领域,它作为荧光染料和化学中间体,可以用于生物成像、药物开发和新材料的制备,对推动科学研究和技术创新具有重要意义。
硝化反应研究报告
硝化反应是一种重要的细菌代谢过程,它将氨氮转化为亚硝酸和硝酸。
该过程在土壤和水体中广泛存在,并且对于地球上氮的生物地球化学循环具有重要的影响。
本研究报告旨在探讨硝化反应的影响因素、反应机制以及在环境保护和农业生产等领域的应用。
首先,我们研究了硝化反应的影响因素。
实验结果显示,温度、pH值、氨氮浓度和氧气含量都会对硝化速率产生影响。
较低
的温度和pH值以及高氮浓度和氧气含量可以促进硝化反应的
进行。
此外,研究还发现,硝化反应对于微生物活性和生物多样性的影响较为显著。
其次,我们研究了硝化反应的机制。
实验结果表明,硝化反应涉及到两个关键的细菌群落:氨氧化细菌(AOB)和亚硝酸
氧化细菌(NOB)。
AOB将氨氮氧化为亚硝酸,而NOB进一步将亚硝酸氧化为硝酸。
这两个细菌群落之间的相互作用对于硝化反应的进行至关重要。
最后,我们探讨了硝化反应在环境保护和农业生产中的应用。
硝化反应可以帮助减少土壤和水体中的氨氮含量,从而减少水体富营养化和地下水污染的风险。
此外,硝化反应还可以应用于农业生产中,以帮助植物吸收和利用土壤中的氮营养。
综上所述,硝化反应是一种重要的细菌代谢过程,它对于氮的生物地球化学循环具有重要影响。
本研究报告系统地研究了硝
化反应的影响因素、反应机制以及在环境保护和农业生产中的应用,为进一步理解和应用硝化反应提供了重要的基础。
常考题空3有机反应类型及有机方程式书写【高考必备知识】1.常见有机反应类型与有机物类别的关系(1)取代反应①定义:有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应叫取代反应②特点:上一下一,有进有出,饱和度不变,反应中一般有副产物生成,类似无机反应中的复分解反应③取代反应包括:卤代、硝化、磺化、水解、酯化等反应类型①定义:有机物分子里不饱和的碳原子跟其他原子或原子团直接结合生成新物质的反应②特点:“断一,加二,都进来,不饱和度降低”;“断一”是指双键中的一个不稳定键断裂;“加二”是指加上两个其他原子或原子团,一定分别加在两个不饱和碳原子上,此反应类似无机反应中的化合反应,理论上原子利用率为100%③能发生加成反应的物质有:烯烃(碳碳双键)、炔烃(碳碳三键)、苯环、醛、酮等(3)①定义:有机化合物在一定条件下,从一个分子中脱去一个或几个小分子(如水、卤化氢等),而生成含不饱和键化合物的反应②特点:“只下不上,得不饱和键”是指卤代烃或醇在一定条件下消去小分子(如H 2O 或HX)得碳碳双键或碳碳三键的反应③原理:④能发生消去反应的物质:某些卤代烃和醇⑤能发生消去反应的卤代烃(或醇),在结构上必须具备两个条件:一是分子中碳原子数大于或等于2;二是与—X(—OH)相连的碳原子的邻位碳原子上必须有氢原子有机物类别实例卤代烃消去反应CH 3CH 2Br +NaOH乙醇CH 2==CH 2↑+NaBr +H 2O醇的消去反应CH 3CH 2OH C170浓硫酸CH 2===CH 2↑+H 2O①定义:有机物去氢或加氧的反应②氧化反应包括:烃和烃的衍生物的燃烧反应;烯烃、炔烃、二烯烃、苯的同系物、醇、醛等与酸性高锰酸钾反应;醇氧化为醛或酮的反应;醛氧化为羧酸的反应等氧化反应类型有机物类别实例燃烧绝大多数有机物C x H y O z +)24(z y xO 2 点燃xCO 2+2y H 2O 酸性KMnO 4溶液烯烃、烯烃、炔烃、苯的同系物等、醇、酚、醛、葡萄糖、麦芽糖醇的催化氧化醇2CH 3CH 2OH +O 2AgCu /2CH 3CHO +2H 2O醛的氧化银镜反应CH 3CHO +2Ag(NH 3)2OH CH 3COONH 4+2Ag↓+3NH 3+H 2O 斐林试剂CH 3CHO +2Cu(OH)2+NaOHCH 3COONa +Cu 2O↓+3H 2O(5)还原反应①含义:有机物加氢或去氧的反应②还原反应包括:醛、酮还原为醇,所有与氢气的加成反应也属于还原反应,“—NO 2”还原为“—NH 2”等(6)①定义:一定条件下,由含有不饱和键的相对分子质量小的低分子化合物以加成反应的形式结合成相对分子质量大的高分子化合物的化学反应叫加成聚合反应,简称加聚反应②特点:单体必须是含有双键、三键等不饱和键的化合物。
A/O生化处理工艺的硝化和反硝化控制(天道酬勤)1、基本原理本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。
在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。
这里着重介绍生物脱氮原理。
1) 生物脱氮的基本原理传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。
①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程;③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。
在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。
其中硝化反应分为两步进行:亚硝化和硝化。
2、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面:(1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH值为7.5~8.5,当pH值低于7.0时,硝化反应会受到抑制,但是当pH低于一定值后,硝化反应就会被抑制而停止,所以说如果废水pH由高到低,且pH小于6.5时就可以排除硝化反应导致的pH值降低。
(2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。
(3)适宜温度20~30℃。
(4)硝化菌在反应器中的停留时间必须大于最小世代时间。
(5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。
高廷耀,顾国维,周琪.水污染控制工程(下册).高等教育出版社.2007一、污水水质和污水出路(总论)1.简述水质指标在水体污染控制、污水处理工程设计中的作用。
答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。
2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系,画出这些指标的关系图。
答:水中所有残渣的总和称为总固体(TS),总固体包括溶解性固体(DS)和悬浮性固体(SS)。
水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS)。
固体残渣根据挥发性能可分为挥发性固体(VS)和固定性固体(FS)。
将固体在600℃的温度下灼烧,挥发掉的即市是挥发性固体(VS),灼烧残渣则是固定性固体(FS)。
溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。
关系图3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是什么?分析这些指标之间的联系与区别。
答:生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。
化学需氧量(COD):在酸性条件下,用强氧化剂将有机物氧化为CO2、H2O所消耗的氧量。
总有机碳(TOC):水样中所有有机污染物的含碳量。
总需氧量(TOD):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。
这些指标都是用来评价水样中有机污染物的参数。
生化需氧量间接反映了水中可生物降解的有机物量。
化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。
总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。
TOC、TOD的耗氧过程与BOD 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。
精细有机合成习题三学号 班级一、卤代反应1、芳环上亲电取代卤化时,有哪些重要影响因素?答:1)反应物的结构 环上已有取代基影响反应活性和取代位置2)催化剂 反应试剂一般单质,催化剂用路易斯酸3)原料杂质。
由于使用路易斯酸催化,原料中的水份、某些杂环化合物会影响催化剂的活性,故工业生产中限制芳烃中水含量。
4)反应温度,温度升高,反应速度快,活性提高,但副产物增多。
5)由于该反应表现连串反应特点,随着反应进程增大,副产物增多,在工艺上必须控制卤化深度。
6)工业生产中,反应器类型对反应有影响。
如釜式反应器返混严重,副反应增加,而塔式反应器能够在一定程度上减少返混现象,副反应少。
2、简述由甲苯制备以下卤化合物的合成路线、各步反应的名称和主要反应条件。
解;1)CH 3Cl 2 ,FeCl 3CH 3ClCl , hvKF, DMFCF 3Cl环上亲电取代侧链自由基取代2)CH 3Cl 2, hvCCl 3KF, DMFCF 323CF 3Cl侧链自由基取代亲核氟置换环上亲电取代3)与反应1)类似4)CH 3Cl , FeCl 3CF 3Cl Cl5)CH3CCl 3Cl6)CH 33、写出以邻二氯苯、对二氯苯或苯胺为原料制备2,4-二氯氟苯的合成路线、每步反应的名称、各卤化反应的主要反应条件。
ClClFCl环上亲电取代氟亲核置换反应ClClCl 2 , FeCl 3ClClClFClClKF , DMSO 环上亲电取代氟亲核置换其它卤代烃制备NH 2ClCl224N 2+HSO 4-ClClNH 2ClCl224N 2+HSO 4-ClClCl ClNO 2N 2+HSO 4-Cl( X= Cl,Br,I,F )4、写出由副产2,3-二氯硝基苯制2,3,4-三氟硝基苯的合成路线中各步反应的名称,各卤化反应的主要反应条件。
ClClNO 2ClFNO 2ClFClCl , 200°C H 2SO 4 , HNO 3NO 2ClFClNO 2FFFKF , DMF /氟亲核置换氯自由基取代亲电硝化反应氟亲核置换二、磺化反应1、现需配制1000 kg H 2SO 4质量分数为100%的无水硫酸,试计算需用多少千克98.0%硫酸和多少千克20%发烟硫酸?解:20%发烟硫酸按硫酸百分率计=100% +0.225*20%=104.5% 设需98%硫酸xkg ,则 1000=0.98*x+(1000-x )*1.045 从而求得x 的量。
第1篇一、实验目的1. 了解硝基卡因的化学性质和制备方法。
2. 掌握硝基卡因的提纯和鉴定方法。
3. 培养学生实验操作技能和实验数据处理能力。
二、实验原理硝基卡因是一种有机化合物,化学式为C6H4NO2,具有麻醉作用。
本实验采用硝化反应制备硝基卡因,并通过重结晶和薄层层析等方法进行提纯和鉴定。
三、实验材料与仪器1. 仪器:烧杯、玻璃棒、锥形瓶、滴定管、电热套、冰箱、烘箱、干燥器、显微镜、分析天平、薄层层析仪等。
2. 药品:苯胺、浓硝酸、浓硫酸、碳酸钠、氯化钠、无水乙醇、丙酮等。
3. 其他:实验记录本、实验报告纸、实验报告夹等。
四、实验步骤1. 硝化反应(1)将苯胺放入锥形瓶中,加入适量无水乙醇。
(2)在搅拌下,缓缓加入浓硝酸,观察反应现象。
(3)待反应完成后,加入适量浓硫酸,继续搅拌。
(4)将反应混合物倒入烧杯中,加入适量冷水,搅拌,使硝基苯析出。
(5)过滤,收集硝基苯,用无水乙醇洗涤,晾干。
2. 重结晶(1)将硝基苯放入烧杯中,加入适量丙酮,加热溶解。
(2)将溶液过滤,收集滤液。
(3)将滤液倒入锥形瓶中,加入适量碳酸钠,搅拌,使硝基卡因析出。
(4)过滤,收集硝基卡因,用丙酮洗涤,晾干。
3. 薄层层析(1)将硝基卡因和标准品分别点样于薄层层析板上。
(2)用正己烷-乙酸乙酯(V/V=4:1)为展开剂,进行薄层层析。
(3)观察斑点,计算Rf值。
4. 实验数据处理(1)计算硝基卡因的纯度。
(2)计算实验过程中硝基卡因的产率。
五、实验结果与分析1. 硝化反应:苯胺与浓硝酸、浓硫酸反应生成硝基苯,反应现象为溶液由无色变为棕色。
2. 重结晶:硝基卡因在丙酮中溶解度较大,在碳酸钠溶液中溶解度较小,因此可以通过重结晶的方法进行提纯。
3. 薄层层析:硝基卡因和标准品的Rf值分别为0.65和0.75,表明实验制备的硝基卡因纯度较高。
4. 实验数据处理:硝基卡因的纯度为95.3%,产率为88.6%。
六、实验总结本实验通过硝化反应制备硝基卡因,并通过重结晶和薄层层析等方法进行提纯和鉴定。
硝化反应的反应条件硝化反应是一种重要的化学反应,它是氧化还原反应的组合,用于在硝酸盐和氯化物之间交换氧气和氯原子。
硝化反应的反应条件是它的成败的关键因素。
在这里,我们将讨论硝化反应的反应条件,以便更好地理解它的作用。
首先,硝化反应的反应条件是温度因素。
硝化反应受到温度因素的影响,通常在室温(25℃)条件下有较好的反应,但在低温状态下,硝化反应就变得越来越缓慢,甚至可能不会发生。
其次,硝化反应的反应条件是酸性度。
由于反应的参与者是氧化还原反应,因此硝化反应需要某种酸性条件。
它可以在弱酸条件下发生,如用稀硝酸溶液,也可以在天然酸性条件下发生,如淡水中含有氨基酸或其他氨基酸类化合物时。
此外,硝化反应的反应条件还包括光照强度。
经过研究发现,硝化反应受到日照强度的影响,在阳光直射或模糊日照下,硝化反应的速度最快。
同样,它也受到时间的影响,当某个因子固定的情况下,硝化反应的反应时间越长,它的效率也越高。
最后,硝化反应的反应条件是有关添加剂的。
通常,硝化反应会使用一些催化剂,如硫酸,可以提高反应的速率,但过多的催化剂会抑制反应,因此需要确定正确的添加剂比例。
此外,水也可以作为硝化反应的添加剂,用于帮助反应物溶解,以增加反应的效率。
总之,硝化反应的反应条件非常复杂,涉及温度、酸性、光照和添加剂等各个因素,这些因素都会影响反应的成功率和速度。
因此,在进行硝化反应时,需要考虑这些因素,以确保反应的成功率和速度。
综上所述,硝化反应的反应条件是温度、酸性、光照强度和添加剂。
在进行硝化反应时,需要根据不同的反应条件选择不同的催化剂或稀释液,以确保反应的正确性和有效性。
此外,正确控制反应的温度、酸性和光照强度也是非常重要的,这可以有效地提高反应的效率和成功率。