当前位置:文档之家› 硝化反应和反硝化反应

硝化反应和反硝化反应

硝化反应和反硝化反应
硝化反应和反硝化反应

一、硝化反应

在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。

硝化反应包括亚硝化和硝化两个步骤:

NH4++1.5O

2 NO

2

-+H

2

O+2H+

NO

2-+0.5O

2

NO

3

-

硝化反应总方程式:

NH

3+1.86O

2

+1.98HCO

3

- 0.02C

5

H

7

NO

2

+1.04H

2

O+0.98NO

3

--+1.88H

2

CO

3

若不考虑硝化过程硝化菌的增殖,其反应式可简化为

NH4++2O

2 NO

3

-+H

2

O+2H+

从以上反应可知:

1)1gNH

4+-N氧化为NO

3

- 需要消耗2*50/14=7.14g碱(以CaCO

3

计)

2)将1gNH

4+-N氧化为NO

2

--N需要3.43gO

2

,氧化1gNO

2

--N需要1.14gO

2

,所以氧

化1gNH

4+-N需要4.57gO

2

硝化细菌所需的环境条件主要包括以下几方面:

a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于0.5mg/L时,硝化反应过程

将受到限制。

b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。最适合

PH为8.0-8.4。碱度维持在70mg/L以上。碱度不够时,应补充碱

c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。

15℃以下时,硝化反应速度急剧下降;5℃时完全停止。

d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度

20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。

e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。因为硝化

菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。总氮负荷应≤

0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧

下降。

f.C/N: BOD/TKN应<3,比值越小,硝化菌所占比例越大。

g.抑制物浓度:NH

4+-N≤200mg/L,NO

2

--N10-150mg/L,NO

3

--N0.1-1mg/L。

h.ORP:好氧段ORP值一般在+180mV左右。

二、反硝化反应

在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO

2--N和NO

3

--N还

原成N

2

的过程,称为反硝化。

反硝化反应方程式为:

NO

2-+3H(电子供给体-有机物) 0.5 N

2

+H

2

O+OH-

NO

3-+5H(电子供给体-有机物) 0.5 N

2

+2H

2

O+OH-

由以上反应可知:

1)还原1gNO

2--N或NO

3

--N,分别需要有机物(其O/H=16/2=8)3*8/14=1.71g和

5*8/14=2.86g,同时还产生50/14=3.57g碱(以CaCO

3

计)

2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应所

需要的有机物总量Cm=2.86[NO

3--N]+1.71[NO

3

--N]+DO

反硝化细菌所需的环境条件主要包括以下几方面:

a.DO:DO应保持低于0.5mg/L(活性污泥法)或1mg/L(生物膜法)。

b.PH:PH6.5-7.5

c.温度:硝酸菌的适宜温度为20~40℃。15℃以下时,反应速度急剧下降。

d.C/N: BOD/TN应≥4。

e.ORP:缺氧段的ORP值在-50~-110mV之间,厌氧段ORP值一般在-160~-

200mV之间。

硝化反应和反硝化反应

硝化反应和反硝化反应 Prepared on 22 November 2020

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4+++H 2 O+2H+ NO 2 -+ 硝化反应总方程式: NH 3 ++若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要,氧化1gNO 2 --N需要,所以氧化1gNH 4 +-N需 要。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于L时,硝化反应过程将受 到限制。 b.PH和碱度:,其中亚硝化菌,硝化菌。最适合PH为。碱度维持在70mg/L 以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为~(温度20℃,~。 为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜。因为硝化菌是自养菌,有机物浓度 高,将使异养菌成为优势菌种。总氮负荷应≤(m3硝化段·d),当负荷>(m3硝化段·d)时,硝化效率急剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)+H 2 O+OH- NO 3-+5H(电子供给体-有机物)+2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=和 5*8/14=,同时还产生50/14=碱(以CaCO 3 计) 2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应 所需要的有机物总量Cm=[NO 3--N]+[NO 3 --N]+DO 反硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持低于L(活性污泥法)或1mg/L(生物膜法)。

高考有机合成题目方法总结

一中杨小过高考化学有机合成专项 高考有机合成大题小结 一中杨小过 高考有机合成复习方向:高考化学试题中对有机化学基础的考查题型比较固定,通常是以生产、生活的陌生有机物的合成工艺流程为载体考查有机化学的核心知识,涉及常见有机物官能团的结构、性质及相互转化关系,涉及有机物结构简式的确定、反应类型的判断、化学方程式的书写、同分异构体的识别和书写等知识的考查。 1.要求学生能够通过题给情境中适当迁移,运用所学知识分析、解决实际问题,这是高考有机化学复习备考的方向。 2.有机物的考查主要是围绕官能团的性质进行,常见的官能团:醇羟基、酚羟基、醛基、羧基、酯基、卤素原子等。这些官能团的性质以及它们之间的转化要掌握好,这是解决有机化学题的基础。 3.有机合成的设计路线是先要对比原料的结构和最终产物的结构,官能团发生什么改变,碳原子个数是否发生变化,再根据官能团的性质进行设计。 4.同分异构体类型通常有:碳链异构、官能团异构、位置异构等,有时还存在空间异构(这个考得比较少),要充分利用题目提供的信息来书写符合题意的同分异构体。注意结合题目中已知的进行分析,找出不同之处,这些地方是断键或生成键,一般整个过程中碳原子数和碳的连接方式不变,从而确定结构简式,特别注意书写,如键的连接方向。 要充分利用题目提供的信息判断同分异构体中含有结构或官能团,写出最容易想到或最简单的那一种,然后根据类似烷烃同分异构体的书写规律展开去书写其余的同分异构体; 5.物质的合成路线不同于反应过程,只需写出关键的物质及反应条件、使用的物质原料,然后进行逐步推断,从已知反应物到目标产物。 6.通常根据反应条件推断反应类型的方法有: (1)在NaOH的水溶液中发生水解反应,可能是酯的水解反应或卤代烃的水解反应。 (2)在NaOH的乙醇溶液中加热,发生卤代烃的消去反应。 (3)在浓H2SO4存在的条件下加热,可能发生醇的消去反应、酯化反应、成醚反应或硝化反应等。 (4)能与溴水或溴的CCl4溶液反应,可能为烯烃、炔烃的加成反应。 (5)能与H2在Ni作用下发生反应,则为烯烃、炔烃、芳香烃、醛的加成反应或还原反应。 (6)在O2、Cu(或Ag)、加热(或CuO、加热)条件下,发生醇的氧化反应。 (7)与O2或新制的Cu(OH)2悬浊液或银氨溶液反应,则该物质发生的是—CHO的氧化反应。(如果连续两次出现O2,则为醇→醛→羧酸的过程)。 (8)在稀H2SO4加热条件下发生酯、低聚糖、多糖等的水解反应。 (9)在光照、X2(表示卤素单质)条件下发生烷基上的取代反应;在Fe粉、X2条件下发生苯环上的取代。 (10)卤代烃在氢氧化钠水溶液中发生取代反应生成醇,在氢氧化钠的醇溶液中发生消去反应生成烯烃。

同步硝化反硝化

同步硝化反硝化的出路,究竟在何方? 古语云:殊途同归。对于污水脱氮来说,亦是如此。处理方法并不是只有一种。 方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。 方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。同步硝化反硝化又称短程硝化反硝化。是指在同一反应器内同步进行硝化反应和反硝化反应。这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。 条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢? 根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势: 1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就 是减少能耗; 2.在反硝化阶段减少了40%的有机碳源,降低了运行费用; 3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右; 4.减少50%左右污泥;

5.反应器容积可以减少30%-40%左右; 6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持 反应容器内的PH。 (以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》) 既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。也就是说,有利就有弊。 同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。同步硝化反硝化的影响因素总结如下: 1.溶解氧(DO) 控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率, 2.温度 生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。当温度超

硝化反硝化

硝化反硝化 一、硝化反应 在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。 反硝化反应方程式为: NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH- NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH- 三、短程硝化反硝化 短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。 影响因素: 1、pH 硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。当pH降到5.5以下,硝化反应几乎停止。反硝化细菌最适宜的pH值为7.0~7.5之间。考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。 2、溶解氧(DO) 硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。 反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。 3、温度 生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。 亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。15℃以下时,硝化反应速度急剧下降。温度对反硝化速率的影响很大,低于5℃或高于40℃,反硝化的作用几乎停止。 4、碱度 一般污水处理厂碱度应维持在200mg/L左右。 NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

活性污泥法运行中的常见问题及对策

活性污泥法运行中的常见问题及对策 活性污泥法是常用的好氧法,所以能够做好其运营管理非常重要,本文总结了活性污泥法运行过程中的5大常见问题以及对策,具有很强的实用价值。 01污泥膨胀的概念及其解决办法有哪些? 污泥膨胀的原因: ①丝状菌膨胀 活性污泥絮体中的丝状菌过度繁殖,导致膨胀,促成条件包括进水有机物少,F/M太低,微生物食料不足;进水氮、磷不足;pH值低;混合液溶解氧太低,不能满足需要;进水波动太大,对微生物造成冲击。 ②非丝状菌膨胀 由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的N、P,或者DO(溶氧)不足。细菌很快把大量有机物吸入体内,又不能代谢分解,向外分泌出过量的多糖类物质。这些物质分子中含羟基而具有较强的亲水性,使活性污泥的结合水高达400%(正常为100%左右),呈黏性的凝胶状,无法在二沉池分离。另一种非丝状菌膨胀是进水中含有较多毒物,导致细菌中毒,不能分泌出足够量的黏性物质,形不成絮体,也无法分离。 解决办法: 组成废水的各种成分由于比例失调,也可引起污泥膨胀,如废水中C/N 比失调,若由于碳水化合物的含量过高,可适当的投加尿素、碳酸铵或氯化铵。如系统进水浓度太高,可减低进水量。至于曝气池的环境(如pH、温度溶解氧等)对活性污泥的性质也有一定的影响。其他如废水中含有大量的有机物或石油,以及含有大量的腐败物质都可以引起膨胀。在曝气池中过多或过少地充氧或搅动不充分,都可引起膨胀。由此可知,为防止污

泥膨胀,首先应加强管理操作,经常检测污水水质、曝气池内溶解氧、污泥沉降比、污泥指数和进行显微镜观察,如发现异常情况应及时采取措施,如加大空气量、及时排泥、在有可能时采取分段进水,以减轻二沉池的负荷。 02污泥上浮的概念及其解决办法有哪些? 污泥上浮:主要是指污泥脱氮上浮。污水在二沉池中经过长时间停留会造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮气逸出时,污泥吸附氨和氮气而上浮使污泥沉降性降低。 解决办法: 污泥上浮现象和活性污泥的性质无关,只因污泥中产生气泡,使污泥密度低于水,因此污泥上浮不应与污泥膨胀混为一谈。具体解决办法有: ①降低进水盐浓度,控制高负荷COD的冲击。 ②准确地控制曝气池内的COD负荷。因此,在运行操作上要控制曝气池进水量。通过准确地控制MLSS(建议6~8g/L)和曝气池进水量,将COD负荷控制在0.2~0.4kg/(m3·d)的适当范围,以减少污水的冲击,如果该污水经过均质池后的COD浓度仍然超过设计标准,应将该股污水引入事故池以待日后处理。 ③完善新建污水预处理工艺,控制污水厌氧与兼氧酸化水解池是保障后续曝气池正常运转的关键步骤,污水中的难降解有机物在此得到降解后,可以保证曝气池污水的出水要求,也改善了二沉池的沉降性能。应采取以下措施:完成潜水搅拌机配电系统的改造,尽快泵污泥至酸化池,进行酸化池的调试和酸化污泥的驯化。一次投加剩余污泥约为池容的1/5,投加量约为100m3,使池内混合液浓度在4~6g/L。 ④控制氧曝池的溶解氧浓度,适当降低氧曝池MLSS,基本控制在10g/L以内,与之相应的溶解氧浓度控制应根据进水有机负荷及时调整。⑤增加污泥回流量,及时排除剩余污泥,降低混合液污泥浓度,缩短污泥龄,降低溶解氧浓度,但不能进入消化阶段。

同步硝化反硝化综述

同步硝化反硝化研究进展 摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。 关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化 Study Progress on Simultaneous Nitrification and Denitrification Abstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal;Aerobic denitrification

硝化-反硝化-碱度-DO与pH值关系

硝化系统与pH值关系(2007-05-19 22:51:41) 分类:七彩水质专题发生硝化反应,那么必须控制污泥龄大于硝化细菌的世代时间方可。按照污水处理的理论,硝化细菌世代周期5~8天,反硝化细菌世代周期15天左右。 碱度是为硝化细菌提供生长所需营养物质,氧化1mg NH4-N需要碱度7.14 mg。硝化过程只有在污泥负荷<0.15kgBOD/(kgSS·d)时才会发生。在反应过程中氧化1kg氨氮约消耗4.6kg氧,同时消耗约7.14kg碳酸钙碱度。为保证硝化作用的彻底进行,一般来说出水中应有剩余碱度。合适的pH是微生物发挥最佳活性必须的,一般微生物要在pH6-9范围内比较合适。实际上,因为水质的差异,相同pH的水,碱度可以相差很多。对于A/O工艺。其中硝化液回流进行反硝化,这样可以利用原污水中的有机物做为反硝化的电子供体,同时可提供部分碱度,抵消硝化段的部分碱度消耗。该工艺脱氮率的提高要靠增加回流比实现,但回流比不宜太高,否则回流混合液中夹带的DO会影响到反硝化段的缺氧状态,另外回流比增大,运行费用也会增加。 水的碱度是指水中含有能接受氢离子的物质的量,例如氢氧根,碳酸盐,重碳酸盐,磷酸盐,磷酸氢盐,硅酸盐,硅酸氢盐,亚硫酸盐,腐植酸盐和氨等,都是水中常见的碱性物质,它们都能与酸进行反应。因此,选用适宜的指示剂,以酸的标准溶液对它们进行滴定,便可测出水中碱度的含量.。碱度可分为酚酞碱度和全碱度两种。酚酞碱度是以酚

酞作指示剂时所测出的量,其终点的pH值为8.3;全碱度是以甲基橙作指示剂时测出的量,终点的pH值为4.2.若碱度很小时,全碱度宜以甲基红-亚甲基蓝作指示剂,终点的pH值为5.0。碱度以CaCO3(碳酸钙)浓度表示,单位为mg/l。PH的值是H离子浓度的体现,当PH=7是,说明H离子浓度为10的-7次幂,所以OH离子的浓度也是10的-7次幂,为中型,当PH=8时,H离子浓度为10的-8次幂,OH离子浓度是10的-6次幂,这都是H离子的浓度小于1mol/L时的计算方法,当H离子浓度大于1时,就不用了。严格的说来,pH值和碱度没有必然的关系,也就是pH值为某个值时,溶液的组成不同,碱度值会不同的。消化反应会消耗碱度,PH值会下降,反硝化阶段会产生碱度PH会上升,平时检测只用观察PH值的变化就可以了。亚硝酸菌和硝酸菌在PH为7.0-7.8,7.7-8.1是最活跃,反硝化最适ph值为7.0-7.5。好氧池出水DO一般在2左右啊。校探头拿到空气中是8左右~。看情况,如果不要进行脱氮除磷好氧池出水口溶解氧不小于2mg/L,如果要回水进行反硝化,出水溶解氧小于1.5mg/L 一、前言 水族缸中的「氮循环」会直接影响pH的变化。氮循环是指有机氮化合物在自然界中的物质循环过程,它由微生物的固氮作用、氨化作用、硝化作用及脱氮作用所构成,惟在水族缸中,通常仅发生氨化作用及硝化作用,所以氮循环并不具完整性,必有中间产物遗留于水中,并

关于污水处理技术的相关答疑

污水处理技术答疑300题 1.问:采用CAST工艺,污泥脱水后的混合液直接排入进水泵房,导致进水COD,SS偏高,并影响选择池的反硝化反应,应该如何解决? 答:这是一个目前污水处理厂普遍被忽视的问题,即污泥脱水后的滤液回流至生化池后对生化处理的影响问题。由于污泥脱水前要加调质药剂,如PAC 和PAM,有些药剂有一定的毒性,污泥脱水时可随滤液回流至生化反应池。处理这些滤液在技术上没问题,只是成本问题,如果选用合适的污泥调质药剂,并控制好加药量以及脱水机的进泥量等,对前面的生化处理就不会造成大的影响。还是强调的是,污泥脱水效果取决于污泥处理工序的全过程管理,包括污泥浓缩池的管理。 2.问:“污泥泥龄”是怎样确定的?如何来控制?究竟是用排泥量确定它,还是用其它来确定排泥量? 答:泥龄、F/M、等与其说是运行的控制参数,不如说是设计方面的参数,在工艺控制中的只是参考参数。实际运行中排泥量通常是根据MLSS值加上经验来控制的,在SVI相对稳定的情况下,也可用SV30来参考。 3.问:本厂用的是卡罗塞尔氧化沟工艺。有时装置的出水氨氮比进水还高,进水TP2.5mg/L 左右,出水只有 0.2mg/L右,曝气机 3台满负荷运行。一直查不出什么原因,这是怎么回事? 答:只能根据你提供的情况来初步分析,可能是污水含氮有机物较多,反应时间不够,有机氮的氨化速率大于氨氮的硝化速率,此外,也可能是磷不够,影响氨氮通过同化途径去除的效果。 4.问:在运行过程中,氧化沟表面有一层厚厚的污泥堆积,粒径约1mm左右的污泥颗粒泛黄色,时常会造成二沉池大量飘泥,污泥返白,有絮体随出水一同流出,SV30迅速下降,处理效果丧失,堆积污泥减薄消除,周而复始,请问其成因和控制措施。 答:说明污泥已失去活性,使ESS增加。有二种可能:一是污泥自身氧化;二是污泥中毒。从你所描述的现象看,前者的可能性大,可测定一下污泥耗氧速率,以便针对性采取措施。5.问:AB 法A段如何控制?是从一沉池以等同的流量给 A段连续回流吗?SV30应控制在多少?控制在 5%-10%可以吗? 答:A段的回流比应该大一些,但也不能使污泥在一沉池的停留时间太短,虽然A段主要是吸附为主,但也有一定的生物降解作用的,生物降解大多在沉淀池内进行,只有将吸附在污泥表面的有机物降解,才能恢复吸附能力。应该用MLSS来控制,在污泥沉降性能稳定时也可用SV30,要根据实际情况定,沉降比5%-10%太低。 6.问:如果一家污水厂运行一两年处理效果没达到较佳状态,那是不是应该考虑重新培菌(换泥)?换泥跟开始时的培菌有什么不一样呢? 答:不用换!如果运行条件不变,换了也会一样的,即使你用优势菌种投加也没用,只能维持一段时间,重要的是控制好运行条件,如果是设计上的的问题要及时整改。 7.问:我调试的是工业废水。工艺为:水解+厌氧+好氧池 1+好氧池2+沉淀。由于安装问题,曝气池布气不均匀(圆形曝气头曝气),每个曝气器处,均有一个类似喷泉上下翻滚(直径 1m左右),曝气不均,对处理效果有多大影响?还发现曝气区填料挂膜较少,镜检有大的后生动物,没有发现其它生物,填料生物膜表面为淡黄色,曝气区外的生物膜厚达3cm,能给我解示一下吗? 答:你所说的情况不能说是曝气不均,是正常现象。还有你说生物膜不多,不知是多少?如生物膜把填料基本覆盖就很好了,至于说曝气区外的生物膜厚达3cm 就是严重结球了,要

反硝化作用与反硝化菌KONODO

反硝化作用与反硝化菌2020 一、反硝化作用: 反硝化作用一般指在缺氧条件下,反硝化菌将(硝化反应过程中产生的)硝酸盐和亚硝酸盐还原成氮气的过程。 在反硝化过程中,有机物作为电子供体,硝酸盐为电子受体,在电子传递过程中,有机物失去电子被氧化,硝酸盐得到电子被还原,实现在反硝化过程对硝态氮和COD的脱除。理论上,1g硝态氮的全程反硝化需要硝化2.86g有机碳源(以BOD计)。对生化处理中反硝化进水,可以考察其可生化性(BOD/COD)和含量(BOD/TN比例),以判断有机物碳源是否适宜并足够系统用于反硝化脱氮。 影响污水生物脱氮过程中反硝化作用的主要因素包括:溶解氧、pH值、温度、有机碳源的种类和浓度,以及水背景情况等。 一般认为,系统中溶解氧保持在0.15mg/L 以下时反硝化才能正常进行。反硝化作用最适宜的pH为6.5-7.5,反硝化作用也是产碱过程,可以在一定程度上对冲硝化作用中消耗的一部分碱度。理论上,全程硝化过程可产生3.57g碱度(以CaCO 3 计)。在温度方面,实际中反硝化一般应控制在15-30 ℃。 二、参与反硝化作用的细菌 反硝化菌主要参与硝态氮及亚硝态氮还原过程,是生化系统中硝酸盐氮去除的主要功能菌。参与反硝化作用的细菌主要有以下几类: 1、反硝化细菌(Denitrifying bacteria) 这是一类兼性厌氧微生物,当水环境中有分子态氧时,氧化分解有机物,利用分子态氧作为最终电子受体。当溶解氧(DO)低于0.15mg/L,即缺氧状态,反硝化细菌可用硝酸盐、氮化物等作为末端电子受体,以有机碳源为氢供体,将硝 酸盐还原为NO、N 2O或N 2 。反硝化作用既可脱除污水中的硝态氮(总氮也自然降 低),又可一定程度维持水环境pH稳定性,还可以降低COD。这类反硝化菌中,有的能还原硝酸盐和亚硝酸盐,有的只能将硝酸盐还原为亚硝酸盐。 2、好氧反硝化细菌 有些细菌能营有氧呼吸,同时实现反硝化作用。从污水中,最早分离的好氧

AO生化的硝化与反硝化原理

2.5 A/O生化处理 2.5.1 基本原理 本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。 1) 生物脱氮的基本原理 传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。 ①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程; ③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。 其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示: ①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+

②硝化反应:NO2-+0.5O2→NO3- ③总的硝化反应:NH4++2O2→NO3-+H2O+2H+ 反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电 子供体为例): 第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2 第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2 第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2 2) 本系统脱氮原理 针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。 因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。 2.5.2工艺特征 A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的

硝化与反硝化

硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。反应过程如下: 亚硝酸盐菌: 向左转|向右转 接着亚硝酸盐转化为硝酸盐: 向左转|向右转 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: 向左转|向右转 综合氨氧化和细胞体合成反应方程式如下: 向左转|向右转

上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~ 0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

关于总氮的基础知识

关于氨氮、总氮、硝态氮、凯氏氮的基础知识 凯氏氮是指以基耶达(Kjeldahl)法测得的含氮量。它包括氨氮和在此条件下能转化为铵盐而被测定的有机氮化合物。此类有机氮化合物主要有蛋白质、氨基酸、肽、胨、核酸、尿素以及合成的氮为负三价形态的有机氮化合物,但不包括叠氮化合物,硝基化合物等。 总氮包括溶液中所有含氮化合物,即亚硝酸盐氮、硝酸盐氮、无机盐氮、溶解态氮及大部分有机含氮化合物中的氮的总和 氮的氧化态虽然有7种,总氮包含总凯氏氮及氮氧化物,总凯氏氮又可分为有机氮及氨氮而氮氧化物包括硝酸氮及亚硝酸氮,其中有机氮又可分为粒状有机氮及溶解性有机氮,其馀皆属溶解性含氮化物. 为能更详细了解含氮化合物在不同环境下之相互转变及传送现象,可再将溶解性有机物,分为不能生物分解性溶解性有机氮及生物可分解性有机氮.粒状有机氮也可分为生物可分解性有机氮及生物不能分解性之粒状有机氮. 总凯氏氮主要表示废水中氨氮及有机氮之总合 总氮表示水中含氮总量 先提供教科书对此的说明。 污水中的氮,有四种形态,氨氮,有机氮,亚硝酸盐氮,硝酸盐氮,四者合称总氮TN。 其中,氨氮与有机氮合称为凯氏氮TKN,这是衡量污水进行生化处理时氮营养是否充足的依据。 在常规生活污水中,基本不含亚硝酸盐氮和硝酸盐氮,因此一般情况下,对于常规生活污水的TN=TKN=40mg/L,其中氨氮约25mg/L,有机氮约15mg/L,亚硝酸盐氮,硝酸盐氮可视为0。 在我们实际的污水处理厂设计的实践中,发现各地污水总氮及氨氮差异较大,不过常规生活污水的总氮及氨氮大概是: 总氮:40-60ppm 氨氮:15-50ppm 一般的,如果氨氮数值与总氮很接近,说明该地污水在管网逗留时间较长,导致有机氮已经分解。 在没有实测数据的情况下,教科书的数据可以作为参考。 生活污水的氨氮含量一般在20~30mg/L之间 通过A/O法,在好氧段进行消化反应,使氨氮转化为硝态氮,通过污泥回流,在缺氧段进行反硝化反应,使在好氧段形成的硝态氮转化为氮气,排入大气。 A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。 硝化反应:NH4++2O2→NO3-+2H++H2O 反消化反应:6NO3—+5CH3OH(有机物)→5CO2↑+7H2O+6OH—+3N2↑

反硝化作用

反硝化作用 反硝化作用(denitrification) 也称脱氮作用。反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化 二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中 的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉 菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体, 把硝酸还原成氮(N ),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用 的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、 反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示: C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量 CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量 少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳, 以硝酸盐为呼吸作用的最终电子受体。可进行以下反应: 5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4 反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。 农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可 使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。 反硝化作用,狭义的指将硝酸盐还原为分子态氮的过程,称为脱氮作用;广义的指将硝酸 盐还原为较简单的氮化合物的过程,除了脱氮作用外,还包括硝酸盐还原作用(指脱氮作用 以外的还原作用,例如硝酸盐还原为亚硝酸盐的作用)。 多种细菌和真菌斗具有硝酸盐还原酶,可以将硝酸盐还原为亚硝酸盐。方程式如下: NHO3+2H------------>HNO2+H2O(需要硝酸还原酶的作用) 而脱氮作用,则常常与无氮有机物的氧化反应伴随发生,例如: C6H12O6+6H2O---------->6CO2+24H

硝化与反硝化

硝化与反硝化 利用好氧颗粒污泥实现同步硝化反硝化 1 生物脱氮与同步硝化反硝化 在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。 2 实现同步硝化反硝化的途径 由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。

中国海水养殖带来的问题

中国海水养殖带来的环境问题 -------------以黄渤海为例 在生活水平日益提高的情况下,环境问题也日益增多,我们作为一个环境学习者,既窃喜又担忧,喜的是我们自己的专业可以派上用场,自己的找工作越来越容易,但忧愁总比窃喜多一点,因为我们生活在这样一个污染严重的环境中,呼吸着含pm2.5超标的空气,抬头仰望着灰蒙蒙的天空,吃着含重金属的蔬菜、大米等各种各样的食品,喝着变色的水,这样的生活不是我们所担忧将要到来的,而是我们已经在经受的,看看国外留学回来的人拍的这个地方的照片,他们的天空是那么蓝,空气质量是那么好,吃得健康有益,我们的国民为了经济的发展,不惜以国民的健康,居住的环境为代价,大肆的发展经济,以至于现在的好多问题都触目惊心,有道德的缺失带来的地沟油、鼠肉充当牛羊肉等现象,有为利益而导致的污水未处理就进行排放的问题。诸如此类的问题还有很多。因为自己是北方的孩子,虽然对海了解不多,但还是喜欢吃海产品的,所以,想了解一下海水的水产养殖会带来什么环境问题,什么原因导致了海水水产养殖带来了这些问题,因此就阅读了关于水产养殖方面的文章,有刘晴的促进水产养殖增长方式转变全面提升水产养殖发展质量;杨宇峰等人的海水养殖发展与渔业环境管理研究进展;宋志文等人的海水养殖废水的生物处理技术研究进展;余江等人海水养殖环境污染及控制对策;崔毅等人黄渤海海水养殖自身污染的评估,了解了水产养殖业发展自身存在的问题的问题,海水养殖在迅猛发展的同时带来了诸多环境问题,如养殖水域环境恶化,自身污染加剧,富营养化趋势日趋严重,赤潮频发,渔药滥用导致药物残留和水产品质量安全等一系列环境问题。 黄渤海地区地处东北亚中心地带,包括辽东半岛、山东半岛、渤海湾沿岸和辽东湾沿岸地域及其附近海域、空域,是联结中原地区与东北亚地区,乃至日本群岛和俄罗斯远东的纽带。海水养殖的主要种类有鱼类( 遮目鱼、比目鱼、大菱鲆、鲷、鰤、鲑鳟鱼、石斑鱼、鲆鲽、罗非鱼、海鲈等) ,虾类( 日本对虾、斑节对虾和凡纳滨对虾等) ,贝类( 牡蛎、贻贝、扇贝、蛤、鲍鱼等) 和大型海藻、红藻( 紫菜、江蓠) 、褐藻( 海带、裙带菜) 、绿藻等。美洲和欧洲仅有少量海藻养殖。黄渤海主要以对虾的养殖为主,还会养殖一些贝类。而以上的这些文章可以帮我找到关于我所质疑的问题。有些文章指出了水产养殖业发展自身存在的问题的问题,有些文章指出了投饵和非投饵两种养殖方式自身污染对海洋环境的影响,还有一些是关于海水养殖所带来的饵料污染、化学污染、生物污染及其环境效应等方面进行了综述等方面的内容进行了研究和说明。 关于海水养殖所带来的这中污染方面的控制对策有物理和化学方法,物理和化学方法一般

反硝化滤池

1.反硝化深床滤池工艺 1.1反硝化工艺原理 反硝化反应(denitrification) 反硝化反应是由一群异养型微生物完成的生物化学过程。在缺氧(不存在分子态溶解氧)的条件下,将亚硝酸根和硝酸根还原成氮气、一氧化氮或氧化二氮。参与反硝化过程的微生物是反硝化菌。反硝化菌属兼性菌,在自然环境中几乎无处不在,在废水处理系统中许多常见的微生物都是反硝化细菌,如变形杆菌属(Proteus) 、微球菌属(Micrococcus) 、假单胞菌属(Pseudomonas) 、芽抱杆菌属(Bacillus) 、产碱杆菌属(Alcaligenes) 、黄杆菌属(Fla vobacter) 等,它们多数是兼性细菌。当有溶解氧存在时,反硝化菌分解有机物利用分子态氧作为最终电子受体。在无溶解氧的情况下,反硝化菌利用硝酸盐和亚硝酸盐中的N5+和N3+作为能量代谢中的电子受体, O2-作为受氢体生成H 2 O 和OH-碱度,有机物作为碳源及电子供体提供能量并被氧化稳定。 生物反硝化过程可用以下二式表示: 2NO 2-十6H( 电子供体有机物) 一→ N 2 十2H 2 O 十20H- (2-1) 2NO 3-十9H( 电子供体有机物) 一→ N 2 十3H 2 O 十30H- (2-2) 反硝化过程中亚硝酸根和硝酸根的转化是通过反硝化细菌的同化作用和异化作用来完成的。同化作用是指亚硝酸根和硝酸根被还原成氨氮,用来合成新微生物的细胞、氮成为细胞质的成分的过程。异化作用是指亚硝酸根和硝酸根被还原为氮气、一氧化氮或一氧化二氮等气态物质的过程,其中主要成分是氮气。异化作用去除的氮约占总去除量的70-75% 。 反硝化过程的产物因参与反硝化反应的做生物种类和环境因素的不同而有所不同。例如, pH 值低于7.3 时,一氧化二氮的产量会增加。当游离态氧和化合态氧同时存在时,微生物优先选择游离态氧作为含碳有机物氧化的电子受体。因此,为了保证反硝化的顺利进行,必须确保废水处理系统反硝化部分的缺氧状态。废水中的含碳有机物可以作为反硝化过程的电子供体。由式(2-1)计算,转化1g 亚硝酸盐氮为氮气时,需要有机物(以BOD 5 表示) 1. 71g ,转化1g 硝酸盐氮为氮气时,需 要有机物(以BOD 5表示) 2. 87g,与此同时产生3.57g 碱度(以CaCO 3 计)。如果废

相关主题
文本预览
相关文档 最新文档