九年级数学专题09 特殊与一般
- 格式:doc
- 大小:616.50 KB
- 文档页数:10
数学思想方法之特殊与一般1.特殊化思想对于某个一般性的数学问题,对于某个一般性的数学问题,如果一时难以解决,如果一时难以解决,那么可以先解决它的特殊情况,那么可以先解决它的特殊情况,即从即从研究对象的全体转变为研究属于这个全体中的一个对象或部分对象,然后再把解决特殊情况的方法或结论应用或者推广到一般问题上,从而获得一般性问题的解答,这种用来指导解决问题的思想称之为特殊化思想. 2.一般化思想当我们遇到某些特殊问题很难解决时,不妨适当放宽条件,把待处理的特殊问题放在一个更为广泛、更为一般的问题中加以研究,更为一般的问题中加以研究,先解决一般情形,先解决一般情形,先解决一般情形,再把解决一般情形的方法或结再把解决一般情形的方法或结果应用到特殊问题上,最后获得特殊问题的解决,这种用来指导解决问题的思想称之为一般化思想. 一、一般问题特殊化一、一般问题特殊化【例1】设三棱柱111ABC A B C -的体积为,,V P Q 分别是侧棱11,AA CC 上的点,且1P A QC =,则四棱锥B APQC -的体积为的体积为(A)16V (B)14V (C)13V (D)12V 【分析及解】本题考查棱柱、棱锥的概念与计算. 方法一 常规方法 如图2-18,因为1P A QC =,所以PQ 将三棱柱的侧面11AAC C 分成面积相等的两个梯形,从而11B APQCB P AC Q VV--=.又1111133B A BC VV V -==柱体,且三棱柱111ABC A B C -被分成两个四棱锥B APQC -与11B PAC Q -以及三棱锥111B A B C -三部分,所以13B APQCV V -=. 方法二 特殊化的方法. 仔细分析题目的已知条件会发现,仔细分析题目的已知条件会发现,三棱柱的形态没给出具体限制,三棱柱的形态没给出具体限制,三棱柱的形态没给出具体限制,是一般的三棱柱;是一般的三棱柱;侧棱11,AA CC 上的两点,P Q 只有1P A QC =的要求,而没有具体位置的限制.从选项来看,所求四棱锥的体积是确定的.由此可以断定,用特殊化方法求解本题可以体现出快捷的特点.首先可以把三棱柱特殊化为直三棱柱,其次还可以将点,P Q 分别为11,AA CC 的中点;也可以使点P 趋近于点A ,点Q 趋近于点1C ,即使10P A QC =®,使四棱锥特殊化为三棱锥,实际上,这种处理方法也包含有极限的思想.经过特殊化处理后,再求解几何体的体积就要简单得多.除常规方法外的这两种特殊化方法所体现的正是特殊与一般的思想,用特殊的方AB CA 1B 1C 1PQ]p p p p p]4p6p aD B A y C o E 二、特殊问题一般化二、特殊问题一般化【例5】(04)已知函数1()lg 1x f x x-=+,若()f a b =,则()f a -=(A)b (B)b - (C)1b (D)1b- 【分析及解】为了说明本题所体现的出来的数学思想方法,我们先来看解决本题的三种方法. 方法一 常规方法本题所研究的函数是确定的,其函数解析式已知且不含有参数如果把,a b 看成是两个母用字母表则表示的数,则它是它们也是确知确定的,已知的的.于是由()f a b =,得1lg 1ab a-=+.又1()lg 1a f a a +-=-,那么为求得()f a -的值,实际上就是求1lg 1aa+-怎样用关于b 的解析式来表示,就是求1lg 1a a +-与1lg 1aa -+的关系.到此,不难发现,有1111lg lg()lg 111a a aa a a-+--==--++,于是()f a b -=-. 方法二 一般化方法如果我们探究()f a 与()f a -的关系,产生猜想:如果()f x 是奇函数或偶函数,那么由()f a 的值求()f a -的值就会变得相当简单.()f x 具有奇偶性吗?具有奇偶性吗?()f x 的定义域为{11}x x -<<,关于原点对称.在定义域内任取x 和x -有1111()()lg lg lg()lg101111x x x xf x f x x x x x-+-++-=+=×==+-+-. 所以()f x 是定义域()1,1-内的奇函数,于是()()f a f a b -=-=-. 练习题1.(北京卷)对任意的锐角b a ,,下列不等式关系中正确的是(A )b a b a sin sin )sin(+>+ (B ) b a b a cos cos )sin(+>+ (C )b a b a sin sin )cos(+<+ (D )b a b a cos cos )cos(+<+ 答案:(D ). 提示,取特殊值,令==b a 30°,再令==b a 1°. 2.(天津卷)已知数列{}{}n n b a ,都是公差为1的等差数列,其首项分别为11,b a ,且*,,51111N b a b a Î=+,设n b n a c =(*N n Î),则数列{}n c 的前10项和等于项和等于(A )55 (B ) 70 (C )85 (D )100答案:(C ). 提示,取特殊数列,令11=a ,得41=b ,3,+==n b n a n n ,所以3+=n c n. 4.(上海卷) 若关于x 的不等式4)1(42+£+k x k 的解集是M ,则对任意实数k ,总有总有(A )M M ÎÎ0,2 (B )M M ÏÏ0,2 (C )M M ÏÎ0,2(D )M M ÎÏ0,2 答案:(A ). 提示,取特殊值,令0=k ,得4£x . 5.(福建卷)已知1=OA ,3=OB ,0=·OB OA ,点C 在AOB Ð内,且30=ÐAOC ,设),(R n m OB n OA m OC Î+=,则n m 等于等于 (A )31 (B )3 (C )33(D )3 答案:(B ). 提示,提示,取特殊位置,由取特殊位置,由0=·OB OA ,将点C 取在直角△AOB 的斜边AB 上.6.(辽宁卷)若一条直线与一个正四棱柱各个面所成的角都为a ,则=a c o s __________.答案:36. 提示,取特殊图形,求正方体的体对角线与各个面所成角的余弦值. 9(福建).已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ¢¢>>,,则0x <时(时( )A .()0()0f x g x ¢¢>>,B .()0()0f x g x ¢¢><,C .()0()0f x g x ¢¢<>,D .()0()0f x g x ¢¢<<, (提示:取2(),()f x x g x x ==)8、(全国1理9)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0=0,,如果平面向量b 1、b 2、b 3满足| b i |=2| a i |,且a i 顺时针旋转30以后与b i 同向,其中i=1i=1、、2、3则(则( ))A 、-b 1+b 2+b 3=0B 、b 1-b 2+b 3=0C 、b 1+b 2-b 3=0D 、b 1+b 2+b 3=0 (提示:因为a 1+a 2+a 3=0,所以a 1、a 2、a 3构成封闭三角形,不妨设其为正三角形,则b i 实际上是将三角形顺时针旋转30后再将其各边延长2倍,仍为封闭三角形,故选D 。
2023年12月下半月㊀学生培养㊀㊀㊀㊀特殊与一般思想在初中数学解题中的应用◉哈尔滨师范大学教师教育学院㊀徐㊀岩㊀㊀摘要:从特殊到一般,再从一般到特殊,是认识事物的一般规律,这一规律在数学的认识活动中有着重要的应用.特殊与一般思想是初中数学重要的思想方法之一,本文中旨在通过举例探讨 特殊与一般 思想在解题中的应用策略.关键词:特殊与一般;初中数学;解题㊀㊀特殊与一般思想具体到一个数学问题就是如果直接解决有困难,可以考虑用特殊情况来获得结果,然后把解决特殊情况的方法或结论应用或者推广到一般问题上,从而获得一般性问题的解答.特殊化是以一种称为 倒退 的方法,从 一般 到 特殊 ,而反过来称为 前进 的方法[1].做题时把问题转化为较容易解决的特殊情况,会有事半功倍的效果,尤其是做填空题㊁选择题时,采用特殊与一般思想,可以避免 小题大做 ,节约时间.1用字母表示数用字母表示数是初中数学从有形的数字到抽象符号的质的飞跃,是发展符号意识的基础,从 代表数字的信息 转变为用字母代表未知元素㊁待定系数㊁根和系数之间关系等,体现了使用字母表达任意数的想法.当使用字母表示一定数量的实际问题时,应确定一组字母的值.在同一个问题上,不同的字母会表示不同的数字[2].例1㊀先化简,再求值:(2-4x +2)ːx2x 2-4,其中x 所取的值是在-2<x ɤ3内的一个整数.解析:原式=2x +4-4x +2 (x +2)(x -2)x 2=2x -4x .由-2<x ɤ3,x ʂ0,x 2-4ʂ0及x ɪZ 得,x 的取值为-1,1,3.将x =-1,1,3代入原式,其值依次为6,-2,23.2特殊值的应用特殊 可以在一定程度内反映或表示 一般 ,在解决数学问题时,通常先分析特殊情况,然后总结一般情况,即根据具体的条件,选择符合条件的特殊值,然后使用条件或特殊图形进行计算和推断.这类问题通常有一个共同点:题目包含一般条件,可以利用这些条件得出具体的结论或值.而特殊情况的答案通常与一般情况的答案相同.特殊值的选取必须符合特定条件.特殊值的选择应尽可能简单,以便计算和比较.当其中有不止一个未知量时,每个未知量之间应尽可能具有特殊数量关系,以帮助解决问题.例2㊀已知二次函数y =a x 2+b x +c (a ʂ0)图象的对称轴x =-12,开口向上,图象与x 轴有两个交点,与x 轴非负半轴的交点横坐标大于1,下列结论中,正确的是(㊀㊀).A.a b c >0㊀㊀㊀㊀㊀㊀B .a +b =0C .2b +c >0D.4a +c <2b解析:应用由特殊到一般的思路,先取符合题意的特殊二次函数y =x 2+x -3,则a =b =1,c =-3,可得出D 选项正确.但对于学生来说,特殊值的选取要求较高,学生可能因为取值不合适而得不出正确答案.那么,此类问题的常规解法是什么呢?由开口向上,可知a >0.由对称轴为x =-b 2a =-12,可得a =b >0.由题意可知,函数与y 轴交点纵坐标小于零,即c <0.由此可知,选项A ,B 错误.由题意可知当x =1时,y <0,即a +b +c <0,也就是2b +c <0,所以选项C 也错误.故正确答案为选项D .3特殊图形的应用在解决平面图形问题的过程中,在一般的位置关系下,通常很难找到元素之间的关系,这可能会阻碍思路的探索.此时使用特殊情况下的图形结构会简化计算,但应注意所选择的特殊图形须符合题目条件,且答案必须明确,否则就是不可取的.例3㊀在әA B C 中,A B =A C =m ,P 为B C 上任意一点,则P A 2+P B P C 的值等于(㊀㊀).A.m 2㊀㊀B .m 2+1㊀㊀C .2m 2㊀㊀D.(m +1)215学生培养2023年12月下半月㊀㊀㊀图1㊀㊀㊀图2解析:选择题可用特殊图形解决.若点P 与点B重合,如图1所示,原式为m 2,则A 选项正确;当点P 位于B C 中点时,如图2所示,可得P A ʅP B ,P B =P C ,则原式=P A 2+P B 2=A B 2=m 2;当点P 与点C 重合时,也能得出相同的结论.但此方法只适用于选择题,严谨证明还应让点P 保持任意性.图3如图3,根据相交弦定理,得㊀P B P C =P D P E=(A D -P A )(A E +P A )=(m -P A )(m +P A )=m 2-P A 2.故P A 2+P B P C =m 2.4用特殊化方法探求定值一些数学问题由于高度抽象,很难直接找到或证明某些一般特征.在这种情况下,可以探索特殊特征和某些条件,找到规律和解决方案.在某些几何图形中,某些点或线段的位置会不断变化,但总有一些关系始终保持不变,这属于定值问题.例4㊀已知同心圆中,A B 是大圆的直径,点P 在小圆上,求证:P A 2+P B 2为定值.证明:设大圆㊁小圆半径分别为R ,r .若P ,A ,B 三点共线,如图4所示,则有P A 2+P B 2=(R -r )2+(R +r )2=2R 2+2r 2.图4㊀㊀㊀图5若P 为直径A B 中垂线上一点,如图5,则P A 2=P B 2=R 2+r 2,所以P A 2+P B 2=2R 2+2r 2.图6而要想严格证明还需保持点P的任意性,如图6,作P F ʅA B 于点F ,则有P A 2=P F 2+A F 2=(r 2-O F 2)+(R -O F )2,P B 2=P F 2+B F 2=(r 2-O F 2)+(R +O F )2,所以P A 2+P B 2=2r 2-2O F 2+2R 2+2O F 2=2r 2+2R 2.由此可知,在任意情况下P A 2+P B 2均为定值,结论得证.5用特殊化方法寻找结论当问题解决方案不明确时,可以先分析一些特殊情况并总结,通常可以找到结果或解决问题的方法,然后分析特殊情况与一般情况之间的关系,以便在一般情况下解决问题.通常有如下两种方法:(1)在一些具有一定数量结构的代数问题中,通常可赋予字母特殊值或利用字母表示的量之间的关系.(2)在平面图形中,通常可选取一个特殊的点(例如,一条线段的中点)㊁特殊的关系位置(例如,两条平行线或垂直的直线)或者是几何形状(例如,直角三角形㊁等边三角形等)来帮助解决问题[3].例5㊀当1ɤx ɤ2时,化简x +2x -1+x -2x -1.解析:由1ɤx ɤ2,得0ɤx -1ɤ1,所以㊀x +2x -1+x -2x -1=x -1+2x -1+1+x -1-2x -1+1=x -1+1()2+x -1-1()2=|x -1+1|+|x -1-1|=x -1+1-x -1-1()=2.6结语特殊与一般思想是初中数学的重要解题思想.掌握了这种思想,学生在面对比较复杂的数学问题时能将其转换成特殊或一般情况,以此简化计算或证明过程.这对培养学生的数学核心素养和数学思维都有帮助.参考文献:[1]崔志锋.特殊与一般[J ].中小学数学(初中版),2019(4):33G35.[2]李文彬.巧用特殊与一般思想进行初三数学客观题解法教学[J ].数学学习与研究,2022(13):155G157.[3]李硕,何意玲,王海涛.例谈 特殊与一般 思想在初中数学教学和解题中的应用[J ].理科爱好者,2022(4):87G89.Z 25。
论数学问题解决中特殊化与一般化的辩证关系数学问题解决中,特殊化和一般化是两个重要的方法。
特殊化是指将一个问题转化为特定情况下的问题进行研究,而一般化则是将特定情况下的问题推广为一般情况进行研究。
这两种方法在数学问题解决中相互依存、相互促进,起到了非常重要的作用。
首先,特殊化是解决数学问题的基本手段之一。
由于数学问题的复杂性和多样性,我们通常需要将问题转化为某些特殊情况下的问题进行研究。
这样做的好处在于可以减少问题的复杂程度,使问题更加容易理解和解决。
例如,在解决某个数学问题时,我们可以将该问题特殊化为只涉及正整数的情况,或者只涉及偶数的情况。
这样做不仅可以简化问题,还可以使我们更加深入地理解问题的本质。
然而,特殊化也有其局限性。
当我们只关注特定情况下的问题时,有可能会忽略一些重要的信息和规律,导致我们无法将问题推广到更一般的情况。
因此,一般化也是解决数学问题的重要方法之一。
一般化是将特定情况下的问题推广为一般情况进行研究。
这种方法常常需要更加深入的数学知识和技巧,但是其有助于我们发现问题的一般规律,从而更好地理解问题的本质。
例如,在研究某个数学问题时,我们可以将该问题推广为更一般的情况,如实数或复数范围内的情况。
这样做不仅可以帮助我们发现问题的一般规律,还可以使我们更好地理解问题的本质。
总之,特殊化和一般化是解决数学问题的两种重要方法。
这两种方法相互依存,相互促进,有助于我们更好地理解和解决数学问题。
我们应该在解决数学问题时恰当地运用这两种方法,以便更好地发现问题的本质和规律。
ABCD 数学中的“特殊与一般”思想方法在数学学习的过程中,对公式、定理、法则的学习往往都是从特殊开始,通过总结归纳得出来的,经过证明后,成为一般性结论,又使用它们来解决相关的数学问题。
在数学中经常使用的归纳法、演绎法就是特殊与一般思想的集中体现。
由特殊到一般、由一般到特殊的过程是认识事物的基本过程,数学也不例外。
所谓特殊与一般的思想包括两个方面:通过对某些个体的认识与研究,逐渐积累对这类事物的了解,再逐渐形成对这类事物的总体认识,发现特点,掌握规律,形成公式,由浅入深,由现象到本质,由局部到整体,从实践到理论,这种认识事物的过程就是由特殊到一般的认识过程;在理论指导下,用已有的规律解决这类事物中的新问题,这种认识事物的过程就是由一般到特殊的认识过程。
由特殊到一般再由一般到特殊反复认识的过程,就是人们认识世界的基本过程。
在数学高考中,对特殊与一般思想的考查方式主要有,利用一般的归纳法进行猜想;通过构造特殊函数、特殊数列、寻求特殊点、特殊位置关系;利用特殊值、特殊方程等,研究解决一般问题、抽象问题、运动变化的问题、不确定的问题,等等。
高考特别注重利用选择题、填空题的特点,重点考查由特殊到一般的思想;利用解答题的严密性,重点考查由一般到特殊的思想,或综合考查特殊与一般的思想。
一.利用特殊情形判断一般性结论是否成立辩证法告诉我们:矛盾的一般性寓于特殊性之中。
相对于一般情形而言,特殊的事物往往显得简单、直观和具体,并为人们所熟知。
解题时若能注意到问题的特殊性,进而分析考虑有无可能把待解决问题化归为某个特殊问题或极端情形,不仅是可行的,也是必要的。
例1.(2005年北京春季高考题)若不等式nnn a 1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a的取值范围是( )A ),2[23-B ),2(23-C ),3[23-D ),3(23-解析:当n 为正奇数时,不等式为n a 12+<-,又221>+n,所以要使不等式对任意正奇数n 恒成立,应有2≤-a ,即2-≥a ;当n 为正偶数时,不等式为n a 12-<,又2312112,≥-≤nn ,所以要使不等式对任意正偶数n 恒成立,应有23<a 。
初三专题复习:特殊化与一般化教学目标:1、了解特殊与一般的关系,即一般成立,其特殊必然成立;但特殊情况成立时,一般情况不一定成立;2、通过字母取特殊值、图形取特殊图形、图形位置取特殊位置等,了解“特殊化”方法在数学学习与解题中的运用;3、通过图形由特殊到一般、图形的位置由特殊到一般、结论由特殊到一般的学习,体会“一般化”在数学学习和解题中的应用。
教学过程:一、例题分析A B C O的一个例1.如图甲,正方形ABCD的对角线相交于点O,O又是正方形111A B C O绕点O转动,两个正方形顶点,两个正方形的边长相等,那么当正方形111重叠部分的面积是否会发生变化?如果不变,求重叠部分的面积是这个正方形面积的几分之几?如果变,请说明理由。
图甲图乙图丙例题2. 数学课上,老师出示了问题1:如图1,四边形ABCD是正方形,BC=1,对角线交点记作O,点E是边BC延长线上一点,联结OE交CD于边F,设CE=x,CF=y,求y关于x的函数解析式及其定义域。
(1) 经过思考,小明认为可以通过添加辅助线——过点O作O M⊥BC,垂足为M,求解,你认为这个想法可行吗?请写出问题1的答案及相应的推导过程。
(2) 如果将问题1中的条件:“四边形ABCD是正方形,BC=1”改为“四边形ABCD 是平行四边形,BC=3,CD=2,”其余条件不变(如图2),请直接写出条件改变后的函数解析式;(3) 如果将问题1中的条件“四边形ABCD是正方形,BC=1”进一步改为“四边形ABCD 是梯形,AD//BC ,BC=a ,CD=b ,AD=c(其中a 、b 、c 是常数)”其余条件不变(如图3),请写出条件再次改变后y 关于x 的函数解析式及相应的推导过程。
BB图 1 图 2 图 3二、巩固练习在R t ⊿ABC 中,090,,C AC BC D AB ∠==是边上一点,E 是在AC 边上的一个动点(与点A 、C 不重合),DF DE ⊥,DF 与射线BC 相交于点F.(1) 如图1,如果点D 是边AB 的中点,求证:DE=DF; (2) 如图2,如果AD:DB=m ,求DE:DF 的值.AA图1 图2三、课后练习22221a ,c ac ac ac ;b bc D ac bc>>≥、若且为实数,则下列选项中正确的是( )A 、>bc; B 、<bc; C 、、234,,125132;525ABCD AB AD P AD PE AC E PF BD F PE PF D ==⊥⊥+、如图,在矩形中,,,是上的任意一点,于于则的值为( )A 、; B 、; C 、、3//,45403020;10ABCD AB CD E BC EF AD F AD EF D ⊥==、如图,在梯形中,,是的中点,于点,,则梯形ABCD 的面积是( )A 、; B 、; C 、、A。
数学学习中特殊与一般的思想(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学学习中特殊与一般的思想数学学习中特殊与一般的思想来了数学是解决实际问题的一种工具。
数学解题中怎样运用特殊与一般数学解题中,特殊与一般是非常重要的概念。
特殊是指特定的条件或特定的情况,而一般是指普遍的情况或一般的规律。
在解决数学问题时,我们需要运用特殊与一般的方法,从而能更好的理解和解决问题。
一般解法最常适用于各种数学问题,因为大多数数学问题都可以被推广和简化为一个更一般的情况或规律。
一般解法可以让我们快速地找到规律并进行推广,并且可以避免过多的计算和推导。
一般解法可以让我们更好地理解数学问题的本质,找到通用的模式和规律。
不过,在有些情况下,一般解法并不是最好的解决方式。
特殊解法是一种特别的方法,用于解决一些具有特定条件或情况的问题。
特殊解法可以让我们更好地处理一些问题,并发现特殊情况下的特殊规律。
通过使用特殊解法,我们可以更好地理解数学的应用和实际问题,以及更好地理解特殊情况下的特殊规律。
下面是一些例子,展示如何运用特殊与一般的方法:一、平面几何中的特殊和一般情况在平面几何中,我们经常需要在特定的图形中寻找一般规律。
例如,在矩形中找到对角线长度的一般公式,我们可以利用特殊情况下的信息来得出:特殊情况:如果矩形变成一个正方形,那么对角线的长度可以用边长开方的形式表示。
一般情况:如果矩形不是正方形,那么它可以分解成若干个正方形。
在这种情况下,我们可以利用基本定理,即两个相似三角形的相应边比例相等,从而推导出一般公式:对角线长度等于矩形两边长的平方和的开方。
二、整数方程的特殊和一般情况在解决整数方程时,我们通常会使用数学归纳法来证明一般情况。
但是,在有些情况下,我们需要找到特殊情况下的解决方法。
例如,考虑以下整数方程:x^2+y^2=z^2我们可以将特殊情况下的解决方法推广到一般情况下。
特殊情况下,如果x和y是奇数,那么z是偶数。
在这种情况下,我们可以将x和y看作(2a+1)和(2b+1),然后使用特殊情况下的方法得出:z^2=(2a+1)^2+(2b+1)^2=2a(a+1)+2b(b+1)+2a+2b+2=2(a+b)(a+b+1)+2因此,z是偶数。
专题09 特殊与一般——二次函数与二次方程阅读与思考二次函数的一般形式是()02≠++=a c bx ax y ,从这个式子中可以看出,二次函数的解析式实际上是关于x 的二次三项式,若令y =0,则得02=++c bx ax这是一个关于x 的一元二次方程,因此,二次函数与一元二次方程有着密切的联系,表现为: 1.当0>∆时,方程有两个不相等实数根,抛物线与x 轴有两个不同的交点,设为A (1x ,0),B (2x ,0),其中1x ,2x 是方程两相异实根,aacb AB 42-=;2.当0=∆时,方程有两个相等实数根,抛物线与x 轴只有一个交点;3.当0<∆时,方程没有实数根,抛物线与x 轴没有交点.由于二次函数与二次方程有着深刻的内在联系,所以,善于促成二次函数问题与二次方程问题相互转化,是解相关问题的常用技巧.例题与求解【例1】(1)抛物线c bx ax y ++=2与x 轴交于A ,B 两点,与y 轴交于点C ,若ABC ∆是直角三角形,则ac = .(全国初中数学联赛试题)(2)为使方程b x x +=+-311322有四个不同的实数根,则实数b 的取值范围为 . 解题思路:对于(1),ABC ∆为直角三角形,则A ,B 两点在原点的两旁,运用根与系数关系及射影定理解题,对于(2),作出函数图象,借助图象解题.【例2】设一元二次方程0622=-++k kx x 的根分别满足下列条件:①两根均大于1;②一根大于1,另一根小于1;③两根均大于1且小于4.试求实数k 的取值范围.解题思路:因为根的表达式复杂,故应把原问题转化为二次函数问题来解决,作出函数图象,借助图象找制约条件.【例3】如果抛物线()1122++-+-=m x m x y 与x 轴交于A ,B 两点,且A 点在x 轴的正半轴上,B 点在x 轴的负半轴上,OA 的长是a ,OB 的长是b , (1)求m 的取值范围;(2)若1:3:=b a ,求m 的值,并写出此时抛物线的解析式; (3)设(2)的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线是否存在一点P ,使得PAB ∆面积等于BCM ∆的面积的8倍?若存在,求出P 点坐标,若不存在,请说明理由.(南京市中考试题)解题思路:由题设条件得相应二次方程两实根的符号特征,两实根的关系,这是解本例的突破口.【例4】 设p 是实数,二次函数p px x y --=22的图像与x 轴有2个不同的交点A ()0,1x ,B ()0,2x . (1)求证:032221>++p x px ;(2)若A ,B 两点之间距离不超过32-p ,求p 的最大值.(全国初中数学联赛试题)解题思路:根据题意,方程022=--p px x 有两个不同的实数根1x ,2x ,于是0>∆,综合运用判别式、根与系数关系、根的方程、不等式来解.【例5】是否存在这样的实数k ,使得二次方程()()023122=+--+k x k x 有两个实数根,且两根都在2与4之间?如果有,试确定k 的取值范围;如果没有,试述理由.(“祖冲之杯”邀请赛试题)解题思路:由于根的表示形式复杂,因此,应把原问题转化为二次函数问题来讨论,即讨论相应二次函数交点在2与4之间,k 应满足的条件,借助函数图象解题.【例6】设m ,n 为正整数,且2≠m .如果对一切实数t ,二次函数()mt x mt x y 332--+=的图象与x 轴的两个交点间的距离不小于n t +2,求m ,n 的值.(全国初中数学联赛试题)解题思路:由()0332=--+mt x mt x ,得mt x x =-=21,3,由条件得n t mt +≥+23,因此不等式对任意实数t 都成立,故将问题转化为判别式结合正整数求解.能力训练A 级1.已知二次函数2242m mx x y +-=的图象与x 轴有两个交点A ,B ,顶点为C ,若△ABC 的面积为24,则m = .()2已知9262221=+x x ,那么平移后的抛物线的解析式为 . (杭州市中考试题) 3.抛物线()02≠++=a c bx ax y 的图象如图所示. (1)判断abc 及ac b 42-的符号:abc 0 ,ac b 42- 0; .(2)当OB OA =时,c b a ,,满足的关系式为________________ .第4题图第3题图第6题图4.已知二次函数c bx ax y ++=2的图象过(-1,0)和(0,-1)两点,则a 的取值范围为 . (黑龙江省中考试题)5.若关于x 的方程0322=+-m x x 的一个根大于-2,且小于-1,另一个根大于2且小于3,则m 的取值范围是( )A. 89<m B.8914<<-m C. 59<<-m D. 214-<<-m (天津市竞赛试题) 6.设函数()()5412+-+-=m x m x y 的图象如图所示,它与x 轴交于A ,B 两点,且线段OA 与OB 的长的比为1:4,则m 的值为( )A. 8B.-4C. 11D. -4 或117.已知二次函数c bx ax y ++=2与x 轴相交于两点A (1x ,0),B (2x ,0),其顶点坐标为P ⎪⎪⎭⎫ ⎝⎛--44,22b c b ,AB=21x x -,若1=∆APB S ,则b 与c 的关系是( ) A. 0142=+-c b B. 0142=--c b 228.设关于x 的方程()0922=+++a x a ax 有两个不等的实数根1x ,2x ,且1x <1<2x ,那么a的取值范围是( )A. 5272<<-a B. 52>a C. 72-<a D. 0112<<-a(全国初中数学竞赛试题)9.已知二次函数()()628222+++-=m x m x y .(1)求证:不论m 取任何实数,此函数的图象都与x 轴有两个交点,且两个交点都在x 轴的正半轴上;(2)设这个函数的图象与x 轴交于B ,C 两点,与y 轴交于A 点,若△ABC 的面积为48,求m 的值. (徐州市中考试题)10.已知抛物线m mx x y 223212--=交x 轴于A (1x ,0),B (2x ,0),交轴于C 点,且1x <0<2x ,()1122+=+CO BO AO(1)求抛物线的解析式;(2)在x 轴的下方是否存在着抛物线上的点P ,使∠APB 为锐角?若存在,求出P 点的横坐标的范围;若不存在,请说明理由.(武汉市中考试题)11.已知抛物线m m mx x y -++=2218381与x 轴交于A (1x ,0),B (2x ,0) (1x <2x )两点,与y 轴交于点C (0,b ),O 为原点.(1)求m 的取值范围.(2)若81>m ,且OC OB OA 3=+,求抛物线的解析式及A ,B ,C 的坐标; (3)在(2)情形下,点P ,Q 分别从A ,O 两点同时出发(如图)以相同的速度沿AB ,OC 向B ,C 运动,连接PQ 与BC 交于M ,设AP =k ,问:是否存在k 值,使以P ,B ,M 为顶点的三角形与△ABC 相似?若存在,求所有k 值;若不存在,请说明理由.12.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?(武汉市中考试题)B 级1.已知抛物线722-++=m mx x y 与x 轴的两个交点在(1,0)两旁,则m 的取值范围为 ____________.2.设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,则618323-+a a 的值为 ____________.(全国初中数学联赛试题)3.设m 是整数,且方程0232=-+mx x 的两根都大于59-而小于73,则m = .4.已知抛物线12++=kx x y 与x 轴的正方向相交于A ,B 两点,顶点为C ,△ABC 为等腰直角三角形,则k = .5.如图,已知抛物线q px x y ++=2与x 轴交于A ,B 两点,交y 轴负半轴于C 点,∠ACB =90°,且OCOB OA 211=-,则△ABC 的外接圆的面积为 .6.已知抛物线12-++=k kx x y ,(1)求证:无论k 为何实数,抛物线经过x 轴上的一定点;(2)设抛物线与y 轴交于C 点,与x 轴交于A (1x ,0),B (2x ,0),两点,且满足:1x <2x ,21x x <,6=∆ABC S .问:过A ,B ,C 三点的圆与该抛物线是否有第四个交点?试说明理由,如果有,求出其坐标.(武汉市中考试题)7.已知抛物线q px x y ++=2上有一点()00,y x M 位于x 轴下方.(1)求证:已知抛物线必与x 轴有两个交点A (1x ,0),B (2x ,0),其中1x <2x ; (2)求证:1x <0x <2x ;(3)当点M 为(1,-2)时,求整数1x ,2x . (《学习报》公开赛试题)8.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高,某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资量x 成正比例的关系,如图1所示;种植花卉的利润y 2与投资量x 成二次函数关系,如图2所示(注:利润与投资量的单位:万元)(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获得的最大利润是多少?(南宁市中考试题)图2图19.已知以x 为自变量的二次函数23842---=n nx x y ,该二次函数图象与x 轴两个交点的横坐标的差的平方等于关于x 的方程()0)45)(1(2672=++++-n n x n x 的一整数根,求n 的值.(绍兴市竞赛试题)10.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A ,O ,B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 周长最小?若存在,求点出C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(深圳市中考试题)11.如图1,抛物线32++=bx ax y 经过两点A (-3,0),B (-1,0)两点. (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线92+-=x y 与y 轴交于点C ,与直线OM 交于点D ,现将抛物线平移,保持顶点在直线OD 上,若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点,问在y 轴的负半轴上是否存在点P ,使得△PEF 的内心在y 轴上?若存在,求出点P 的坐标;若不存在,请说明理由.(武汉市中考试题)图2图112.已知二次函数c bx x y -+=2的图象经过两点P (1,a ),Q (2,10a ) (1)如果a ,b ,c 都是整数,且a b c 8<<,求a ,b ,c 的值;(2)设二次函数c bx x y -+=2的图象与x 轴的交点为A ,B ,与y 轴的交点为C ,如果关于x 的方程02=-+c bx x 的两个根都是整数,求△ABC 的面积.(全国初中数学联赛试题)。