九年级下数学专题_圆_(知识点_试题与答案)
- 格式:docx
- 大小:585.04 KB
- 文档页数:14
专题14圆一、单选题1.(2022·宁波)已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .236πcmB .224πcmC .216πcmD .212πcm【答案】B【解析】4624S rl πππ==⋅⋅=侧2cm , 故选B .2.(2022·温州)如图,,AB AC 是O 的两条弦,⊥OD AB 于点D ,OE AC ⊥于点E ,连结OB ,OC .若130DOE ∠=︒,则BOC ∠的度数为( )A .95︒B .100︒C .105︒D .130︒【答案】B【解析】解:∵OD ⊥AB ,OE ⊥AC ,∴∠ADO =90°,∠AEO =90°,∵∠DOE =130°,∴∠BAC =360°-90°-90°-130°=50°,∴∠BOC =2∠BAC =100°,故选:B .3.(2022·丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m ,高为,则改建后门洞的圆弧长是( )A .5πm 3B .8πm 3C .10πm 3D .5π+2m 3⎛⎫ ⎪⎝⎭【答案】C 【解析】如图,连接AD ,BC ,交于O 点,∵90BDC ∠=︒ ,∴BC 是直径,∴4BC ===, ∵四边形ABDC 是矩形,∴122OC OD BC ===, ∵2CD =,∴OC OD CD ==,∴COD ∆是等边三角形,∴60COD ∠=︒,∴门洞的圆弧所对的圆心角为36060300︒-︒=︒ , ∴改建后门洞的圆弧长是11300300410221801803BC πππ︒⨯︒⨯⨯==︒︒(m), 故选:C4.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M【答案】B【解析】解:∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x =∴点M 1(0)不在直线PB 上,当x =y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5.(2022·湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .B .6C .D .【答案】C【解析】 作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P '位置时,恰好过格点且P M '经过圆心O ,所以此时P M '最大,等于圆O 的直径,∵BM =4,BN =2,∴MN ==∴MQ =OQ∴OM∴2P M OM '==故选 C .6.(2022·杭州)如图,已知△ABC 内接于半径为1的⊙O ,∠BAC =θ(θ是锐角),则△ABC 的面积的最大值为()A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+【答案】D【解析】解:当△ABC 的高AD 经过圆的圆心时,此时△ABC 的面积最大,如图所示,∵AD ⊥BC ,∴BC =2BD ,∠BOD =∠BAC =θ,在Rt △BOD 中,sin θ= 1BD BD OB =,cos θ=1OD OD OB =, ∴BD =sin θ,OD =cos θ,∴BC =2BD =2sin θ,AD =AO +OD =1+cos θ,∴S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ). 故选:D .二、填空题7.(2022·湖州)如图,已知AB 是⊙O 的弦,∠AOB =120°,OC ⊥AB ,垂足为C ,OC 的延长线交⊙O 于点D .若∠APD 是AD 所对的圆周角,则∠APD 的度数是______.【答案】30°##30度【解析】∵OC ⊥AB ,OD 为直径,∴BD AD =,∴∠AOB =∠BOD ,∵∠AOB =120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,故答案为:30°.8.(2022·宁波)如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.【答案】32或65【解析】解:连接OA,①当D点与O点重合时,∠CAD为90°,设圆的半径=r,∴OA=r,OC=4-r,∵AC=4,在Rt△AOC中,根据勾股定理可得:r2+4=(4-r)2,解得:r=32,即AD=AO=32;②当∠ADC=90°时,过点A作AD⊥BC于点D,∵12AO•AC=12OC•AD,∴AD=AO AC OC⋅,∵AO=32,AC=2,OC=4-r=52,∴AD=65,综上所述,AD的长为32或65,故答案为:32或65.9.(2022·金华)如图,木工用角尺的短边紧靠⊙O于点A,长边与⊙O相切于点B,角尺的直角顶点为C,已知6cm,8cmAC CB==,则⊙O的半径为_____cm.【答案】253##183【解析】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =, 即O 的半径为253cm . 故答案为:253. 10.(2022·绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =Rt △ECD 中,CD =AC ,CE 2CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 11.(2022·杭州)如图是以点O 为圆心,AB 为直径的圆形纸片,点C 在⊙O 上,将该圆形纸片沿直线CO 对折,点B 落在⊙O 上的点D 处(不与点A 重合),连接CB ,CD ,AD .设CD 与直径AB 交于点E .若AD =ED ,则∠B =_________度;BC AD的值等于_________.【答案】3635 2 +【解析】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∴∠CEB=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴CE BE EO CE=,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x a(负值舍去),∴OE a,∴AE=OA-OE=a a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴BC EC AD AE=,∴BC AD = 故答案为:36三、解答题12.(2022·绍兴)如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求AD 的长(结果保留π).(2)求证:AD 平分∠BDO .【答案】(1)43π;(2)见解析 【解析】(1)解:连接OA , ∵∠ACB =20°,∴∠AOD =40°, ∴180n r AD π=, 18040⨯π⨯6=43π=. (2)证明:OA OD =,OAD ODA ∠=∠∴, AB 切O 于点A ,OA AB ∴⊥,90B ∠=︒,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.13.(2022·台州)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 交于点D ,连接AD .(1)求证:BD CD =;(2)若⊙O 与AC 相切,求B 的度数;(3)用无刻度的直尺和圆规作出劣弧AD 的中点E .(不写作法,保留作图痕迹) 【答案】(1)证明见详解;(2)45B ∠=︒;(3)作图见详解【解析】 (1)证明:∵AB 是O 的直径, ∴90ADB ∠=︒, ∴AD BC ⊥, ∵AB AC =, ∴BD CD =. (2)∵O 与AC 相切, ∴90BAC ∠=︒, 又∵AB AC =, ∴45B ∠=︒.(3)如下图,点E 就是所要作的AD 的中点.14.(2022·湖州)如图,已知在Rt △ABC 中,90C ∠=︒,D 是AB 边上一点,以BD 为直径的半圆O 与边AC 相切,切点为E ,过点O 作OF BC ⊥,垂足为F .(1)求证:OF EC =;(2)若30A ∠=︒,2BD =,求AD 的长.【答案】(1)见解析;(2)1 【解析】(1)解:如图,连接OE ,∵AC 切半圆O 于点E ,∴OE ⊥A C ,∵OF ⊥BC ,90C ∠=︒, ∴∠OEC =∠OFC =∠C =90°. ∴四边形OFCE 是矩形, ∴OF =E C ; (2)∵2BD =, ∴112122OE BD ==⨯=, ∵30A ∠=︒,OE ⊥AC , ∴2212AO OE ==⨯=, ∴211AD AO DO =-=-=.15.(2022·嘉兴)如图,在廓形AOB 中,点C ,D 在AB 上,将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则EF 的度数为_______;折痕CD 的长为_______.【答案】 60°##60度 46【解析】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将CD 沿弦CD 折叠∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒ 即EF 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅(HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ==∴CD =故答案为:60°;16.(2022·温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 【答案】(1)158;(2)5544y x =+;(3)①97或2111;②199 【解析】(1)解:如图1,连结OD .设半圆O 的半径为r .∵CD 切半圆O 于点D , ∴OD CD ⊥. ∵BE CD ⊥, ∴OD BE ∥,∴△∽△COD CBE , ∴OD CO BE CB=, 即535r r -=, ∴158r =,即半圆O 的半径是158.(2)由(1)得:1555284CA CB AB =-=-⨯=. ∵5,4AP BQ x BQ ==, ∴54AP x =. ∵CP AP AC =+, ∴5544y x =+. (3)①显然90PRQ ∠<︒,所以分两种情况. ⅰ)当90RPQ ∠=︒时,如图2.∵PR CE ⊥,∴90ERP ∠=︒. ∵90E ∠=︒,∴四边形RPQE 为矩形, ∴PR QE =.∵333sin 544PR PC C y x =⋅==+, ∴33344x x +=-,∴97x =.ⅰ)当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图3,则四边形PHER 是矩形,∴,PH RE EH PR ==. ∵5,3CB BE ==,∴4CE ==. ∵4cos 15CR CP C y x =⋅==+, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-,由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111.②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠'∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE ,∴∠EQR =∠PRQ ,∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△,∴CP CBCR CE=, 即:x CR +=555444,解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, ∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径, ∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 17.(2022·宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠.(2)求证:△≌△BDE FDG .(3)如图2,AD 为O 的直径. ①当AB 的长为2时,求AC 的长. ②当:4:11=OF OE 时,求cos α的值. 【答案】(1)902︒∠=-BFD α;(2)见解析;(3)①3;②5cos 8α=【解析】(1)∵∠-∠=∠=AFB BFD ACB α,①又∵180∠+∠=︒AFB BFD ,② ②-①,得2180∠=︒-BFD α, ∴902︒∠=-BFD α.(2)由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α,∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =. ∵FGAC ,∴∠=∠CAD DFG . ∵CAD DBE ∠=∠, ∴∠=∠DFG DBE . ∵BE FG =,∴()BDE FDG SAS △≌△. (3)①∵△≌△BDE FDG , ∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α. ∵DE DG =, ∴()11809022∠=︒-∠=︒-DGE FDG α, ∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ∵AD 为O 的直径, ∴90ABD ∠=︒.∴32∠=∠-∠=ABC ABD DBG α. ∴AC 与AB 的度数之比为3∶2.∴AC 与AB 的的长度之比为3∶2, ∵2AB =, ∴3=AC . ②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α. ∵2∠=BDG α, ∴∠=∠BOF BDG . ∵902∠=∠=︒-BGD BFO α,∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ∴==DG BDk OF BO. ∵411=OF OE , ∴设4OF x =,则114OE x DE DG kx ===,, ∴114==+=+OB OD OE DE x kx , 154==+BD DF x kx ,∴154154114114++==++BD x kx kBO x kx k, 由154114+=+kk k,得247150+-=k k ,解得154k =,23k =-(舍), ∴11416=+=OD x kx x ,15420=+=BD x kx x , ∴232==AD OD x , 在Rt ABD △中,205cos 328∠===BD x ADB AD x , ∴5cos 8α=.18.(2022·金华)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值. 【答案】(1)108︒;(2)是正三角形,理由见解析;(3)15n = 【解析】(1)解:∵正五边形ABCDE . ∴BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒;(2)解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =,∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形; (3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠. ∵2AD AE =,∴272144AOD ∠=⨯︒=︒, ∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 19.(2022·丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在射线AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长. 【答案】(1)证明过程见解析 (2)57352或22【解析】 【分析】(1)设CD 与AB 相交于点M ,由O 与AH 相切于点A ,得到90BAG ,由CD AB ⊥,得到90AMC ∠=,进而得到AG CD ∥,由平行线的性质推导得,CAG ACD ,AGC FCD ,最后由点A 关于CD 的对称点为E 得到FCD ACD ∠=∠即可证明.(2)过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,证明FAD ADC ∠=∠得到DP AP =,再证明CPA FPD △≌△得到PF PC =;最后根据KEF NEC △∽△及APN AFK △∽△得到25KE EF EN CE 和512PA ANAF AK ,最后根据平行线分线段成比例求解.(3)分四种情形:如图1中,当∥OC AF 时,如图2中,当∥OC AF 时,如图3中,当AC OF ∥时,如图4中,当AC OF ∥时,分别求解即可.. (1)证明:如图,设CD 与AB 相交于点M ,∵O 与AH 相切于点A ,∴90BAG ,∵CD AB ⊥,∴90AMC ∠=,∴AG CD ∥,∴CAG ACD ,AGC FCD ,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴CAG AGC ∠=∠.(2)解:过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:FCD FAD ,∵AB 为O 的直径,且CD AB ⊥,由垂径定理可知:AC AD =, ∴ACD ADC ∠=∠,∵点A 关于CD 的对称点为E ,∴FCD ACD ∠=∠,∴FAD FCD ACD ADC ∠=∠=∠=∠,即FAD ADC ∠=∠, ∴DP AP =,由同弧所对的圆周角相等可知:ACP DFP ,且CPA FPD ,∴CPA FPD △≌△, ∴PC PF =,∵FK AB ⊥,AB 与CD 交于点N ,∴90FKE CNE . ∵KEF NEC ,90FKE CNE , ∴KEF NEC △∽△, ∴25KEEF EN CE ,设KE =2x ,EN =5x ,∵点A 关于CD 的对称点为E ,5AN EN x ∴==,10AE AN NE x =+=,12AK AE KE x =+=, 又FK PN ∥,∴APN AFK , ∴551212PA ANx AF AK x . ∵FCD CDA ,∴CF AD ∥, ∴57DPAP AP CP PF AF AP ; (3)解:分类讨论如下:解:如图1中,当∥OC AF 时,连接OC ,OF ,设AGF α∠=,则CAG ACD DCF AFG α∠=∠=∠=∠=,∵∥OC AF ,OCF AFC α∴∠=∠=,OC OA =,3OCA OAC α∴∠=∠=,45OAG ∠=︒,490α∴=︒,22.5α∴=︒,OC OF =,OA OF =,22.5OFC OCF AFC ∴∠=∠-∠=︒,45OFA OAF ∴∠=∠=︒,AF ∴==,∵∥OC AF ,AE AF OE OC∴=∴, 1OA =,2AE ∴=如图2中,当∥OC AF 时,连接OC ,设CD 交AE 点M .设OAC α∠=,∵∥OC AF ,FAC OCA α∴∠=∠=,2COE FAE α∴∠=∠=,AFD D ∠=∠,AGF D ∠=∠,3AGC AFG AEC FAE α∴∠=∠=∠+∠=, 90AGC AEC ∠+∠=︒,490α∴=︒,22.5α∴=︒,245α=︒,COM ∴∆是等腰直角三角形,OC ∴,OM ∴=1AM =,22AE AM ∴==如图3中,当AC OF ∥时,连接OC ,OF ,设AGF α∠=,2ACF ACD DCF α∠=∠+∠=, ∵AC OF ∥,2CFO ACF α∴∠=∠=,4CAO ACO α∴∠=∠=,180AOC OAC ACO ∠+∠+∠=︒, 10180α∴=︒,18α∴=︒,36COE ECO CFO ∴∠=∠-∠=︒, OCE FCO ∴∆∆ 、,2OC CE CF ∴=⋅ 、, ()11CE CE ∴=+ 、,CE AC OE ∴===AE OA OE ∴=-; 如图4中,当AC OF ∥时,连接OC ,OF ,BF .设FAO α∠=,∵AC OF ∥,CAF OFA α∴∠=∠=,2COF BOF α∴∠=∠=,AC AE =,AEC CAE EFB ∴∠=∠=∠, BF BE ∴=,由OCF OBF ∆≅∆,CF BF BE ∴==,E COF ∠=∠,COF CEO ∴∆∆,2OC CE CF ∴=⋅,BE CF ∴==AE AB BE ∴=+=.综上所述,满足条件的AE 的长为22352或。
24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。
圆的知识点1.圆的定义(1)在一个平面内,线段OA 绕它固定的一一个端点___旋转周,另一个端点___所形成的图形叫做圆. 其固定的端点O 叫做____,线段OA 叫做_____. 以点O 为圆心的圆,记作______. (2)圆心为O ,半径为r 的圆可以看作是所有到______的距离等于_____的点的集合. 性质:(1)图上各到定点到定点(圆心O )的距离都等于定长(半径r ) (2)到定点的距离等于定长的点都在同一个圆上.2.圆的有关概念(1)弦:连接圆上任意两点的_______叫弦,经过圆心的弦叫作________。
(2)弧:圆上任意两点间的_______叫做圆弧,简称弧. 以A ,B 为端点的弧记作_____,读作“圆弧AB ”或“弧AB ”.圆的任意一条直径的两个点把圆分成两条弧,每一条弧都叫做_____.____半圆的弧(用三个点表示,如图ABC )叫做优弧;_______半圆的弧(如图中的AC )叫做劣弧 3) 等圆:能够______的两个圆叫做等圆.容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等.(4) 等弧:在同圆或等圆中,能够____________的弧故等弧.3.垂径定理垂径定理:______________________________。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦(不是直径)所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径②AB CD ⊥⇒③CE DE =④BC BD =⑤AC AD = 中任意2个条件推出其他3个结论。
4.圆心角定理 顶点到圆心的角,叫圆心角。
圆心角定理:同圆或等圆中,相等的圆心角所对的______相等,所对的____相等。
专题07四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。
相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。
本文主要介绍四点共圆的四种重要模型。
四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。
这也是圆的基本定义,到定点的距离等于定长点的集合。
条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。
例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【详解】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故答案为:140°.【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.例2.(2022·安徽合肥·校考一模)如图,O 是AB 的中点,点B ,C ,D 到点O 的距离相等,连接AC BD ,.下列结论不一定成立的是()A .12∠=∠B .3=4∠∠C .180ABC ADC ∠+∠=︒D .AC 平分BAD∠【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD ===.即点A 、B 、C 、D 都在圆O 上.A .∵AB AB =,∴12∠=∠,故A 不符合题意;B .∵BC BC =,∴3=4∠∠,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ∠+∠=︒,故C 不符合题意;D .∵BC 和CD 不一定相等,∴BAC ∠和DAC ∠不一定相等,∴AC 不一定平分BAD ∠,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.例3.(2023·陕西·九年级期中)如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为()A .68°B .88°C .90°D .112°【答案】B 【详解】试题分析:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.根据等腰三角形两底角相等求出∠ABC=∠ACB ,再求出∠CBD ,然后根据∠ABD=∠ABC ﹣∠CBD 计算即可得解.如图,∵AB=AC=AD ,∴点B 、C 、D 在以点A 为圆心,以AB 的长为半径的圆上;∵∠CBD=2∠BDC ,∠CAD=2∠CBD ,∠BAC=2∠BDC ,∴∠CAD=2∠BAC ,而∠BAC=44°,∴∠CAD=88°,例4.(2022·绵阳市4模型2、定边对双直角共圆模型同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90ABD ACD ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。
圆的基本性质记忆导图 ()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧对称、旋转对称对称性:轴对称、中心角形顶点的距离相等定理:三角形外心到三、圆的内接三角形三角形的外接圆、外心圆的作法圆的确定几者之间的关系圆心角的概念距间的关系圆心角、弧、弦、弦心弦心距垂径定理的推论垂径定理垂径分弦点在圆外点在圆内点在圆上点与圆的位置关系半圆、等圆弓形特殊弦:直径普通弦:小于直径的弦弦等弧优弧劣弧或弧圆弧圆、圆心、半径圆的相关概念圆的基本性质 考点1 圆的相关概念1、圆的定义(1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆。
(2)圆是到定点的距离等于定长的点的集合。
(3)固定的端点O 叫做圆心。
(4)线段OA 的长为r 叫做半径。
2、圆弧(1)圆上任意两点间的部分叫做圆弧,简称弧。
(2)大于半圆的弧叫做优弧,一般用三个字母表示。
(3)小于半圆的弧叫做劣弧。
(4)在同圆或等圆中,能够互相重合的弧叫做等弧。
3、弦(1)连接圆上任意两点的线段叫做弦。
(2)经过圆心的弦叫做直径。
4、弓形由弦及其所对的弧组成的图形叫做弓形。
5、半圆、等圆(1)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(2)能够重合的两个圆叫做等圆,等圆的半径相等。
考点2 点与圆的位置关系平面上一点P 与⊙O (半径为r )的位置关系有以下三种情况:(1)点P在⊙O上⇔OP=r;(2)点P在⊙O内⇔OP<r;(3)点P在⊙O外⇔OP>r。
考点3垂径分弦1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
2、推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线过圆心,且平分弦对的两条弧。
③平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦。
④平行弦夹的弧相等。
初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。
初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。
二次函数的定义域是全体实数。
2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。
⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。
二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。
概括成八个字“左加右减,上加下减”。
方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。
北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习圆的对称性—知识讲解(提高)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【总结升华】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【总结升华】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【总结升华】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【总结升华】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形. 类型三、圆心角、弧、弦之间的关系及应用5.已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD =BC ,只需证AD BC =或证∠AOD=∠BOC 即可.【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B DC D B D -=-,即AD BC =, ∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】如图所示,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB . 求证:AC BD =.【答案】证法一:如上图所示,连OC、OD,则OC=OD,∵OA=OB,且12OM OA=,12ON OB=,∴OM=ON,而CM⊥AB,DN⊥AB,∴Rt△COM≌Rt△DON,∴∠COM=∠DON,∴A C B D=.证法二:如下图,连AC、BD、OC、OD.∵M是AO的中点,且CM⊥AB,∴AC=OC,同理BD=OD,又OC=OD.∴AC=BD,∴A C B D=.。
圆与直线知识点圆的方程:〔1〕标准方程:〔圆心为A(a,b),半径为r 〕〔2〕圆的一般方程:〔〕 圆心〔-,-〕半径点与圆的位置关系的判断方法:根据点与圆心的距离与在大小关系判断 直线与圆的位置关系判断方法〔1〕几何法:由圆心到直线的距离和圆的半径的大小关系来判断。
d=r 为相切,d>r 为相交,d<r 为相离。
适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。
利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
〔2〕代数法:由直线与圆的方程联立得到关于x 或y 的一元二次方程,然后由判别式△来判断。
△=0为相切,△>0为相交,△<0为相离。
利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。
4.圆与圆的位置关系判断方法〔1〕几何法:两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点: 1〕当时,圆与圆相离;2〕当时,圆与圆外切;3〕当时,圆与圆相交;4〕当时,圆与圆内切; 5〕当时,圆与圆内含;〔2〕代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。
△=0为外切或内切,△>0为相交,△<0为相离或内含。
假设两圆相交,两圆方程相减得公共弦所在直线方程。
5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系选择题1.圆1)3()1(22=++-y x 的切线方程中有一个是 〔 〕A .x -y =0B .x +y =0C .x =0D .y =02.假设直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于〔 〕A .1B .13- C .23-D .2- 3.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为〔 〕222()()x a y b r -+-=022=++++F Ey Dx y x 0422>-+F E D 2D 2E FE D 42122-+d r l 21r r l +>1C 2C 21r r l +=1C 2C <-||21r r 21r r l +<1C 2C ||21r r l -=1C 2C ||21r r l -<1C 2CA.4± B.± C.2± D.4.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是〔 〕A .一条直线B .一个圆C .一个椭圆D .双曲线的一支 5.参数方程2tan cot x y θθ=⎧⎨=+⎩〔θ为参数〕所表示的曲线是〔 〕A .圆B .直线C .两条射线D .线段6.如果直线12,l l 的斜率分别为二次方程2410x x -+=的两个根,那么1l 与2l 的夹角为〔 〕A .3π B .4π C .6π D .8π7.已知{(,)|0}M x y y y ==≠,{(,)|}N x y y x b ==+,假设MN ≠∅,则b ∈〔 〕A .[-B .(-C .(-D .[-8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是〔 〕A .4B .5C .1D .9.假设直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为〔 〕A .1B .5C .D .3+10.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.假设在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m 〔 〕 A . 2- B .1- C .1D .411、设2000200120012002101101,101101M N ++==++,2000200120012002109109,1010010100P Q ++==++,则M 与N 、P 与Q 的大小关系为 ( )A.,M N P Q >>B.,M N P Q ><C.,M N P Q <>D.,M N P Q <<12、已知两圆相交于点(1,3)(,1)A B m -和点,两圆圆心都在直线:0l x y c -+=上,则c m +的值等于 A .-1 B .2 C .3 D .013、三边均为整数且最大边的长为11的三角形的个数为 ( )A.15B.30C.36D.以上都不对14、设0m >)10x y m +++=与圆22x y m +=的位置关系为 〔 〕A.相切B.相交C.相切或相离D.相交或相切15、已知向量(2cos ,2sin ),(3cos ,3sin ),m n ααββ==假设m 与n的夹角为60︒,则直线1:cos sin 02l x y αα-+=与圆221:(cos )(sin )2C x y ββ-++=的位置关系是〔 〕 A .相交但不过圆心 B .相交过圆心 C .相切D .相离16、已知圆22:(3)(5)36O x y -++=和点(2,2),(1,2)A B --,假设点C 在圆上且ABC ∆的面积为25,则满足条件的点C 的个数是 〔 〕 A.1 B.2 C.3 D.417、假设圆2221:()()1C x a y b b -+-=+始终平分圆222:(1)(1)4C x y +++=的周长,则实数b a ,应满足的关系是 ( )A .03222=---b a aB .05222=+++b a aC .0122222=++++b a b aD .01222322=++++b a b a18、在平面内,与点)2,1(A 距离为1, 与点)1,3(B 距离为2的直线共有 ( ) A.1条 B. 2条 C. 3条 D. 4条填空题1、直线2x -y -4=0上有一点P ,它与两定点A (4,-1),B (3,4)的距离之差最大,则P 点坐标是______2、设不等式221(1)x m x ->-对一切满足2m ≤的值均成立,则x 的范围为 。
辅导讲义年级:初三辅导科目:数学教学内容一、同步知识梳理知识点1:圆的定义圆的定义有以下两种:(1)在同一平面内,一条线段OP绕它固定的一个O旋转一周,另一个P所经过的封闭曲线叫做圆。
定点O就是圆心,线段OP就是圆的半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。
①这是圆的描述性定义,由定义也可以看出:确定圆的两个条件是圆心和半径,圆心确定圆的位置,圆的半径确定圆的大小;②要注意圆是指“圆周”,而非“圆面”。
(2)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点叫做圆心,定长叫做半径。
这是圆的点集定义,它包括两个方面的含义:①圆上各点到定点(即圆心)的距离等于定长(即半径r);②到定点距离等于定长的点都在圆上。
思考:点与圆的位置关系:如果⊙O的半径为r,点P到圆心的距离为d,那么点P在圆内⇔;点P在圆上⇔;点P在圆外⇔.思考:同圆,等圆的概念题型1:圆的定义例1:半径相等如图,已知CD是⊙O的直径,∠EOD=78°,AE交⊙O于点B,且AB=OC,求∠A的度数.解析∠EOD=78°与未知角∠A构成了内、外角关系,而∠E也是未知角,且AB=OC这一已知条件不能直接用,故可考虑用“同圆半径相等”来解.解连接OB.∵AB=OC,OB=OC,∴AB =OB.∴∠A =∠AOB. 又∵OB =OE ,∴∠E =∠OBE =∠A +∠AOB =2∠A. ∴∠DOE =∠E +∠A =3∠A , ∴∠A =26°.点评 利用“同圆的半径相等”构造等腰三角形解题是本题得解的关键.检测题1:如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB •于点D ,求∠ACD 的度数.例2:点和圆的位置关系已知线段AB 的长为4cm ,试用阴影表示到点A 不小于3cm ,且到点B 小于2cm 的点的集合.解 根据题意作出图形,如图所示,其中阴影部分即为所求.点评 解决这类问题的关键是正确掌握点和圆的位置关系.检测题2:如图,已知矩形ABCD 的边AB =3cm ,AD =4cm.(1)以点A 为圆心,4cm 为半径作⊙A ,则点B 、C 、D 与⊙A 的位置关系如何? (2)若以点A 为圆心作⊙A ,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的半径r 的取值范围是多少?解 (1)∵AB =3cm <4cm ,∴点B 在⊙A 内. ∵AD =4cm ,∴点D 在⊙A 上.又∵AC =32+42=5cm >4cm ,∴点C 在⊙A 外. (2)∵AB =3cm ,AD =4cm ,AC =5cm ,也就是说,B 点到圆心A 的距离3cm 是最短距离,C 点到圆心A 的距离5cm 是最长距离. ∴使B ,C ,D 三点中至少有一点在圆内且至少有一点在圆外,⊙A 的半径r 的取值范围是3cm <r <5cm.点评 (1)点与圆的位置关系,与点到圆心的距离(d),圆的半径(r)之间的大小关系有着紧密联系,是“数”与“形”的结合.(2)判断点和圆的位置关系,主要是把点到圆心的距离(d)与圆的半径(r)的大小进行比较.当d <r 时,点在圆内;当d =r 时,点在圆上;当d >r 时,点在圆外.知识点2:圆中的基本线段定义1:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.BA CD3:顶点在圆心的角叫做圆心角.4:圆心相同,半径不相等的两个圆叫做同心圆.能够互相重合的两个圆叫做等圆.在同圆或等圆中,能够互相重合的弧叫做等弧.5:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等例1:下列说法中正确的是________.(填序号)①圆是轴对称图形,每一条直径都是它的对称轴;②在同圆或等圆中,如果两条弦相等,那么它所对的两条弧也相等;③平分弦的直径垂直于这条弦;④垂直于弦的直径平分这条弦.解析①圆是轴对称图形,它的对称轴是经过圆心的每条直线而不是直径,所以①不正确;因为一条弦对两条弧,所以②也不正确;因为直径是弦,所以③也不正确.答案④点评对于概念辨析题,进行比较或举出反例是解决这一类题的关键.检测题1:下列说法中,正确的有________.(填序号)①弦是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个半圆是等弧;④直径是圆中最长的弦.解析∵直径经过圆心,∴弦不一定是直径,故①错误.②③④是正确的.答案②③④点评(1)注意易混淆概念的区别与联系,通过比较进行解题.(2)要注意运用数形结合思想,看到概念联想有关图形,看到图形联想有关概念.知识点3:1:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.2:圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.3:直径(或半圆)所对的圆周角是直角.90°的圆周角所对的弦是直径;例1:如图,已知⊙O中AB的度数是CD度数的2倍,则AB与2CD的关系是()A.AB=2CD B.AB>2CD C.AB<2CD D.无法确定解析取AB的中点E,连接AE、BE,由题意知AE=BE=CD,∴AE=BE=CD.在△ABE中,AE+BE>AB,即2CD>AB.答案 C点评同圆或等圆中,等弧对等弦.但不能把这一结论推广成弧与所对的弦成正比例关系.检测1:如图,△ABC 内接于⊙O ,∠A=30°,若BC=4cm ,则⊙O 的直径为( )A . 6cmB . 8cmC . 10cmD . 12cm例2:如图,已知O 的半径为R ,C D ,是直径AB 同侧圆周上的两点,AC 的度数为96︒,BD 的度数为36︒,动点P 在AB 上,求PC PD +的最小 解:连接DC ′,根据题意以及垂径定理, 得弧C ′D 的度数是120°, 则∠C ′OD=120度. 作OE ⊥C ′D 于E , 则∠DOE=60°,则DE=32R ,C ′D =3R测试题2 :已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.例1:如图,AB 是半圆的直径,D 是AC 的中点,∠ABC =40°,求∠A 的度数. 解 连接BD.∵D 是AC 的中点,∴AD =DC .∴∠ABD =∠CBD =12∠ABC =20°.∵AB 是半圆的直径,∴∠ADB =90°. 又∵∠ABD =20°,∴∠A =180°-∠ABD -∠ADB =70°. 点评 (1)构造直径所对的90°圆周角是解决与圆相关问题的常用辅助线,这样为勾股定理的运用、相似三角形的产生创造了条件.(2)“90°的圆周角所对的弦是直径”是确定一个圆的圆心的重要方法.例2:已知:如图,四边形ABCD 是⊙O 的内接四边形,∠BOD=140°,则∠DCE= 070 .例3 :已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°. (1)求EBC ∠的度数; (2)求证:BD CD =.例4:如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.BACE DO一、专题精讲 半径相等例1:与勾股定理结合如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm ,则该半圆的半径为______.例2:与中心对称图形结合 如图,O 的直径AB=4,半径OC AB ⊥,D 为BC 上一点,,DE OC DF AB ⊥⊥ ,垂足分别为E,F ,求EF 的长。
专题18 正多边形与圆【重点突破】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)【考查题型】考查题型一求正多边形的中心角典例1.(2019·南京市期末)若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45°B.60°C.72°D.90°【答案】B【提示】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.故选B.【名师点拨】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.变式1-1.(2020·淮安市期末)如图,正六边形ABCDEF内接于圆O,圆O半径为2,则六边形的边心距OM 的长为()A.2 B.3C.4 D3【答案】D【提示】连接OB、OC,证明△OBC是等边三角形,得出3=OM OB即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴333 OM故选:D.【名师点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.变式1-2.(2019·宿迁市期末)正六边形的周长为6,则它的面积为()A.93B.332C3D.33【答案】B【提示】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC 的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=16×360°=60°, ∵OB=OC ,∴△OBC 是等边三角形,∵正六边形ABCDEF 的周长为6, ∴BC=6÷6=1, ∴OB=BC=1, ∴BM=12BC=12, ∴2222131()22OB BM -=-=, ∴S △OBC =12×BC×OM=1331224⨯⨯= , 3336=. 故选:B . 【名师点拨】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.变式1-3.(2020·东台市期末)在一块半径为2cm 的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( ) A .1cm B 3cm C .2cm D .3cm【答案】D 【提示】画出图形,作OC AB ⊥于点C ,利用垂径定理和等边三角形的性质求出AC 的长即可得出AB 的长. 【详解】解:依题意得3603120AOB ∠=︒÷=︒, 连接OA ,OB ,作OC AB ⊥于点C , ∵OA OB =,∴2AB AC =,60AOC ∠=︒, ∴sin 603cm AC OA =⋅︒=, ∴223cm AB AC ==. 故选:D .【名师点拨】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.变式1-4.(2019·宿迁市期中)如图,已知正六边形ABCDEF ,则∠ADF =_____度.【答案】30 【提示】找到AD 的中点O ,连接OF ,由多边形是正六边形可求出∠AOF 的度数,再根据圆周角定理即可求出∠ADF 的度数. 【详解】解:由题意知:AD 是正六边形的外接圆的直径, 找到AD 的中点O ,连接OF , ∵六边形ABCDEF 是正六边形,∴∠AOF =3606︒=60°, ∴∠ADF =12∠AOF =12×60°=30°.故答案为:30.【名师点拨】此题考查的是圆与正六边形,掌握圆的内接正六边形的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.变式1-5 (2019·房县期末)若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.【答案】30º【提示】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【名师点拨】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.考查题型二已知正多边形的中心角求边数典例2.(2018·东台市期末)如果一个正多边形的中心角为72,那么这个正多边形的边数是().A.4B.5C.6D.7【答案】B【解析】÷=.试题提示:根据正多边形的中心角与边数的关系,其边数为360725变式2-1.(2020·宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.12【答案】D【提示】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【名师点拨】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.变式2-2.(2019·赣榆区期中)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=____ .【答案】15.【提示】连接OB,先求得∠AOB的度数,然后利用360°除以∠AOB度数,根据所得的结果进行提示即可得. 【详解】连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O的内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=60°-36°=24°,即360°÷n=24°,∴n=15,故答案为:15.【名师点拨】本题考查了正多边形和圆,中心角等知识,熟练掌握相关知识是解题的关键.注意把圆周等分,然后顺次连接各个分点就会得到正多边形.考查题型三正多边形和圆典例3.(2020·浔阳区期末)如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是23cm,则这个正六边形的周长是()A.12 B.63C.36 D.123【答案】D【提示】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=23cm,∴△AOB是等边三角形,∴AB=OA=23cm,∴正六边形ABCDEF的周长=6AB=123cm.故选D【名师点拨】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键. 变式3-1.(2018·射阳县期末)正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定【答案】B【解析】设正多边形的边数为n,则正多边形的中心角为360n︒,正多边形的一个外角等于360n︒,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.故选B.变式3-2.(2018·合肥市期末)如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则∠BEC 的度数为()A.30°B.45°C.60°D.90°【答案】B【提示】首先连接OB,OC,由O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.【详解】连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=12∠BOC=45°.故选B.变式3-3(2020·泉州市期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6 B.7 C.8 D.9【答案】B【提示】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【详解】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.【名师点拨】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.变式3-4.(2020无锡市期中)如图,边长为a的正六边形内有两个三角形(数据如图),则SS阴影空白的值为()A.3 B.4 C.5 D.6 【答案】C【详解】解:因为是正六边形,所以△OAB是边长为a的等边三角形,即两个空白三角形面积为S△OAB,即SS阴影空白=5.故选C.【名师点拨】本题考查正多边形和圆.变式3-5.(2019·临川市期中)如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【提示】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为2,即圆的直径为2,∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【名师点拨】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.变式3-6.(2020·吴江区期末)若正方形的外接圆半径为2,则其内切圆半径为()A.22B.2C.22D.1【答案】B【解析】试题解析:如图所示,连接OA、OE,∵AB 是小圆的切线,∴OE ⊥AB ,∵四边形ABCD 是正方形,∴AE =OE ,∴△AOE 是等腰直角三角形, 2 2.2OE OA ∴== 故选B. 变式3-7.(2019·徐州市期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43 B .23 C .33 D .322【答案】C【提示】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13333224ABC S =⨯=. 故选:C .【名师点拨】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.考查题型四利用尺规作正多边形典例4.(2019·扬州市期中)尺规作图:如图,AD为⊙O的直径。
第11讲与圆有关的位置关系知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习与圆有关的三类位置关系:点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系,重点掌握各种与圆位置关系的判断方法,其次学习切线的有关性质与判定以及切线长定理及应用,能够结合已知题意证明相关切线,最后掌握圆的外接三角形与三角形内切圆概念。
本节课的重点是三类位置关系的判断方法以及切线的性质与判定定理,属于中考重点内容,也是难点之一,希望同学们能够好好学习,扎实基础。
知识梳理讲解用时:25分钟与圆有关的位置关系(1)点与圆的位置关系点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:⊙点P在圆外⊙d>r⊙点P在圆上⊙d=r⊙点P在圆内⊙d<r注意:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系。
课堂精讲精练【例题1】到圆心的距离不大于半径的点的集合是( )。
A .圆的外部B .圆的内部C .圆D .圆的内部和圆【答案】D【解析】此题考查圆的认识以及点与圆的位置关系,根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合; 圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界). 故选:D .讲解用时:3分钟解题思路:根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决。
教学建议:理解圆上的点、圆内的点和圆外的点所满足的条件。
难度:3 适应场景:当堂例题 例题来源:盱眙县校级月考 年份:2016秋 【练习1】已知Rt⊙ABC 中,⊙C=90°,AC=3,BC=7,CD⊙AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内,设⊙D 的半径为r ,那么r 的取值范围是 。
第二十四章圆的有关计算【导航篇】知识点一:点和圆、直线和圆的位置关系1.点和圆的位置关系点和圆的位置关系分三种(设⊙O的半径为r,点P到圆心的距离OP=d):注意:符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以推出右端,从右端也可以推出左端.2. 确定一个圆的条件(1)已知圆心、半径,可以确定一个圆;(2)不在同一条直线上的三个点确定一个圆.注意:“确定”是“有且只有”的意思,(2)中不能忽略“不在同一条直线上”这个前提条件,过在同一条直线上的三个点不能作圆.3. 三角形的外接圆(1)三角形的外接圆:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形.注意:一个圆可以有无数个内接三角形,但是一个三角形只有一个外接圆.(2)三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.(3)三角形外心的性质:三角形的外心到三角形三个顶点的距离相等,等于其外接圆的半径.(4)三角形外心的位置:锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部.4. 反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立. 这种方法叫做反证法. 反证法是一种间接证明命题的方法.5. 直线和圆的位置关系【例1】如图,已知正方形ABCD 中,AB =2,以点A 为圆心画圆,半径为r . 当点D 在⊙A 内且点C 在⊙A 外时,r 的取值范围是____________.【例1】【解析】连接AC ,∵正方形ABCD 中,AB =2,∴AC=,AD =2,以点A为圆心画圆,要使点D 在⊙A 内,则r >AD ,即r >2,要使点C 在⊙A 外,则r <AC ,即r <A 的半径r 的取值范围是2<r <.【答案】2<r < 【巩固】1. 圆的直径为10 cm ,若点P 到圆心O 的距离是d ,则( ) A. 当d =8 cm 时,点P 在⊙O 内 B. 当d =10 cm 时,点P 在⊙O 上 C. 当d =5 cm 时,点P 在⊙O 上 D. 当d =6 cm 时,点P 在⊙O 内2. 已知⊙O 的直径为12 cm ,圆心到直线l 的距离5 cm ,则直线l 与⊙O 的公共点的个数为( )A. 2B. 1C. 0D. 不确定3. 如图,在Rt △ABC 中,∠ACB =90°,CD =5,D 是AB 的中点,则它的外接圆的直径DCBAABCD为_____________.【巩固答案】 1. C 2. A 3. 10知识点二:切线的判定和性质1. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:应用该定理时,两个条件缺一不可:一是经过半径的外端;二是垂直于这条半径. 2. 切线的判定方法(1)定义法:与圆有唯一公共点的直线是圆的切线; (2)数量法:到圆心的距离等于半径的直线是圆的切线;(3)判定定理法:经过半径的外端并且垂直于这条半径的直线是圆的切线. 3. 切线的性质定理:圆的切线垂直于过切点的半径.【例2】如图,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连接BC ,BC 平分∠ABD . 求证:CD 为⊙O 的切线.【例2】【解析】证明切线的方法:①当已知直线与圆有公共点时,连接圆心和这个公共点,即连半径,然后证明直线垂直于这条半径,简称“连半径,证垂直”;②当直线与圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,CDAB本题利用方法①证明即可,因为半径OC已连接,所以只要证明OC⊥CD,利用等腰三角形的性质、平行线的性质和判定即可得证.【答案】证明:∵BC平分∠ABD,∴∠OBC=∠DBC.∵OB=OC,∴∠OBC=∠OCB,∴∠DBC=∠OCB,∴OC∥BD,∴∠OCD+∠CDB=180°,∵BD⊥CD,∴∠CDB=90°,∴∠OCD=180°-∠CDB=180°-90°=90°.即OC⊥CD,又∵OC为半径,∴CD为⊙O的切线.【巩固】1.下列说法中,不正确的是()A. 与圆只有一个交点的直线是圆的切线B. 经过半径的外端,且垂直于这条半径的直线是圆的切线C. 与圆心的距离等于半径的直线是圆的切线D. 垂直于半径的直线是圆的切线2. 如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA 的度数为()A. 76°B. 56°C. 54°D. 52°A1.D2.A知识点三:切线长定理和三角形的内切圆1.切线长:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.3.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,这个三角形叫做这个圆的外切三角形.4.三角形的内心:三角形的内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.5.三角形内心的性质:三角形的内心到三角形三条边的距离相等,且等于其内切圆的半径.【例3】如图,P A、PB为⊙O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交⊙O于点D,下列结论不一定成立的是()A.P A=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD【例3】【解析】因为P A、PB为⊙O的切线,由切线长定理可知P A=PB,∠BPD=∠APD,所以A、B选项成立;在等腰三角形ABP中,根据等腰三角形的性质得到AB⊥PD,所以C选项成立,只有当AD∥PB,BD∥P A时,AB平分PD,所以D选项不一定成立. 故选D.【答案】D【巩固】1.如图,P A,PB分别切⊙O于点A,B,如果∠P=60°,P A=2,那么AB的长为()A. 1B. 2C. 3D. 42.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC的度数为()A. 60°B. 65°C. 70°D. 80°AIB C 【巩固答案】1.B2.D知识点四:正多边形和圆1.正多边形及有关概念(1)正多边形:各边相等、各角也相等的多边形是正多边形.(2)圆内接正多边形:把圆分成n(n≥3)等份,依次连接各分点得到的多边形就是这个圆的内接正n边形,这个圆就是这个正n边形的外接圆.(3)与正多边形有关的概念(4)正多边形的对称性所有的正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心,n 为偶数时,它还是中心对称图形,它的中心就是对称中心. 2. 正多边形的有关计算(1)正n 边形的每个内角都等于()nn ︒⋅-1802.(2)正n 边形的每个中心角都等于n ︒360.(3)正n 边形的每个外角都等于n︒360.(4)设正n 边形的半径为R ,边长为a ,边心距为r ,则:①半径、边长、边心距的关系为2222⎪⎭⎫⎝⎛+=a r R ;②周长l =na ; ③面积lr n ar S 2121=⋅=. 【例4】如图,边长为12 cm 的圆内接正三角形的边心距是_________cm.【例4】【解析】如图,作OH ⊥BC 于H ,连接OB ,在正三角形ABC 中,AB =BC =AC =12 cm ,∴BH =CH =6 cm ,∵∠ABC =60°,∴∠OBH =30°. 设OH =x cm ,∴OB =2x cm ,在Rt △OBH 中,由勾股定理得x 2+62=(2x )2,解得x=即OH=cm.【答案】 【巩固】1. 如图,正六边形ABCDEF 内接于⊙O ,连接OC 、OD ,则∠COD 的大小是( ) A. 30° B. 45° C. 60° D. 90°2. 如图,正方形ABCD 内接于⊙O ,若⊙O 的半径是2,则正方形的边长是__________.【巩固答案】 1. C 2. 2知识点五:弧长和扇形面积1. 弧长公式: 在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为180Rn l π=. 2. 扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形. 3. 扇形面积公式(1)已知半径R 和n °的圆心角,则3602R n S π=扇形. (2)已知弧长l 和半径R ,则lR S 21=扇形. 4. 与圆锥有关的概念(1)圆锥:圆锥是由一个底面和一个侧面围成的几何体. 圆锥可以看作是一个直角三角形绕它的一条直角边所在的直线旋转一周形成的图形.(2)圆锥的母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线. (3)圆锥的高:连接圆锥顶点与底面圆心的线段叫做圆锥的高. 5. 圆锥的侧面积和全面积如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形. 设圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为l ,扇形的弧长为2πr , 因此rl l r S S ππ=⨯⨯==221扇形侧,()r l r r rl S S S +=+=+=πππ2底侧全.【例5】如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 是菱形,则图中阴影部分的面积为( ) A.3232-π B. 332-π C. 3234-π D. 334-π【例5】【解析】由题意可知,阴影部分的面积是由两个面积相等的弓形面积组成,弓形面积可以看成是扇形OBC 的面积和三角形OBC 的面积的差,因为四边形OABC 是菱形,所以OC =BC ,又OB =OC ,所以△OBC 是等边三角形,所以S =阴影()2=OBC OBC S S ∆-扇形2602142236023ππ⎛⋅-⨯=- ⎝故选C.【答案】C 【巩固】r1. 如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( ) A. π32 B. π34 C. π2 D. π382. 如图,ABCDEF 为⊙O 的内接正六边形,AB =a ,则图中阴影部分的面积是( )A.26a π B. 2436a ⎪⎪⎭⎫ ⎝⎛-π C . 243a D . 2433a ⎪⎪⎭⎫ ⎝⎛-π【巩固答案】1. D2. B。
一、选择题1.(0分)[ID:11123]如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)2.(0分)[ID:11118]已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B.C.D.3.(0分)[ID:11107]如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=3x(x>0)、y=kx(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1B.1C.12-D.124.(0分)[ID:11102]如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=,那么S EAFS EBC的值是()A.12B.13C.14D.195.(0分)[ID:11101]下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似6.(0分)[ID:11095]在函数y=21ax+(a为常数)的图象上有三个点(﹣1,y1),(﹣1 4,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y2 7.(0分)[ID:11073]已知2x=3y,则下列比例式成立的是()A.x2=3yB.x+yy=43C.x3=y2D.x+yx=358.(0分)[ID:11069]如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.(0分)[ID:11068]在ABC中,点D,E分别在边AB,AC上,:1:2AD BD=,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=10.(0分)[ID:11062]如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果70A∠︒=,那么DOE∠的度数为()A .35︒B .38︒C .40︒D .42︒11.(0分)[ID :11061]如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .812.(0分)[ID :11058]如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .16513.(0分)[ID :11041]在平面直角坐标系中,点E (﹣4,2),点F (﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO 缩小,则点E 的对应点E 的坐标为( ) A .(2,﹣1)或(﹣2,1)B .(8,﹣4)或(﹣8,4)C .(2,﹣1) D .(8,﹣4) 14.(0分)[ID :11035]若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 15.(0分)[ID :11071]如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA二、填空题16.(0分)[ID :11190]如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.17.(0分)[ID :11154]在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.18.(0分)[ID :11137]已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.19.(0分)[ID :11228]学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.20.(0分)[ID :11224]如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.21.(0分)[ID :11221]如图,已知两个反比例函数C 1:y =1x 和C 2:y =13x在第一象限内的图象,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_____.22.(0分)[ID :11198]把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.23.(0分)[ID :11197]若a b =34,则a b b+=__________. 24.(0分)[ID :11193]一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.25.(0分)[ID :11176]已知CD 是Rt △ABC 斜边上的高线,且AB=10,若BC=8,则cos ∠ACD= ______ .三、解答题26.(0分)[ID :11323]等腰Rt PAB 中,90PAB ∠=,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:27.(0分)[ID:11322]已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)28.(0分)[ID:11289]如图,在ABC中,AB AC=,点E在边BC上移动(点E不与点B,C重合),满足DEF B∠=∠,且点D、F分别在边AB、AC上.(1)求证:BDE CEF△∽△.(2)当点E移动到BC的中点时,求证:FE平分DFC∠.29.(0分)[ID:11267]如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.30.(0分)[ID:11272]如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=3 4 .(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.D5.B6.A7.C8.D9.D10.C11.C12.C13.A14.A15.B二、填空题16.【解析】【分析】由证得【详解】∵∴△CED∽△CAB∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出17.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的18.【解析】∵AB∥CD解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键19.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD然后求出△ABC 面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA于D则在直角△AB20.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(3)C(5)所以B()然后利用待定系数法求直线BD的解析式【详解】∵D(53)∴A(3)C(5)∴B()设直线BD的解析式为y=m21.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCO D=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵P C⊥x轴PD⊥y轴∴S△22.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影23.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键24.6【解析】符合条件的最多情况为:即最多为2+2+2=625.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B利用同角的余弦得结论解:∵CD是Rt△ABC斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=90°∴∠B+∠A=90°∴∠A CD=∠三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.D 解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCC,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.5.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.10.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.11.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA -AP=2,接着在Rt △OPH 中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt △OHC 中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH ⊥CD 于H ,连结OC ,如图,∵OH ⊥CD ,∴HC=HD ,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1, 在Rt △OHC 中,∵OC=4,OH=1, ∴22=15OC OH -∴15故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键12.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键. 13.A解析:A【解析】【分析】利用位似比为1:2,可求得点E 的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E (-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.14.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y=,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】 本题考查了比例的性质,正确将比例式变形是解题的关键.15.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD =90°,而∠P AB ≠∠PCA ,∠PBA ≠∠P AC ,∴无法判定△P AB 与△PCA 相似,故A 错误;同理,无法判定△P AB 与△PDA ,△ABC 与△DCA 相似,故C 、D 错误;∵∠APD =90°,AP =PB =BC =CD ,∴AB =√2P A ,AC =√5P A ,AD =√10P A ,BD =2P A ,∴AB DB =√2PA 2PA =√2BC 2BA =√2PA =√2AC 2DA =√5PA √10PA =√22,∴AB DB =BC BA =AC DC ,∴△ABC ∽△DBA ,故B 正确.故选B .【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题16.【解析】【分析】由证得【详解】∵∴△CED ∽△CAB ∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE ∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出解析:35【解析】【分析】由DE AB ∥证得【详解】∵DE AB ∥, ∴△CED ∽△CAB,∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE, ∴AE AB =35DE CE AB AC ==,故填:35. 【点睛】 此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AE AB的值. 17.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.18.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.19.【解析】【分析】如图所示作BD⊥CA 于D 则在直角△ABD 中可以求出BD 然后求出△ABC 面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA 于D 则在直角△AB解析:6750【解析】【分析】如图所示,作BD ⊥CA 于D ,则在直角△ABD 中可以求出BD ,然后求出△ABC 面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD ⊥CA 于D ,则在直角△ABD 中,∠BAD=60°,∴BD=ABsin60°=15, ∴△ABC 面积=12×AC×BD=225.又因为每平方米造价为30元, ∴总造价为30×225=6750(元). 【点睛】 此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.20.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.21.【解析】【分析】根据反比函数比例系数k 的几何意义得到S△AOC=S△BOD=S 矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB 的面积【详解】∵PC⊥x 轴PD⊥y 轴∴S△ 解析:23【解析】【分析】根据反比函数比例系数k 的几何意义得到S △AOC =S △BOD =111236⨯=,S 矩形PCOD =1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB 的面积.【详解】∵PC ⊥x 轴,PD ⊥y 轴,∴S △AOC =S △BOD =11||23⋅=111236⨯=,S 矩形PCOD =1,∴四边形P AOB 的面积=1﹣2×16=23. 故答案为:23. 【点睛】本题考查了反比函数比例系数k 的几何意义.掌握反比函数比例系数k 的几何意义是解答本题的关键.反比函数比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.22.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.23.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键解析:7 4【解析】【分析】由比例的性质即可解答此题.【详解】∵34ab=,∴a=34 b,∴a bb+=3744b b bb b+=,故答案为7 4【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.24.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=625.【解析】试题分析:根据同角的余角相等得:∠ACD=∠B利用同角的余弦得结论解:∵CD是Rt△ABC斜边上的高线∴CD⊥AB∴∠A+∠ACD=90°∵∠ACB=9 0°∴∠B+∠A=90°∴∠ACD=∠解析:4 5【解析】试题分析:根据同角的余角相等得:∠ACD=∠B,利用同角的余弦得结论.解:∵CD是Rt△ABC斜边上的高线,∴CD⊥AB,∴∠A+∠ACD=90°,∵∠ACB=90°,∴∠B+∠A=90°,∴∠ACD=∠B,∴cos∠ACD=cos∠B=BCAB=810=45,故答案为:45.三、解答题26.(1)90,2BC BD +;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】 (1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论.【详解】 解:(1)PCD 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又12PA PB =,~PAC PBD ∴∆∆2=,2AC BD ∴=,∴AC BD =,∴2AB BC AC BC BD =+=+,故答案为90,2BC BD +,(2)结论:90PBD ∠=︒; 2AB BD BC =-;理由如下: PCD 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又12PA PC PB PD ==, PAC PBD ∴∽,相似比为1222=, 90PBD PAC ∴∠=∠=︒,22AC BD =, 22AC BD ∴=, 22AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键. 27.答案见解析.【解析】【分析】根据三角形相似的作图解答即可.【详解】解:如图,直线BD 即为所求.【点睛】此题主要考查相似图形的作法,关键是根据三角形相似的作图.28.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB ,∠CEF=180°-∠DEF-∠DEB ,结合∠B=∠DEF ,可得∠BDE=∠CEF ;由AB=AC 可得∠B=∠C ,由此即可证得:△BDE ∽△CEF ;(2)由(1)中结论:△BDE ∽△CEF 可得:BE DE CF EF=,结合BE=EC 可得:CE DE CF EF=,再结合∠C=∠B=∠DEF ,证得:△DEF ∽△ECF ,由此可得∠DFE=∠EFC ,从而得到结论EF 平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠, BDE CEF ∽.(2)∵BDE CEF ∽,∴BE DE CF EF=, ∵E 是BC 中点,BE CE =,∴CE DE CF EF=, ∵DEF B C ∠=∠=∠,∴DEF ECF ∽,∴DFE CFE ∠=∠, ∴EF 平分DFC ∠.29. 5千米【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则30.(1)见解析;(2)90°【解析】【分析】(1)根据43ADMB=,43AMBN=,即可推出AD AMMB BN=,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵43ADMB=,14334AMBN==∴AD AM MB BN=又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.。
九年级下数学专题:圆1.圆的圆的有关概念:(1)圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点为圆心,定长为半径.(2)圆心角:顶点在圆心的角叫做圆心角.(3)圆周角:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.(4)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.(5)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关性质:(1)圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.3.三角形的心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆.(2)三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.(3)三角形的心:和三角形的三边都相切的圆叫做三角形的切圆,切圆的圆心是三角形三条角平分线的交点,叫做三角形的心圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的切圆,切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的 心 。
9.圆接四边形:顶点都在圆上的四边形,叫圆接四边形. 10.圆接四边形对角互补,它的一个外角等于它相邻角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 含 ,② 相切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R -r ,②d = R -r ,③ R -r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
与圆有关的计算圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n°的圆心角所对的弧长为 180rn π ,弧长公式为180r n lπ=n 为圆心角的度数上为圆半径) .2. 圆的面积为πr 2,1°的圆心角所在的扇形面积为 3602r π ,n°的圆心角所在的扇形面积为S= 360n2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径).3.圆柱的侧面积公式:S= 2 πr l (其中为 底面圆 的半径 ,为 圆柱 的高.)4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长.)圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是()。
A.C在⊙A 上B.C在⊙A 外C.C在⊙A D.C在⊙A 位置不能确定。
2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()。
A.16cm或6cm B.3cm或8cm C.3cm D.8cm3.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是()。
A.40°B.140°或40°C.20°D.20°或160°4.O是△ABC的心,∠BOC为130°,则∠A的度数为()。
A.130°B.60°C.70°D.80°5.如图1,⊙O是△ABC的切圆,切点分别是D、E、F,已知∠A = 100°,∠C = 30°,则∠DFE的度数是()。
A.55°B.60°C.65°D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()。
A.A处B.B处C.C处D.D 处图1 图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是()。
A.含B.切C.相交D.外切8.已知半径为R和r的两个圆相外切。
则它的外公切线长为()。
A.R+r B.R2+r2C.R+r D.2Rr9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()。
A.10π B.12π C.15π D.20π10.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是()。
A.3 B.4 C.5 D.611.下列语句中不正确的有()。
①相等的圆心角所对的弧相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。
A .7)332(B.8)332( C .7)23( D.8)23(13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 切于⊿ABC ,则阴影部分面积为( ) A .12-π B.12-2π C .14-4π D.6-π14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。
A .4-94π B .4-98π C .8-94π D .8-98π15.如图5,圆接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。
A .2对 B.3对 C .4对 D.5对图3 图4 图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9 cm ,已知其中一圆半径为5 cm ,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。
3.边长为6的正三角形的外接圆和切圆的周长分别为_________。
4.同圆的外切正六边形与接正六边形的面积之比为_________。
5.矩形ABCD 中,对角线AC =4,∠ACB =30°,以直线AB 为轴旋转一周得到圆柱的表面积是_________。
6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。
7.圆的半径为4cm ,弓形弧的度数为60°,则弓形的面积为_________。
8.在半径为5cm 的圆有两条平行弦,一条弦长为6cm ,另一条弦长为8cm ,则两条平行弦之间的距离为_________。
9.如图6,△ABC 接于⊙O ,AB=AC ,∠BOC=100°,MN 是过B 点而垂直于OB 的直线,则∠ABM=________,∠CBN=________;10.如图7,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A ′B ′C ′D ′的位置,则在转过程 中,边CD 扫过的(阴影部分)面积S=_________。
图6 图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。
(1)PO平分∠BPD;(2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。
2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。
3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=43,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。
4.如图,ABCD是⊙O的接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。
P ABC DO5.如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。
6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。
7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。
8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。
图③图②图①B MP P EE D D BCBCAANMP E D CA9.如图①、②、③中,点E 、D 分别是正△ABC 、正四边形ABCM 、正五边形ABCMN 中以C 点为顶点的相邻两边上的点,且BE = CD ,DB 交AE 于P 点。