第四章 第一节 因式分解
- 格式:pptx
- 大小:26.40 MB
- 文档页数:12
第四章 因式分解1.因式分解一、基本知识点1、因式分解:把一个多项式化成几个整式的积的形式,这种变形叫因式分解。
(1).因式分解是恒等变形;(2)因式分解的对象是多项式;(3)结果是乘积形式;(4)分解后的每一个因式必须是整式;(5)分解到不能再分为止。
2、因式分解与整式乘法的关系:互逆过程。
(整式乘法可以验证因式分解的正确与否) 二、知识拓展与应用1、下列由左到右的变形属于因式分解的是( )22221(a+3)(3)9;1(1)();2x 3)(32)A a aB x x xC a b a bD y -=-+=++=++-、、、、6xy-4x+9y-6=( 2、已知多项式x 4+2x 3-x+m 能因式分解,且有因式x+1. (1)当x=-1时,求多项式x 4+2x 3-x+m 的值。
(2)求m 的值。
3、如图4.1.1是由一个正方形和两个长方形组成的一个大矩形,根据图形,写出一个因式分解的等式。
4、证明:一个三位数的百位上的数字与个位上的数字交换位置,则原数与新数之差能被99整除。
5、多项式x 2-3x -10因式分解的结果是( ) A 、(x+2)(x-5) B 、(x+2)(x+5)C 、(x-2)(x-5)D 、(x-2)(x+5)6、已知关于x 的二次三项式3x 2+mx -n=(x+3)(3x -5),求:m 、n 的值。
7、关于x 的多项式6x 2-11x+m 因式分解后有一个因式2x -3,试求m 的值。
8、试说明817-279-913能被45整除。
2.提起公因式法一、基本知识点1、公因式:多项式各项中都含有的相同的因式(包括数)。
2、公因式的确定:(1)系数(第一项是负数时,提出负号);确定数字因数;(2)找各项都有的字母;(3)各项都有的字母的最小指数。
3、提公因式法分解因式:(1)确定公因式;(2)用公因式去除这个多项式,所得的商作为另一个因式;(3)把多项式写成这两个因式的积的形式。
《因式分解》大单元教学设计【选用教材】北师大版义务教育教科书《数学》八年级下册【单元课题】因式分解【单元教材内容】北师大版义务教育教科书《数学》对“因式分解”进展了较大的调整。
将“因式分解”安排在课本第四章。
内容包括“因式分解”、“提公因式法”和“公式法”。
共有三节内容:第一节《因式分解》,利用99³-99例子突出与因数分解的类比,体会因式分解的必要性;并用几何图形的拼图解释因式分解。
在了解因式分解的根底上,体会因式分解与整式乘法的关系。
第二节“提公因式法”,它的依据是乘法分配律或者单项式乘多项式的法如此,对于学生来说,难点是怎样在多项式的各项中发现公式。
为此,教材安排学生从简单的多项式ab+ac中发现一样因式,由浅入深地体会如何寻找公因式,并以例题示X的形式学习用提公因式法进展因式分解与其须知事项,形成根本技能。
第三节“公式法”,其关键是熟悉平方差公式、完全平方公式与其特点,学生初学时的一个难点是根据一个多项式的特点选择运用恰当的公式。
为此,教材将这两个公式分别分开教学,然后综合运用学习,加深学生对公式特点的认识。
【单元知识网络】【单元课标解读】《数学课程标准〔2022年版〕》在第55页要求:能用提公因式法,公式法〔直接利用公式不超过二次〕进展因式分解〔指数是正整数〕。
【单元内容数学分析】1.因式分解是代数的重要内容,是在学习了“整式的运算”之后提出来的内容。
因式分解与整式乘法运算有密切的联系,事实上,它是整式乘法的逆向运用。
2.因式分解是整式的一种重要变形,它在恒等变形、代数式的运算、解方程、函数中有广泛的应用。
3.因式分解为学习分式运算,解方程与方程组与代数式和三角函数式恒等变形提供必要的根底。
也是分式运算和化简、恒等变形、解高次方程的根底。
“因式分解”对于与化归的能力、逆向思维的能力的培养会起到一定的作用,又在逆向思维品质培养形成等中有着较重要作用和教育价值。
5.作为今后学习的根底,它起到了承上启下的作用,因式分解与其变形的应用,几乎贯穿了整个中学数学乃至大学数学,学好因式分解对于代数知识的后续学习具有相当重要的意义。