2016-2017学年广东省广州市荔湾区七年级期末数学试卷
- 格式:doc
- 大小:252.00 KB
- 文档页数:21
广东省广州市荔湾区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)数轴上表示﹣2和3的两点之间的距离是()A.1B.2C.3D.52.(2分)四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是()A.①②B.①③C.①④D.①③④3.(2分)26表示()A.2乘以6B.2个6相乘C.6个2相加D.6个2相乘4.(2分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=25.(2分)若3x n+5y与﹣x3y是同类项,则n=()A.2B.﹣5C.﹣2D.56.(2分)下列方程的变形中正确的是()A.由x+5=6x﹣7得x﹣6x=7﹣5B.由﹣2(x﹣1)=3得﹣2x﹣2=3C.由得D.由得2x=﹣127.(2分)如图所示,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是()A.CD=AD﹣BC B.CD=C.CD=AB﹣BD D.CD=AC﹣BD8.(2分)如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°9.(2分)一个长方体从正面,上面看到的图形如图所示,则其从左面看得到的图形面积为()A.3B.4C.12D.1610.(2分)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)多项式的最高次项的系数是.12.(3分)若|a﹣2|+|b+3|=0,那么a+b=.13.(3分)若∠1=40°50′,则∠1的余角为.14.(3分)如图,甲从A点出发沿北偏东70°方向走50m到达点B,乙从A点出发沿南偏西15°方向走80m到达点C,则∠BAC=.15.(3分)已知12=1,112=121,1112=12321,…,则依据上述规律,的计算结果中,从左向右数第12个数字是.16.(3分)4个数a,b,c,d排列成,我们称之为二阶行列式,规定它的运算法法则为.若,则x=.三、解答题(本大题共7小题,共62分)17.(8分)计算:(1)﹣2﹣2008﹣(﹣10)(2)(﹣1)2×5+(﹣2)3÷4.18.(10分)计算:(1)|﹣2|÷×3+(﹣1)3(2)﹣23÷4﹣[24÷(﹣2)3﹣(﹣)2×9].19.(10分)计算:(1)﹣x﹣(2x﹣2)+4x﹣3(2)a﹣2(a﹣b2)+(﹣a+b2)20.(10分)解下列方程:(1)5x=2(x+3)(2)﹣x=1﹣.21.(6分)如图,AD=DB,E是BC的中点,BE=AB=2cm,求线段AC 和DE的长.22.(8分)已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB,OC重合时,求∠EOF的度数;(2)如图2,当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.23.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.广东省广州市荔湾区七年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题2分,共20分)1.D;2.C;3.D;4.A;5.C;6.D;7.B;8.C;9.A;10.A;二、填空题(本大题共6小题,每小题3分,共18分)11.﹣;12.﹣1;13.49°10′;14.125°;15.1;16.﹣9;三、解答题(本大题共7小题,共62分)17.;18.;19.;20.;21.;22.;23.;。
2016-2017学年广州市荔湾区七下期末数学试卷一、选择题(共10小题;共50分)1. 在,,,这个数中,无理数是A. B. C. D.2. 下列各点中,在第二象限的点是A. B. C. D.3. 如图,已知,要使,则须具备的另一个条件为A. B. C. D.4. 下列二元一次方程组的解为的是A. B. C. D.5. 已知,则下列四个不等式中,不正确的是A. B. C. D.6. 以下问题中,不适合使用全面调查的是A. 对旅客上飞机前的安检B. 航天飞机升空前的安全检查C. 了解全班学生的体重D. 了解广州市中学生每周使用手机的时间7. 如图,把周长为的沿方向平移个单位得到,则四边形的周长为A. B. C. D.8. 已知二元一次方程,若,则的值为A. B. C. D.9. 小米家位于公园的正东米处,从小米家出发向北走米就到小华家,若选取小华家为原点,分别以正东,正北方向为轴,轴正方向建立平面直角坐标系,则公园的坐标是巋衛縑讳語揽懌穡宝硕骣芻颊弯縫罴輯淥访銘钶贳鸵鈮濰襲領鑰对红鐙骖三辖获聳鄔滿疠鰾鯡訐霽锚櫳。
A. B.C. D.10. 在频数分布直方图中,有个小长方形,若中间一个小长方形的面积等于其它个小长方形面积的和的,且数据总共有个,则中间一组的频数为標鳌鲨敘诈訓膿決纽琏枥担諸鉗嬋A. B. C. D.二、填空题(共6小题;共30分)11. 的平方根是.12. 若,则点到轴的距离是.13. 如图,直线,相交于,,为垂足,,则度.14. 计算:.15. 当时,的值不小于.16. 如图,在平面直角坐标系中,一动点从原点出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到,,,,那么点的坐标为.三、解答题(共7小题;共91分)17. 解不等式组并把解集表示在数轴上.18. 用代入法解下列方程组:(1)(2)(3)19. 如图所示,小方格边长为个单位,的顶点均在格点上.(1各点的坐标.(2)求出.(3)若把向上平移个单位,再向右平移个单位得到,在图中画出.20. 某品牌的共享自行车企业为了了解工作日期间地铁站附近的自行车使用情况,做到精确投放,于星期二当天对荔湾区A,B,C和图所示的统计图,根据图中信息解答下列问题:(1)该品牌自行车当天在该三个地铁站区域投放了自行车辆;(2)请补全图中的条形统计图;求出地铁A站在图中所对应的圆心角的度数;(3)按统计情况,若该品牌车计划在这些区域再投放辆自行车,估计在地铁B站应投入多少辆.21. 已知:如图,,.(1)求证:;(2)求证:.22. 台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如表所示,经调查,购买台甲型设备比购买台乙型设备多元,购买台乙型设备少元.(1)求,的值.(2)若购买该批设备的资金不超过元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在()的条件下,若要求监控半径覆盖范围不低于米,为了节约资金,请你设计一种最省钱的购买方案.23. 如图,已知射线,点,点是上的动点,平分,且满足.(1)若,判断的位置关系,证明你的结论.(2)若,求的度数.(3)在()的条件下左右平行移动,和存在怎样的数量关系?请直接写出结果(不需写证明过程)答案第一部分1. C2. A 【解析】A、在第二象限,故本选项符合题意;B、在第四象限,故本选项不符合题意;C、在第三象限,故本选项不符合题意;D、在第一象限,故本选项不符合题意.3. D4. C 【解析】A、则方程组的解为B、则方程组的解为C、则方程组的解为D、得:,解得:,把代入得:,则方程组的解为不符合题意.5. B6. D 【解析】A、旅客上飞机前的安检是事关重大的调查,故A不符合题意;B、航天飞机升空前的安全检查是事关重大的调查,故B不符合题意;C、了解全班学生的体重适合普查,故 C 不符合题意;D、了解广州市中学生每周使用手机的时间适合抽样调查,故D符合题意.7. B 【解析】沿方向平移个单位得到,,,8. B 【解析】把代入方程得:,解得:.9. C 【解析】如图所示:公园的坐标是:.10. A,则中间一个小长方形的面积占总面积的,即中间一组的频率为,且数据总共有个,中间一组的频数为.第二部分11.12.【解析】,点到轴的距离是.13.【解析】,,.14.【解析】15.【解析】根据题意得:,解得:.16.【解析】观察图形可知:,,,,,所以(为自然数).因为,所以.第三部分17. 解不等式,得:解不等式,得:则不等式组的解集为将解集表示在数轴上如下:18. (1)把①代入②,得解得代入①,得原方程组的解是(2)由①得.把代入②,得解得把代入①,得原方程组的解是(3)由①得.把代入②,得解得把代入①,得原方程组的解是.19. (1),,.(2),点到的距离为,.(3)如图所示.20. (1)【解析】当天在该三个地铁站区域投放的自行车数量为:(辆).(2)地铁B站投放的自行车数量为:(辆),补全条形统计图如图所示:地铁A站在图.(3)在地铁B(辆).辆自行车,估计在地铁B21. (1),,,,,.(2),.22. (1)由题意得:解得(2)设购买甲型设备台,依题意得解得两种型号的设备均要至少买一台,,种购买方案:①甲型设备台;②甲型设备台,乙型设备台,乙型设备台.(3)依题意得:解得台,乙型设备台.23. (1)(2)(3)【解析】理由:,,第1页(共1 页)。
广东省2016-2017学年七年级下学期期末数学试卷广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.在平面直角坐标中,点P(1,﹣3)在()A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限2.下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查。
B.对广州市2014-2015学年七年级学生身高现状的调查。
C.多某品牌食品安全的调查。
D.对一批灯管使用寿命的调查3.下列实数中,属于无理数的是()A.。
B.。
C.3.14.D.4.的算术平方根是()A.3.B.±3.C.±。
D.5.点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)。
B.(5,﹣1)。
C.(2,2)。
D.(﹣1,﹣1)6.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h。
B.22.5km/h,2.5km/h。
C.18km/h,24km/h。
D.12.5km/h,1.5km/h7.已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.个。
B.1个。
C.2个。
D.3个8.若m>n,则下列不等式中成立的是()A.m+a<n+b。
B.ma<nb。
C.ma>na。
D.a﹣m<a ﹣n9.方程kx+3y=5有一组解是,则k的值是()A.1.B.﹣1.C.。
D.210.天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种。
B.2种二、填空题:每小题3分,共18分.11.12.不等式组的解集是__________.13.若点M(a+3,a﹣2)在x轴上,则a=__________.14.若3x﹣2y=11,则用含有x的式子表示y,得y=__________.15.若a+1和﹣5是实数m的平方根,则a的值为__________.16.若|x+2y﹣5|+|2x﹣y|=0,则3x+y=__________.广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分。
2017-2018 学年广东省广州市荔湾区七年级(上)期末数学试卷一、选择题(本大题共10 小题,每小题 2 分,共 20 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2分) 2017 的相反数是()A.﹣ 2017 B.2017 C.﹣D.2.(2分)﹣ 6 的绝对值是()A.﹣ 6 B.6 C.D.﹣3.(2分)在数1,0,﹣ 1,﹣ 2 中,最大的数是()A.﹣ 2 B.﹣ 1 C.0 D.14.(2 分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000 套,把3600000 用科学记数法表示应是()A.0.36× 107 B.3.6×106 C.3.6×107 D.36×105a,﹣ b,0 按照从5.( 2 分)实数 a,b 在数轴上的对应点的位置如图所示,把﹣小到大的顺序排列,正确的是()A.﹣ a<0<﹣ b B.0<﹣ a<﹣ b C.﹣ b< 0<﹣ a D.0<﹣ b<﹣ a 6.(2分)已知 a﹣b=1,则代数式 2a﹣2b﹣ 3 的值是()A.1 B.﹣ 1 C.5 D.﹣ 57.(2分)若 x=1 是关于 x 的方程 1﹣ 2( x﹣ a) =2 的解,则 a 的值为()A.﹣ 1 B.1 C.﹣D.8.(2分)某车间有26 名工人,每人每天可以生产800 个螺钉或 1000 个螺母,1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣ x) =800x B.1000(13﹣x)=800xC.1000(26﹣ x)=2×800x D.1000(26﹣x)=800x9.(2 分)一个立方体的表面展开图如图所示,将其折叠成立方体后,”你”字对面的字是()A.考B.试C.顺D.利10.( 2 分)如图,∠ AOD=90°,∠ COE=90°,图中互为余角的角有()对.A.2 B.3 C.4 D.5二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3分)单项式﹣ 3r2系数是,次数是.12.( 3分)计算= .13.( 3分)若 2x4y m与﹣ 3x n y3是同类项,则 m+n= .14.( 3分)如图所示,射线 OP 表示的方向是.15.( 3 分)如图是一组有规律的图案,第 1 个图案由 4 个基础图形组成,第 2 个图案由 7 个基础图形组成,⋯,第 n(n 是正整数)个图案中由个基础图形组成.16.( 3 分)已知一条射线OA 由点 O 引射线 OB, OC,∠ AOB=72°,∠ BOC=36°,则∠ AOC等于.三.解答题(本大题共7 小题,共 62 分,解答应写出文字说明,证明过程或演算步骤)17.( 8 分)计算:(1)﹣ 20+14﹣ 18﹣13(2) 3×(﹣)÷(﹣)18.( 10 分)计算:(1)3﹣6×(2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2] .19.( 10 分)( 1)化简: 2xy2﹣3xy2+6( 2)先化简再求值:(5x+y)﹣ 2(3x﹣4y),其中 x=1,y=3.20.( 10 分)解下列方程:(1) x﹣3=2﹣ 5x(2).21.( 6 分)如图,延长线段 AB 到 C,使 BC=3AB,点 D 是线段 BC的中点,如果CD=3cm,那么线段 AC 的长度是多少?22.( 8 分)列方程解应用题:一辆火车要以每秒 20 米的速度通过第一、第二两座铁桥(火车的长度忽略不计)过第二座铁桥比过第一座铁桥多 50 秒,已知铁桥的长度比第一座铁桥的长度的两倍短 500 米,求各铁桥的长.23.( 10 分)已知,∠ AOD=160°,OB、OM、ON 是∠ AOD 内的射线( 1)如图 1,若 OM 平分∠ AOB,ON 平分∠ BOD,则∠ MON= °( 2)如图 2, OC是∠ AOD 内的射线,若∠ BOC=20°,OM 平分∠ AOC,ON 平分∠BOD,当射线 OB 在∠ AOC内时,求∠ MON 的大小;(3)如图 2,在( 2)的条件下,当∠ AOB=2t°时,∠ AOM:∠ DON=2:3,求 t 的值.2017-2018 学年广东省广州市荔湾区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 2 分,共 20 分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2 分) 2017 的相反数是()A.﹣ 2017 B.2017 C.﹣D.【解答】解:∵ 2017+(﹣ 2017)=0,∴2017 的相反数是(﹣ 2017),故选: A.【点评】本题考查了相反数之和为 0 的特性,熟练掌握相反数特性是解题的关键.2.(2 分)﹣ 6 的绝对值是()A.﹣ 6 B.6 C.D.﹣【解答】解:﹣ 6 的绝对值是 6.故选: B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.3.(2 分)在数1,0,﹣ 1,﹣ 2 中,最大的数是()A.﹣ 2 B.﹣ 1 C.0 D.1【解答】解:﹣ 2<﹣ 1< 0< 1,所以最大的数是1,故选: D.【点评】本题考查了有理数大小比较的方法.( 1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于 0,负数小于 0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.4.(2 分)为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000 套,把3600000 用科学记数法表示应是()A.0.36× 107 B.3.6×106 C.3.6×107 D.36×105【解答】解: 3600000=3.6×106, ?故选: B.n 形式,其中 1≤| a| <10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.( 2 分)实数 a,b 在数轴上的对应点的位置如图所示,把﹣a,﹣ b,0 按照从小到大的顺序排列,正确的是()A.﹣ a<0<﹣ b B.0<﹣ a<﹣ b C.﹣ b< 0<﹣ a D.0<﹣ b<﹣ a 【解答】解:∵从数轴可知: a<0<b,∴﹣ a>﹣ b,﹣ b<0,﹣ a> 0,∴﹣ b<0<﹣ a,故选: C.b< 0 【点评】本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣<﹣ a,是解此题的关键.6.(2 分)已知 a﹣b=1,则代数式 2a﹣2b﹣ 3 的值是()A.1 B.﹣1 C.5 D.﹣ 5【解答】解:原式 =2(a﹣b)﹣ 3,当a﹣b=1 时,原式 =2﹣3=﹣ 1.故选: B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.(2 分)若x=1 是关于x 的方程1﹣ 2( x﹣ a) =2 的解,a 的值为()则A.﹣ 1 B.1 C.﹣D.【解答】解:把 x=1 代入 1﹣2(x﹣ a) =2 得:1﹣2(1﹣a)=2,解得: a= .故选: D.【点评】此题考查的是一元一次方程的解,关键是先把x=1 代入方程,然后解关于 a 的方程求出 a.8.(2 分)某车间有 26 名工人,每人每天可以生产800 个螺钉或 1000 个螺母,1 个螺钉需要配2 个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣ x) =800x B.1000(13﹣x)=800xC.1000(26﹣ x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排 x 名工人生产螺钉,则( 26﹣x)人生产螺母,由题意得1000(26﹣x) =2×800x,故 C 答案正确,故选: C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.9.(2 分)一个立方体的表面展开图如图所示,将其折叠成立方体后,”你”字对面的字是()A.考B.试C.顺D.利【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故选: C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.( 2 分)如图,∠ AOD=90°,∠ COE=90°,图中互为余角的角有()对.A.2 B.3 C.4 D.5【解答】解:如图,∵∠ AOD=90°,∠ COE=90°,∴∠ 1+∠ 2=90°,∠ 2+∠3=90°,∠3+∠4=90°,∠ 1+∠ 4=90°,互为余角的角有 4 对.故选: C.【点评】本题考查了余角和补角,熟记概念并准确识图是解题的关键.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)11.( 3 分)单项式﹣ 3r2 系数是﹣ 3 ,次数是 2 .【解答】解:该单项式的系数为:﹣3,次数为: 2故答案为:﹣ 3,2本题属【点评】本题考查单项式的概念,解题的关键是熟练运用单项式的概念,于基础题型.12.(3 分)计算= ﹣5 .【解答】解:=×(﹣ 12)﹣×(﹣ 12) + ×(﹣ 12)=﹣3+6﹣8=﹣5.故答案为:﹣ 5.【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.( 2)解答此题的关键还要注意乘法分配律的应用..(分)若 4 m 与﹣3x n 3 是同类项,则 m+n= 7 .13 3 2x y y【解答】解:由题意,得n=4, m=3,m+n=3+4=7,故答案是: 7.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.( 3 分)如图所示,射线OP 表示的方向是南偏西 65° .【解答】解;如图,由余角的性质,得∠POB=90°﹣∠ POA=65°,射线 OP 表示的方向是南偏西65°,故答案为: 65°.【点评】本题考查了方向角,利用了余角的性质,方向角的表示方法.15.( 3 分)如图是一组有规律的图案,第 1 个图案由 4 个基础图形组成,第 2个图案由 7 个基础图形组成,⋯,第 n(n 是正整数)个图案中由( 3n+1)个基础图形组成.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;⋯∴第 n 个图案基础图形的个数就应该为:( 3n+1).故答案为:( 3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.16.( 3 分)已知一条射线OA 由点 O 引射线 OB, OC,∠ AOB=72°,∠ BOC=36°,则∠ AOC等于36°或 108° .【解答】解:由题意可得,分两种情况,第一种情况如下图一所示,∵∠ AOB=72°,∠ BOC=36°,∴∠ AOC=∠AOB﹣∠ BOC=72°﹣36°=36°;第二种情况如下图二所示,∵∠ AOB=72°,∠ BOC=36°,∴∠ AOC=∠AOB+∠BOC=72°+36°=108°;故答案为: 36°或 108°.【点评】本题考查角的计算,解题的关键是明确题意,利用分类讨论的数学思想解答问题.三.解答题(本大题共7 小题,共 62 分,解答应写出文字说明,证明过程或演算步骤)17.( 8 分)计算:(1)﹣ 20+14﹣ 18﹣13(2) 3×(﹣)÷(﹣)【解答】解:(1)﹣ 20+14﹣ 18﹣13=(﹣ 20)+14+(﹣ 18)+(﹣ 13)=﹣37;( 2) 3×(﹣)÷(﹣)=3×=【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.( 10 分)计算:(1)3﹣6×(2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2] .【解答】解:(1)3﹣ 6×=3﹣3+2=2;( 2)﹣ 13﹣( 1﹣)÷ 3×[ 3﹣(﹣ 3)2]=﹣1﹣[ 3﹣9]=﹣1﹣×(﹣ 6)=﹣1+1=0.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.( 10 分)( 1)化简: 2xy2﹣3xy2+6(2)先化简再求值:(5x+y)﹣ 2(3x﹣4y),其中 x=1,y=3.【解答】解:(1)原式 =﹣xy2+6;(2)原式 =5x+y﹣ 6x+8y=﹣x+9y,当x=1、y=3 时,原式 =﹣1+27=26.【点评】本题主要考查整式的加减,解题的关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.20.( 10 分)解下列方程:(1) x﹣3=2﹣ 5x(2).【解答】解:(1)x﹣ 3=2﹣5x,移项合并得: 6x=5,(2).去分母得: 3(y﹣ 3)﹣ 6=2(2y+1),去括号得: 3y﹣9﹣6=4y+2移项合并得:﹣ y═17,解得: y=﹣ 17.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.( 6 分)如图,延长线段 AB 到 C,使 BC=3AB,点 D 是线段 BC的中点,如果CD=3cm,那么线段 AC 的长度是多少?【解答】解:因为 D 是线段 BC中点所以 BC=2CD=2×3=6,因为 BC=3AB所以 AB= BC= ×6=2,所以 AC=AB+BC=2+6=8.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.22.( 8 分)列方程解应用题:一辆火车要以每秒 20 米的速度通过第一、第二两座铁桥(火车的长度忽略不计)过第二座铁桥比过第一座铁桥多 50 秒,已知铁桥的长度比第一座铁桥的长度的两倍短 500 米,求各铁桥的长.【解答】解:设第一铁桥的长为x 米,那么第二铁桥的长为( 2x﹣500)米,火车车头在第一铁桥所需的时间为秒.火车车头在第二铁桥所需的时间为秒.依题意,可列出方程+50= ,解方程 x+1000=2x﹣ 500,∴2x﹣500=2× 1500﹣ 500=2500.答:第一铁桥长 1500 米,第二铁桥长 2500 米.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.( 10 分)已知,∠ AOD=160°,OB、OM、ON 是∠ AOD 内的射线( 1)如图 1,若 OM 平分∠ AOB,ON 平分∠ BOD,则∠ MON= 80 °(2)如图 2, OC是∠ AOD 内的射线,若∠ BOC=20°,OM 平分∠ AOC,ON 平分∠BOD,当射线 OB 在∠ AOC内时,求∠ MON 的大小;(3)如图 2,在( 2)的条件下,当∠ AOB=2t°时,∠ AOM:∠ DON=2:3,求 t 的值.【解答】解:(1)∵ OM 平分∠ AOB,ON 平分∠ BOD,∴∠ BOM= ∠ AOB,∠ BON= ∠BOD,∴∠ MON=∠ BOM+∠BON= (∠ AOB+∠BOD),∵∠ AOD=∠AOB+∠ BOD=160°,∴∠ MON= × 160°=80°;故答案为: 80;(2)设∠ AOB=x,则∠ BOD=160°﹣x,∵OM 平分∠ AOC,ON 平分∠ BOD,∴∠ COM= ∠ AOC= (x+20°),∠ BON= ∠ BOD= (160°﹣x),∴∠ MON=∠ COM+∠BON﹣∠ BOC= ( x+20°)+ (160°﹣x)﹣ 20°=70°;(3)由∠ AOB=2t°,∠ BOC=20°,则∠ AOC=2t°+20°,∠ BOD=160°﹣2t °,∴∠ AOM= ∠ AOC=t°+10°,∠ DON= ∠BOD=80°﹣t °,∵∠ AOM:∠ DON=2:3,∴= ,解得: t=26.【点评】本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.。
广州市七年级上学期期末考试数学试卷(一)一、单选题1、﹣5的绝对值是()A、B、5C、-5D、-2、第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人,11.1万人用科学记数法表示为()A、1.11×104B、11.1×104C、1.11×105D、1.11×1063、计算3x2﹣2x2的结果为()A、﹣5x2B、5x2C、﹣x2D、x24、下列各组中,不是同类项的是()A、x3y4与x3z4B、﹣3x与﹣xC、5ab与﹣2abD、﹣3x2y与x2y5、一件标价为a元的商品打9折后的价格是()A、(a﹣9)元B、90%a元C、10%a元D、9a元6、下列等式的变形正确的是()A、如果x﹣2=y,那么x=y﹣2B、如果x=6,那么x=2C、如果x=y,那么﹣x=﹣yD、如果x=y,那么=7、如果1是关于x方程x+2m﹣5=0的解,则m的值是()A、-4B、4C、-2D、28、已知∠A=40°,则∠A的补角等于()A、50°B、90°C、140°D、180°9、如图,下列水平放置的几何体中,从正面看不是长方形的是()A、B、C、D、10、在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A、70°B、110°C、120°D、141°二、填空题11、﹣2的相反数是________12、化简:2(a+1)﹣a=________13、方程x+5=2x﹣3的解是________14、在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为________15、如图,C、D是线段上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则BD的长为________ cm三、计算题16、计算:×(﹣6)﹣÷(﹣)17、化简:(5x﹣3y)﹣3(x﹣2y)18、解方程:.19、已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.20、体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒(2)求这个小组8名男生的平均成绩是多少?21、计算:﹣14+(﹣2)2﹣|2﹣5|+6×(﹣).四、解答题22、已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.23、甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的,应调往甲、乙两队各多少人?24、如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.25、如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.问最后摆的图案是第几个图案?答案解析部分一、单选题1、【答案】B【考点】绝对值【解析】【解答】解:﹣5的绝对值是5,故选:B.【分析】利用绝对值的定义求解即可.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将11.1万用科学记数法表示为:1.11×105.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.3、【答案】D【考点】同类项、合并同类项【解析】【解答】解:3x2﹣2x2,=(3﹣2)x2,=x2.故选D.【分析】根据合并同类项法则进行计算即可得解.4、【答案】A【考点】同类项、合并同类项【解析】【解答】解:A、字母不同不是同类项,故A符合题意;B、字母项且相同字母的指数也相同,故B不符合题意;C、字母项且相同字母的指数也相同,故C不符合题意;D、字母项且相同字母的指数也相同,故D不符合题意;故选:A.【分析】根据同类项是字母项且相同字母的指数也相同,可得答案.5、【答案】B【考点】列代数式【解析】【解答】解:由题意可得:一件标价为a元的商品打9折后的价格是90%a元.故选:B.【分析】直接利用标价×,进而求出答案.6、【答案】C【考点】等式的性质【解析】【解答】解:A、等式的左边加2,右边减2,故A错误;B、等式的左边乘以3,右边除以2,故B错误;C、等式的两边都乘以﹣1,故C正确;D、当a=0时,0不能作除数,故D错误;故选:C.【分析】根据等式的性质1,两边都加或减同一个数或同一个整式,结果不变,可判断A,根据等式的性质2,两边都乘或除以同一个不为零的数或同一个整式,结果仍不变,可判断B、C、D.7、【答案】D【考点】一元一次方程的解【解析】【解答】解:∵x=1是关于x方程x+2m﹣5=0的解,∴1+2m﹣5=0,∴m=2,故选D.【分析】将x=1代入即可得出m即可.8、【答案】C【考点】余角和补角【解析】【解答】解:∠A的补角等于:180°﹣∠A=140°.故选C.【分析】利用两角互补的定义,进行计算.9、【答案】B【考点】简单几何体的三视图【解析】【解答】解:A、圆柱的主视图是长方形,故此选项不合题意;B、圆锥的主视图是三角形,故此选项符合题意;C、三棱柱的主视图是长方形,故此选项不合题意;D、长方体的主视图是长方形,故此选项不合题意;故选:B.【分析】分别找出从物体正面看所得到的图形即可.10、【答案】D【考点】解直角三角形的应用-方向角问题【解析】【解答】解:∵在灯塔O处观测到轮船A位于北偏西54°的方向,∴∠AOC=54°,∴∠AOD=90°﹣54°=36°,∵轮船B在南偏东15°的方向,∴∠EOB=15°,∴∠AOB=36°+90°+15°=141°,故选:D.【分析】首先根据题意可得∠AOD=90°﹣54°=36°,再根据题意可得∠EOB=15°,然后再根据角的和差关系可得答案.二、填空题11、【答案】2【考点】相反数【解析】【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.12、【答案】a+2【考点】整式的加减【解析】【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.【分析】首先把括号外的2乘到括号内,去括号,然后合并同类项即可.13、【答案】x=8【考点】解一元一次方程【解析】【解答】解:方程移项得:x﹣2x=﹣3﹣5,合并得:﹣x=﹣8,解得:x=8,故答案为:x=8【分析】方程移项合并,把x系数化为1,即可求出解.14、【答案】3【考点】数轴【解析】【解答】解:2﹣(﹣1)=3.故答案为:3【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.15、【答案】7【考点】两点间的距离【解析】【解答】解:∵AB=10cm,BC=4cm,∴AC=6cm,∵D是线段AC的中点,∴CD=AC=3cm,∴BD=DC+CB=7cm,故答案为:7cm.【分析】根据题意、结合图形求出AC的长,根据线段中点的性质求出DC的长,结合图形计算即可.三、计算题16、【答案】解:原式=﹣4﹣×(﹣)=﹣4+6=2.【考点】有理数的混合运算【解析】【分析】原式先计算乘除运算,再计算加减运算即可得到结果.17、【答案】解:原式=5x﹣3y﹣3x+6y=2x+3y.【考点】整式的加减【解析】【分析】首先去括号,进而合并同类项得出答案.18、【答案】解:去分母得:3(3x+1)=15﹣5(x+2),去括号得:9x+3=15﹣5x﹣10,移项得:9x+5x=15﹣10﹣3,合并得:14x=2,解得:x=.【考点】解一元一次方程【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.19、【答案】解:根据点D,E是线段AB的三等分点,得每等份的长是4cm,如果D靠近A,则BD=4+4=8cm,如果D靠近B,则BD=4cm,所以线段BD的长度为8cm或4cm.【考点】两点间的距离【解析】【分析】分D靠近A和D靠近B两种情况,根据题意计算即可.20、【答案】解:(1)达标人数为6,达标率为×100%=75%,答:男生达标率为75%;(2)=﹣0.2(秒)14﹣0.2=13.8(秒)答:平均成绩为13.8秒.【考点】正数和负数【解析】【分析】(1)根据非正数的是达标成绩,可得达标数,根据达标人数除以抽测人数,可得答案;(2)根据数据的和除以数据的个数,可得平均成绩.21、【答案】解:原式=﹣1+4﹣3+3﹣2=﹣6+7=1.【考点】有理数的混合运算【解析】【分析】原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.四、解答题22、【答案】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6;(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.【考点】整式的加减【解析】【分析】(1)根据A=2x2﹣xy,B=x2+xy﹣6可得出4A﹣B的式子,再去括号,合并同类项即可;(2)直接把x=1,y=﹣2代入(1)中的式子进行计算即可.23、【答案】解:设调往甲队x人,调往乙队(30﹣x)人,根据题意得40+30﹣x=(65+x),解得:x=25,所以30﹣x=30﹣25=5答:应调往甲队25人,调往乙队5人.【考点】一元一次方程的应用【解析】【分析】设调往甲队x人,调往乙队(30﹣x)人,则现在甲队人数为(65+x)人,现在乙队人数为(40+30﹣x)人,利用乙队人数是甲队人数的列方程,然后解方程求出x,则计算30﹣x即可.24、【答案】解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.【考点】角平分线的定义【解析】【分析】①根据∠COD=∠EOC,可得∠EOC=4∠COD;②根据角的和差,可得∠EOD的大小,根据角平分线的性质,可得答案.25、【答案】解:(1)按如图的方式摆放,每增加1个正方形火花图案,火柴棒的根数相应地增加3根,若摆成5个、6个、n个同样大小的正方形火花图案,则相应的火柴棒的根数分别是16根、19根、(3n+1)根.∵当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.∴3(n+1)+1=22,解得n=6,∴这位同学最后摆的图案是第7个图案.【考点】探索图形规律【解析】【分析】(1)易得组成一个正方形都需要4根火柴棒,找到组成1个以上的正方形需要的火柴棒的根数在4的基础上增加几个3即可.(2)根据(1)的规律得出3(n+1)+1=22,解出n即可.广州市七年级上学期期末考试数学试卷(二)一、选择题1、﹣3的倒数为()A、﹣B、C、3D、﹣32、十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A、146×107B、1.46×107C、1.46×109D、1.46×10103、“一个数a的3倍与2的和”用代数式可表示为()A、3(a+2)B、(3+a)aC、2a+3D、3a+24、如果x= 是关于x的方程2x+m=2的解,那么m的值是()A、1B、C、﹣1D、-5、下列运算正确的是()A、a3+a3=26aB、3a﹣2a=aC、3a2b﹣4b2a=﹣a2bD、(﹣a)2=﹣a26、把弯曲的河道改直,能够缩短航程,这样做的道理是()A、两点之间,射线最短B、两点确定一条直线C、两点之间,直线最短D、两点之间,线段最短7、多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是()A、2,﹣1B、3,1C、3,﹣1D、2,18、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是()A、3B、9C、7D、19、如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A、PB、QC、SD、T10、如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为()A、0,﹣2,1B、0,1,2C、1,0,﹣2D、﹣2,0,1二、填空题11、若单项式﹣4a2b的系数为x,次数为y,则x+y=________.12、若∠α=25°40′,则∠α的补角大小为________.13、比﹣2.15大的最小整数是________.14、已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y=________.15、已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为________.16、如图,用大小相等的小正方形拼成大正方形网格.在1×1的网格中,有一个正方形;在1×1的网格中,有1个正方形;在2×2的网格中,有5个正方形;在3×3的网格中,有14个正方形;…,依此规律,在4×4的网格中,有________个正方形,在n×n的网格中,有________个正方形.三、解答题17、计算下列各式的值:(1)20﹣(﹣7)﹣|﹣2|;(2)(﹣1)3﹣×[2﹣(﹣3)2].18、解方程:(1)9﹣3x=7+5x;(2)﹣=1.19、已知A=3ax3﹣bx,B=﹣ax3﹣2bx+8.(1)求A+B;(2)当x=﹣1时,A+B=10,求代数式3b﹣2a的值.20、某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?________.(3)这五天的收盘价中哪天的最高?________哪天的最低?________相差多少?________.21、如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,作直线DE,DF平分∠BDE,DF与BC交于点F.(1)依题意补全图形;(2)当∠B+∠BDF=90°时,∠A与∠EDF是否相等?说明理由.22、如图,C,D两点把线段AB分成1:5:2三部分,M为AB的中点,MD=2cm,求CM和AB的长.23、列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?(2)加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间?24、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.答案解析部分一、<b >选择题</b>1、【答案】A【考点】倒数【解析】【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【分析】根据倒数的定义进行解答即可.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1 460 000 000=1.46×109.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.3、【答案】D【考点】列代数式【解析】【解答】解:由题意列代数式得:3a+2,故选D.【分析】a的3倍表示为3a,与2的和,再相加即可.4、【答案】A【考点】一元一次方程的解【解析】【解答】解:∵x= 是关于x的方程2x+m=2的解,∴2× +m=2,∴m=1,故选A.【分析】将x= 代入方程2x+m=2,即可得出答案.5、【答案】B【考点】幂的乘方与积的乘方【解析】【解答】解:A、a3+a3=2a3,故A错误;B、3a﹣2a=a,故B正确;C、3a2b,4b2a不是同类项不能合并,故C错误;D、(﹣a)2=a2,故D错误.故选:B.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.6、【答案】D【考点】线段的性质:两点之间线段最短【解析】【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【分析】根据两点之间线段最短即可得出答案.7、【答案】C【考点】多项式【解析】【解答】解:多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是:3,﹣1,故选C.【分析】根据多项式系数和次数的定义可以得到多项式x2y﹣xy2+3xy﹣1的次数以及它的常数项,本题得以解决.8、【答案】C【考点】探索数与式的规律【解析】【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选C.【分析】由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.9、【答案】C【考点】数轴【解析】【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=﹣2,若原点在T点,则p+q+s+t=﹣14,∵数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,∴原点应是点S,故选C.【分析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.10、【答案】A【考点】几何体的展开图【解析】【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“C”与面“﹣1”相对,面“B”与面“2”相对,“A”与面“0”相对.即A=0,B=﹣2,C=1.故选A.【分析】利用正方体及其表面展开图的特点解题.二、<b >填空题</b>11、【答案】﹣1【考点】单项式【解析】【解答】解:∵单项式﹣4a2b的系数为x=﹣4,次数为y=3,∴x+y=﹣1.故答案为:﹣1.【分析】直接利用单项式的次数与系数的定义得出答案.12、【答案】154°20′【考点】余角和补角【解析】【解答】解:∠α的补角=180°﹣25°40′=154°20′.故答案为154°20′.【分析】根据余角的定义计算180°﹣25°40′即可.13、【答案】﹣2【考点】有理数大小比较【解析】【解答】解:根据有理数比较大小的方法,可得﹣2>﹣2.15,∴比﹣2.15大的最小整数是﹣2.故答案为:﹣2.【分析】根据有理数大小比较法则解答即可.14、【答案】﹣5【考点】绝对值【解析】【解答】解:因为|x|=2,|y|=3,所以x=±2,y=±3,又因为xy<0,x+y>0,所以x=﹣2,y=3,所以x﹣y=﹣5.故答案为:﹣5.【分析】根据绝对值的意义和性质可知x、y的值,代入即可求出x﹣y的值.15、【答案】0或4【考点】一元一次方程的解【解析】【解答】解:由kx=5﹣x,得x= .由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【分析】根据方程的解是正整数,可得5的约数.16、【答案】30①12+22+32+42+…+n2【考点】探索图形规律【解析】【解答】解:在1×1的网格中,有1=12个正方形;在2×2的网格中,有5=12+22个正方形;在3×3的网格中,有14=12+22+32个正方形;…,依此规律,在4×4的网格中,有12+22+32+42=30个正方形,在n×n的网格中,有12+22+32+42+…+n2个正方形.故答案为:30,12+22+32+42+…+n2【分析】仔细观察图形,找到所有图形中正方形个数的通项公式即可确定正方形的个数.三、<b >解答题</b>17、【答案】(1)解:原式=20+7﹣2=25(2)解:原式=﹣1﹣×(﹣7)=﹣1+ =【考点】有理数的混合运算【解析】【分析】(1)原式先利用减法法则及绝对值的代数意义化简,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.18、【答案】(1)解:移项合并得:8x=2,解得:x=0.25(2)解:方程整理得:﹣=1,去分母得:10x﹣3﹣20x﹣8=4,移项合并得:﹣10x=15,解得:x=﹣1.5【考点】解一元一次方程【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.19、【答案】(1)解:∵A=3ax3﹣bx,B=﹣ax3﹣2bx+8,∴A+B=3ax3﹣bx﹣ax3﹣2bx+8=2ax3﹣3bx+8(2)解:把x=﹣1代入得:A+B=﹣2a+3b+8=10,整理得:3b﹣2a=2【考点】代数式求值【解析】【分析】(1)把A与B代入A+B中,去括号合并即可得到结果;(2)把x=﹣1代入A+B中,使其值为10,求出3b﹣2a的值即可.20、【答案】(1)解:周一收盘价是:10+0.28=10.28(元);周二收盘价是:10.28﹣2.36=7.92(元);周三收盘价是:7.92+1.80=9.72(元);周四收盘价是:9.72﹣0.35=9.37(元);周五收盘价是:9.37+0.08=9.45(元)(2)下跌(3)周一①周二②2.36元【考点】正数和负数,有理数的加减混合运算【解析】【解答】解:(2)由(1)可知,本周末的收盘价比上周末收盘价是下跌了;(3)由(1)可知,周一最高,周二最低,相差2.36元.故本题答案为:下跌,周一,周二,2.36元.【分析】(1)根据每天涨跌的情况,分别列出算式并计算;(2)(3)根据(1)的计算结果,分别回答问题.21、【答案】(1)解:如图所示:(2)解:∠A与∠EDF相等,理由:∵∠B+∠BDF=90°,∠A+∠B=90°,∴∠A=∠BDF,∵DF平分∠BDE,∴∠BDF=∠EDF,∴∠A=∠EDF【考点】作图—复杂作图【解析】【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)直接利用互余的性质结合角平分线的性质得出,∠A与∠EDF的关系.22、【答案】解:由C,D两点把线段AB分成1:5:2三部分,设AC=m,CD=5m,DB=2m.由线段的和差,得AB=AC+CD+DB=m+5m+2m=8m.由M为AB的中点,得AM=MB=4m.由线段的和差,得MB﹣DB=MD,即4m﹣2m=2,解得m=1.CM=AM﹣AC=4m﹣m=3m=3cm;AB=8m=8cm,CM的长为8cm,AB的长为3cm【考点】两点间的距离【解析】【分析】根据线段中点的性质,可得MB,AM,根据线段的和差,可得关于m的方程,根据解方程,可得m,根据线段的和差,可得答案.23、【答案】(1)解:设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,依题意得:x+ x=13800,解得x=11500,则x=2300.答:中、美两国人均淡水资源占有量各为2300m3, 11500m3(2)解:设完成这批零件共用x天.根据题意,得:10÷40+30÷60+(1÷40+1÷60)(x﹣40)=1,解得:x=46.答:完成这批零件一共用了46天【考点】一元一次方程的应用【解析】【分析】(1)设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,根据题意所述等量关系得出方程,解出即可得出答案.(2)可设完成这批零件共用x天,根据工作总量为1的等量关系列出方程求解即可.24、【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°(3)解:(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒)【考点】角的计算,旋转的性质【解析】【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON 在∠AOC内部时,旋转角是240°.广州市七年级上学期期末考试数学试卷(三)一、单选题1、﹣3的绝对值是()A、3B、-3C、D、-2、下列图形中不是正方体展开图的是()A、B、C、D、3、2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A、3×106B、3×105C、0.3×106D、30×1044、若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A、-1B、0C、1D、5、下面说法错误的是()A、两点确定一条直线B、同角的补角相等C、等角的余角相等D、射线AB也可以写作射线BA6、如果2x2y3与x2y n+1是同类项,那么n的值是()A、1B、2C、3D、47、下列叙述:①几个非零数相乘,如果有偶数个负因数,则积为正数;②相反数等于本身的数只有0;③倒数等于本身的数是0和±1;④﹣>﹣.错误的个数是()A、0B、1C、2D、38、已知一个多项式减去﹣2m结果等于m2+3m+2,这个多项式是()A、m2+5m+2B、m2﹣m﹣2C、m2﹣5m﹣2D、m2+m+29、一艘轮船行驶在B处同时测得小岛A,C的方向分别为北偏西30°和西南方向,则∠ABC的度数是()A、135°B、115°C、105°D、95°10、形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A、-5B、-11C、5D、11二、填空题11、若某天的最高气温是为6℃,最低气温是﹣3℃,则这天的最高气温比最低气温高________ ℃.12、已知∠A=35°35′,则∠A的补角等于________13、化简(x+y)﹣(x﹣y)的结果是________14、如果|a﹣1|+(b+2)2=0,则(a+b)2016的值是________15、服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为________ 元.16、线段AB的长为10,点C为线段AB的中点,点D在直线AB上,且DB=3,则线段CD的长为________ .三、计算题17、计算:﹣12﹣(1﹣0.5)÷3×[2﹣(﹣3)2].18、解方程:2-=x-19、多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.四、解答题20、先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.21、某自相车厂一周计划生产1400量自行车,平均每天生产200量,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负);)根据记录可知前三天共生产________辆;(2)产量最多的一天比产量最少的一天多生产________ 辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是________OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?23、泰兴市自来水公司为限制开发区单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3元,超计划部分每吨按4元收费.(1)用代数式表示(所填结果需化简):设用水量为x吨,当用水量小于等于300吨,需付款________ 元;当用水量大于300吨,需付款________ 元.(2)某月该单位用水350吨,水费是________ 元;若用水260吨,水费________ 元.(3)若某月该单位缴纳水费1300元,则该单位用水________ 吨?24、观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:=________.(1)按以上规律列出第5个等式:a5(2)用含有n的代数式表示第n个等式:an=________(n为正整数)(3)求a1+a2+a3+a4+…+a100的值.(4)探究计算:25、如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?答案解析部分一、单选题1、【答案】A【考点】绝对值【解析】【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【分析】根据一个负数的绝对值等于它的相反数得出.2、【答案】D【考点】几何体的展开图【解析】【解答】解:选项A,B,C都可以围成正方体,只有选项D无法围成立方体.故选:D.【分析】由平面图形的折叠及正方体的展开图解题.3、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将300000用科学记数法表示为:3×105.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.4、【答案】A【考点】一元一次方程的解【解析】【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.5、【答案】D【考点】余角和补角【解析】【解答】解:A、两点确定一条直线,故本选项错误;B、同角的补角相等,故本选项错误;C、等角的余角相等,故本选项错误;D、射线AB和射线BA是表示不同的射线,故本选项正确;故选D.【分析】根据余角、补角,直线、射线、线段,直线的性质逐个进行判断,即可得出选项.6、【答案】B【考点】同类项、合并同类项【解析】【解答】解:∵2x2y3与x2y n+1是同类项,∴n+1=3,解得:n=2.故选B.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.7、【答案】B【考点】有理数的乘法【解析】【解答】解:①几个非零数相乘,如果有偶数个负因数,则积为正数,正确;②相反数等于本身的数只有0,正确;③倒数等于本身的数是±1,错误;④﹣>﹣,正确,则错误的个数为1.故选B【分析】各项计算得到结果,即可做出判断.8、【答案】D【考点】整式的加减【解析】【解答】解:设这个多项式为A,则A=(m2+3m+2)+(﹣2m)=m2+3m+2﹣2m=m2+m+2.故选D.【分析】设这个多项式为A,再根据题意列出多项式相加减的式子,去括号,合并同类项即可.9、【答案】C【考点】解直角三角形的应用-方向角问题【解析】【解答】解:根据条件可得:∠ABD=60°,∠DBC=45°∴∠ABC=∠ABD+∠DBC=60°+45°=105°.故选C.。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2017-2018学年广东省广州市荔湾区七年级(下)期末数学试卷一、选择题(本题共有10小题,每小题2分,共20分)注意:每小题有四个选项,其中有且仅有一项符合题意,选错、不选、多选或涂改不清的均不给分.1.(2分)下列四个实数中,是无理数的是()A.B.0C.0.D.2.(2分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为()A.﹣1,0,1B.﹣1,0C.0,1D.﹣1,14.(2分)若是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.45.(2分)为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1006.(2分)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.65°B.35°C.15°D.25°7.(2分)如图,△ABC沿直线BD向右平移,得到△ECD,若BD=10cm,则A、E两点的距离为()A.10cm B.5cm C.cm D.不能确定8.(2分)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.29.(2分)某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折B.7折C.8折D.9折10.(2分)如图,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.100°C.110°D.120°二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)﹣的立方根为.12.(3分)经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是人.13.(3分)计算:=14.(3分)若点P(3,2m﹣1)在第四象限,则m的取值范围是.15.(3分)如图,直线AB与CD相交于O,已知∠BOD=30°,OE是∠BOC的平分线,则∠EOA=.16.(3分)如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=(用含α的式子表示)三、解答题(本题共有7小题,共62分)17.(6分)已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1;B1;C1;(3)求出△ABC的面积.18.(8分)解下列方程组:(1)(2)19.(10分)解不等式组,并把解集在数轴上表示出来:(1)(2)20.(8分)为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:(1)求样本容量及n的值;(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.21.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.22.(10分)列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.23.(12分)如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.2017-2018学年广东省广州市荔湾区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题2分,共20分)注意:每小题有四个选项,其中有且仅有一项符合题意,选错、不选、多选或涂改不清的均不给分.1.(2分)下列四个实数中,是无理数的是()A.B.0C.0.D.【解答】解:0,0.,是有理数,是无理数,故选:A.2.(2分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.3.(2分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为()A.﹣1,0,1B.﹣1,0C.0,1D.﹣1,1【解答】解:由数轴可知,此不等式组的整数解为0、1,故选:C.4.(2分)若是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.4【解答】解:∵是关于x、y的方程ax﹣y=3的解,∴代入得:2a﹣1=3,解得:a=2,故选:B.5.(2分)为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.100【解答】解:∵了解一批电视机的寿命,从中抽取100台电视机进行试验,∴这个问题的样本是所抽取的100台电视机的寿命.故选:C.6.(2分)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.65°B.35°C.15°D.25°【解答】解:如图,∵直尺的两边互相平行,∠1=65°,∴∠3=∠1=65°,又∵∠3与∠2互余,∴∠2=90°﹣65°=25°.故选:D.7.(2分)如图,△ABC沿直线BD向右平移,得到△ECD,若BD=10cm,则A、E两点的距离为()A.10cm B.5cm C.cm D.不能确定【解答】解:由平移可得:BC=CD,AE=BC,∵BD=10cm,∴BC=AE=5cm,故选:B.8.(2分)已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选:B.9.(2分)某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折B.7折C.8折D.9折【解答】解:设该商品可打x折,根据题意,得:550×﹣400≥400×10%,解得:x≥8,故选:C.10.(2分)如图,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.100°C.110°D.120°【解答】解:设∠BOE=α,∵∠AOD:∠BOE=4:1,∴∠AOD=4α,∵OE平分∠BOD,∴∠DOE=∠BOE=α∴∠AOD+∠DOE+∠BOE=180°,∴4α+α+α=180°,∴α=30°,∴∠AOD=4α=120°,∴∠BOC=∠AOD=120°,∵OF平分∠COB,∴∠COF=∠BOC=60°,∵∠AOC=∠BOD=2α=60°,∴∠AOF=∠AOC+∠COF=120°,故选:D.二、填空题(本题共有6小题,每小题3分,共18分)11.(3分)﹣的立方根为﹣.【解答】解:﹣的立方根为﹣.故答案为:﹣.12.(3分)经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是800人.【解答】解:设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=,则选择“公交车”的学生人数是×3=800人;故答案为:800.13.(3分)计算:=【解答】解:=+2=.故答案为:.14.(3分)若点P(3,2m﹣1)在第四象限,则m的取值范围是m<.【解答】解:∵点P(3,2m﹣1)在第四象限,∴2m﹣1<0,∴m<.故答案为:m<.15.(3分)如图,直线AB与CD相交于O,已知∠BOD=30°,OE是∠BOC的平分线,则∠EOA=105°.【解答】解:∵∠BOD=30°,∴∠AOC=∠BOD=30°,∠BOC=180°﹣∠BOD=150°,∵OE是∠BOC的平分线,∴∠COE=∠BOC=75°,∴∠AOE=75°+30°=105°,故答案为:105°16.(3分)如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=2α﹣90°(用含α的式子表示)【解答】解:∵AB∥CD,∴∠AEH=∠CFH=α,∵EH平分∠AEM,∴∠MEH=∠AEH=α,∴∠MEN=180°﹣2α,∵MN⊥AB,∴∠MNE=90°,∴∠EMN=90°﹣(180°﹣2α)=2α﹣90°.故答案为2α﹣90°.三、解答题(本题共有7小题,共62分)17.(6分)已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A1B1C1;(2)直接写出△A1B1C1各顶点的坐标.A1(4,﹣2);B1(1,﹣4);C1(2,﹣1);(3)求出△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(4,﹣2);B1(1,﹣4);C1(2,﹣1).故答案为:(4,﹣2);(1,﹣4);(2,﹣1).;(3)S△ABC=3×3﹣×1×3﹣×1×2﹣×2×3=.18.(8分)解下列方程组:(1)(2)【解答】解:(1),①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)方程组整理得:,把①代入②得:2y﹣4y=6,解得:y=﹣3,把y=﹣3代入①得:x=﹣2,则方程组的解为.19.(10分)解不等式组,并把解集在数轴上表示出来:(1)(2)【解答】解:(1)解不等式2x+3>1,得:x>﹣1,解不等式x﹣2<0,得:x<2,则不等式组的解集为﹣1<x<2,将解集表示在数轴上如下:(2)解不等式x﹣>,得:x>2,解不等式x+8<4x﹣1,得:x>3,则不等式组的解集为x>3,将不等式组的解集表示在数轴上如下:20.(8分)为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:(1)求样本容量及n的值;(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.【解答】解:(1)样本容量为8÷16%=50,∵30分的人数为50×=5人,∴n=50﹣(8+12+15+5)=10;(2)估计该校七年级学生体育成绩达到优秀的总人数为500×=300人.21.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.22.(10分)列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.【解答】解:设甲、乙二人的速度分别为xm/s,ym/s,根据题意列方程为:,解得:,答:甲的速度分别为m/s,乙的速度分别为m/s.23.(12分)如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.【解答】解:(1)如图1中,由题意B(3,1),C(﹣1,2),∴BC∥OA,BC=OA,∴四边形ABCO是平行四边形.∴S平行四边形ABCD=4×2=8.(2)存在.理由:如图1中,设M(0,m)由题意S△AOM=8,∴×4×|m|=8∴m=±4,∴M(0,4)或(0,﹣4).(3)结论:∠CQP=2∠D.理由:如图3中,延长CP到K.∵BC∥OA,∴∠CBP=∠DPQ,∵∠CBP=∠CPB,∠CPB=∠DPK,∴∠DPQ=∠DPK,设∠DPQ=∠DPK=x,∠DCQ=∠DCP=y,则有,①﹣2×②得到∠CQP=2∠D.。
七年级上学期数学期末试卷一、单选题(共10题;共20分)1.单项式的系数和次数分别是()A. -9,6B. 9,6C. -1,6D. -9,32.下列计算正确的是()A. 3a+2a=5a2B. 3a-a=3C. 2a3+3a2=5a5D. -a2b+2a2b=a2b3.在中,负数的个数是()A. l个B. 2个C. 3个D. 4个4.下列判断正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5.解方程,去分母得()A. B.C. D.6.如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC的长为()A. 2cmB. 4cmC. 8cmD. 13cm7.如图,OC是的平分线,,则的度数为()A. B. C. D.8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.9.某商场周年庆期间,对销售的某种商品按成本价提高后标价,又以9折(即按标价的)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x元,根据题意,可得到的方程是()A. B.C. D.10.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到,第2次移动到,第3次移动到,……,第n次移动到,则△O 的面积是()A. 504B.C.D. 505二、填空题(共6题;共6分)11.亚洲陆地面积约为万平方千米,将用科学记数法表示为________.12.已知3x-8与2互为相反数,则x=________.13.若,则=________.14.如图,射线OA的方向是北偏西65 ,射线OB的方向是南偏东20°,则的度数为________.15.若,则的值为________.16.延长线段AB到点C,使BC= AB,反向延长AC到点D,使AD= ,若AB=8 cm,则CD=________cm.三、解答题(共7题;共60分)17.计算:(1)-2.4+(-3.7)-4.6+5.7(2)-318.计算:(1)-4-12(2)19.解方程:(1)5x+2=3(x+2)(2)20.已知A= ,B=(1)化简A-2B;(2)若,求A-2B的值.21.如图,A,O,B三点在一条直线上,=3 ,OE平分,=80 ,求的度数.22.列方程解应用题:某车间有84名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知1个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?一共可以配成多少套?23.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD 的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm, 4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM-BM=OM,求的值.答案解析部分一、单选题1.【解析】【解答】解:单项式的系数为-9,次数为6.故答案为:A.【分析】直接利用单项式的系数与次数的定义分析得出答案.2.【解析】【解答】A、3a+2a=5a≠5a2,故A不符合题意;B、3a-a=2a≠3,故B不符合题意;C、2a3与3a2不能合并,故C不符合题意;D、-a2b+2a2b=a2b,故D符合题意;故答案为:D.【分析】根据同类项合并的法则进行计算即可得到答案。
广东省广州市荔湾区2017-2018学年七年级(下)期末数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.在﹣2,,,3.14这4个数中,无理数是()A.﹣2 B.C.D.3.14【考点】26:无理数.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣2,,3.14是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各点中,在第二象限的点是()A.(﹣1,4)B.(1,﹣4)C.(﹣1,﹣4)D.(1,4)【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【解答】解:A、(﹣1,4)在第二象限,故本选项符合题意;B、(1,﹣4)在第四象限,故本选项不符合题意;C、(﹣1,﹣4)在第三象限,故本选项不符合题意;D、(1,4)在第一象限,故本选项不符合题意.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°【考点】J9:平行线的判定.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)【点评】本题主要考查了平行线的判定,解题时注意:只要满足同位角相等或内错角相等或同旁内角互补,都能得出两直线平行.4.下列二元一次方程组的解为的是()A.B. C.D.【考点】97:二元一次方程组的解.【分析】求出各项中方程组的解,检验即可.【解答】解:A、,①+②得:2x=2,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为,不符合题意;B、,①+②得:2x=﹣2,解得:x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为,不符合题意;C、,①+②得:2x=4,解得:x=2,把x=2代入①得:y=﹣2,则方程组的解为,符合题意;D、,①+②得:2x=﹣4,解得:x=﹣2,把x=﹣2代入①得:y=2,则方程组的解为,不符合题意,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+2【考点】C2:不等式的性质.【分析】根据不等式两边加上(或减去)同一个数,不等号方向不变可对A、D进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变对B进行判断;根据不等式两边乘以(或除以)同一个正数,不等号方向不变对C进行判断.【解答】解:A、若a<b,则a﹣2<b﹣2,故A选项正确;B、若a<b,则﹣2a>﹣2b,故B选项错误;C、若a<b,则2a<2b,故C选项正确;D、若a<b,则a+2<b+2,故D选项正确.故选:B.【点评】本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.6.以下问题,不适合使用全面调查的是()A.对旅客上飞机前的安检B.航天飞机升空前的安全检查C.了解全班学生的体重D.了解广州市中学生每周使用手机所用的时间【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对旅客上飞机前的安检是事关重大的调查,故A不符合题意;B、航天飞机升空前的安全检查是事关重大的调查,故B不符合题意;C、了解全班学生的体重适合普查,故C不符合题意;D、了解广州市中学生每周使用手机所用的时间适合抽样调查,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14 B.12 C.10 D.8【考点】Q2:平移的性质.【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.二元一次方程x+2y=5,若x=﹣1,则y的值为()A.2 B.3 C.4 D.5【考点】93:解二元一次方程.【分析】把x的值代入方程计算即可求出y的值.【解答】解:把x=﹣1代入方程得:﹣1+2y=5,解得:y=3,故选B【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.9.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)【考点】D3:坐标确定位置.【分析】根据题意画出坐标系,进而确定公园的坐标.【解答】解:如图所示:公园的坐标是:(﹣100,﹣250).故选:C.【点评】此题主要考查了坐标确定位置,正确理解题意是解题关键.10.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25【考点】V8:频数(率)分布直方图.【分析】频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率在频数分布直方图中,计算出中间一个小长方形的面积占总面积的比值为=,再由频率=计算频数.【解答】解:由于中间一个小长方形的面积等于其它10个小长方形面积的和的,则中间一个小长方形的面积占总面积的=,即中间一组的频率为,且数据有160个,∴中间一组的频数为=32.故选A.【点评】本题考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.二、填空题(本大题共6小题,每小题3分,共18分)11.4的平方根是±2.【考点】21:平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若P(4,﹣3),则点P到x轴的距离是3.【考点】D1:点的坐标.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣3|=3,∴P点到x轴的距离是3,故答案为3.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.13.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=56度.【考点】J3:垂线;J2:对顶角、邻补角.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.【点评】此题考查的知识点是垂线,关键是利用垂直的定义及余角的定义求解.14.计算:|2﹣|+﹣=3.【考点】2C:实数的运算.【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|2﹣|+﹣=﹣2+5﹣=3故答案为:3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15.当x为不小于4的数时,3(x﹣1)的值不小于9.【考点】C6:解一元一次不等式.【分析】根据题意列出不等式,求出不等式的解集即可.【解答】解:根据题意得:3(x﹣1)≥9,解得:x≥4,故答案为:不小于4的数.【点评】本题考查了解一元一次不等式,能根据题意列出不等式是解此题的关键.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2017的坐标为(1008,1).【考点】D2:规律型:点的坐标.【分析】根据图形可找出点A1、A5、A9、A13、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+1(2n,1)(n为自然数)”,依此规律即可得出结论.【解答】解:观察图形可知:A1(0,1),A5(2,1),A9(4,1),A13(6,1),…,∴A4n+1(2n,1)(n为自然数).∵2017=504×4+1,∴A2017(1008,1).故答案为:(1008,1).【点评】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+1(2n,1)(n为自然数)”是解题的关键.三、解答题(本大题共7题,共62分,解答应写文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并把解集表示在数轴上.[注意有①②]【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣1,解不等式②,得:x<2,则不等式组的解集为﹣1<x<2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)解下列方程组:(1);(2).【考点】98:解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)①+②得:8x=8,解得:x=1,把x=1代入①得:y=3,则方程组的解为;(2)把②代入①得:2y﹣2+y=﹣5,解得:y=﹣1,把y=﹣1代入②得:x=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图所示,小方格边长为1个单位,(1)请写出△ABC各点的坐标.(2)求出S△ABC.(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.【考点】Q4:作图﹣平移变换.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据点的坐标求出BC的长,再求出点A到BC的距离,然后利用三角形的面积公式列式计算即可得解;(3)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)A(﹣2,3),B(1,0),C(5,0);(2)BC=5﹣1=4,点A到BC的距离为3,所以,S△ABC=×4×3=6;(3)△A′B′C′如图所示.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(8分)某品牌的共享自行车企业为了解工作日期间地铁站附近的自行车使用情况,做到精确投放,于星期二当天对荔湾区A、B、C三个地铁站该品牌自行车后使用量进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该品牌自行车当天在该三个地铁站区域投放了自行车600辆.(2)请补全图1中的条形统计图;求出地铁A站在图2中所对应的圆心角的度数.(3)按统计情况,若该品牌车计划在这些区域再投放1200辆,估计在地铁B站应投入多少辆.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据地铁C站投放的自行车数量及其百分比,即可得到当天在该三个地铁站区域投放的自行车数量;(2)先求得地铁B站投放的自行车数量,再补全图1中的条形统计图,根据地铁A站投放的自行车数量,即可得到地铁A站在图2中所对应的圆心角的度数;(3)根据地铁B站投放的自行车数量所占的比例,即可得到地铁B站投放的自行车数量.【解答】解:(1)当天在该三个地铁站区域投放的自行车数量为:300÷50%=600(辆);故答案为:600;(2)地铁B站投放的自行车数量为:600﹣100﹣300=200(辆),地铁A站在图2中所对应的圆心角的度数为×360°=60°;(3)在地铁B站应投入×1200=400(辆).【点评】本题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)已知:如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BC∥DE.(2)求证:∠A=∠F.【考点】JB:平行线的判定与性质.【分析】(1)先根据∠AGB=∠EHF=∠AHC,判定BD∥CE,即可得出∠D=∠CEF,再根据∠C=∠D,得到∠C=∠CEF,即可判定BC∥DE;(2)根据两直线平行,内错角相等进行证明即可.【解答】证明:(1)∵∠AGB=∠EHF=∠AHC,∴BD∥CE,∴∠D=∠CEF,又∵∠C=∠D,∴∠C=∠CEF,∴BC∥DE;(2)∵BC∥DE,∴∠A=∠F.【点评】本题主要考查了平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.(12分)为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(1)求a、b的值.(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a、b的值;(2)可设购买甲型设备x台,则购买乙型设备(15﹣x)台,根据购买该批设备的资金不超过11000元列不等式,解之确定x的值,即可确定方案;(3)根据监控半径覆盖范围不低于1600米,列出不等式,根据x的值确定方案,然后对所需资金进行比较,并作出选择.【解答】解:(1)由题意得:,解得;(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意得850x+700(15﹣x)≤11000,解得x≤3,∵两种型号的设备均要至少买一台,∴x=1,2,3,∴有3种购买方案:①甲型设备1台,乙型设备14台;②甲型设备2台,乙型设备13台;③甲型设备3台,乙型设备12台;(3)依题意得:150x+100(15﹣x)≥1600,解得x≥2,∴x取值为2或3.当x=2时,购买所需资金为:850×2+700×13=10800(元),当x=3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点评】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.23.(12分)如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.(2)若∠O=∠ADC=60°,求∠ACE的度数.(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)【考点】Q2:平移的性质;JA:平行线的性质.【分析】(1)根据平行线的性质得到∠BCD=∠O,等量代换得到∠BCD=∠CDA,于是得到结论;(2)根据邻补角的定义得到∠OCD=120°,根据平行线的性质得到∠DCA=∠CAO,等量代换得到∠DCA=FCA,由角平分线的定义得到∠OCE=∠FCE,于是得到结论;(3)根据平行线的性质得到∠CAD=∠OCA,推出∠AEC=∠CAD,根据平角的定义得到∠AEC+∠OEC=180°,于是得到结论.【解答】解:(1)∵CD∥OA,∴∠BCD=∠O,∵∠O=∠ADC,∴∠BCD=∠CDA,∴AD∥OB;(2)∵∠O=∠ADC=60°,∴∠BCD=60°,∴∠OCD=120°,∵CD∥OA,∴∠DCA=∠CAO,∵∠FCA=∠FAC,∴∠DCA=FCA,∵CE平分∠OCF,∴∠OCE=∠FCE,∴∠ECF+∠ACF=∠OCD=60°,∴∠ACE=60°;(3)∠CAD+∠OEC=180°,理由:∵AD∥OC,∴∠CAD=∠OCA,∵∠OCA=∠OCE+∠ACE=60°+∠OCE,∵∠AEC=∠O+∠OCE=60°+∠OCE,∴∠AEC=∠CAD,∵∠AEC+∠OEC=180°,∴∠CAD+∠OEC=180°.【点评】本题考查了平行线的判定和性质,角平分线的定义,正确的识别图形是解题的关键.。
2016-2017学年第二学期七年级期末数学模拟试卷二本次考试范围:苏科版七下全部内容,八年级数学上册《全等三角形》;考试题型:选择、填空、解答三大类;考试时间:120分钟;考试分值:130分。
一、选择题(每小题3分,共30分)1.下列运算中,正确的是 ( ) A .a 2+a 2=2a 4 B .a 2•a 3=a 6 C .(-3x )2÷3x =3x D .(-ab 2)2=-a 2b 42.现有4根小木棒的长度分别为2cm ,3cm ,4cm 和5cm .用其中3根搭三角形,可以搭出不同三角形的个数是 ( ) A .1个 B .2个 C .3个 D .4个 3.如下图,下列判断正确的是 ( )A .若∠1=∠2,则AD ∥BCB .若∠1=∠2.则AB ∥CDC .若∠A =∠3,则 AD ∥BC D .若∠A +∠ADC =180°,则AD ∥BC4.如果a > b ,那么下列不等式的变形中,正确的是 ( ) A .a -1<b -1 B .2a <2b C .a -b <0 D .-a +2<-b +2 5.若5x 3m-2n-2y n -m +11=0是二元一次方程,则 ( )A .m =3,n =4B .m =2,n =1C .m =-1,n =2D .m =1,n =26.已知方程组⎩⎨⎧3x +5y = k +8,3x +y =-2k .的解满足x + y = 2 ,则k 的值为 ( )A .-4B .4C .-2D .27.若不等式组⎩⎨⎧3x +a <0,2x + 7>4x -1.的解集为x <4,则a 的取值范围为 ( )A .a <-12B .a ≤-12C .a >-12D .a ≥-12 8.四个同学对问题“若方程组 111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组 111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 ( ) A⎩⎨⎧==84y x ; B ⎩⎨⎧==129y x ; C ⎩⎨⎧==2015y x ; D ⎩⎨⎧==105y x9. 如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90° 10. 如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为( ) A .35° ; B .40° ; C .50° ; D .65° 二、填空题(每空3分,共24分) 11.计算:3x 3·(-2x 2y ) = . 12.分解因式:4m 2-n 2 = .第3题图第9题图ABCB ′C ′第10题图13.已知一粒米的质量是0.000021千克,0.000021用科学记数法表示为 __ .14.若⎩⎨⎧x = 2,y = 1.是方程组⎩⎨⎧2ax +y = 5,x + 2y = b .的解,则ab = .15.二元一次方程3x +2y =15共有_______组正整数解....16.关于x 的不等式(a +1)x>(a +1)的解集为x <1,则a 的范围为 .17.如图,已知Rt △ABC 中∠A =90°,AB =3,AC =4.将其沿边AB 向右平移2个单位得到△FGE ,则四边形ACEG 的面积为 .18.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线A B 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. (1)如图1,若已经向右摆放了3根小棒,且恰好有∠A 4A 3A =90°,则θ= . (2)如图2,若只能..摆放5根小棒,则θ的范围是 . 三、解答题(共11题,计76分)19.(本题满分6分)计算:(1)(-m )2·(m 2)2÷m 3; (2)(x -3)2-(x +2)(x -2).20.(本题满分6分)分解因式:(1)x 3-4xy 2; (2) 2m 2-12m +18.21.(本题满分6分)(1)解不等式621123x x ++-<; (2)解不等式组()523215122x x x x⎧-<-⎪⎨-<-⎪⎩22.(本题满分6分)已知长方形的长为a ,宽为b ,周长为16,两边的平方和为14.①求此长方形的面积; ②求ab 3+2a 2b 2+a 3b 的值.23.(本题满分6分)在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13. (1)求a 、b 的值;θA 4A 3A 2AA 1BCθA 6A 5A 4A 3A 2AA 1BC图1图2A B CEF G第16题图第18题图(2)当-1<x <2,求y 的取值范围.24. (本题满分6分)如图2,∠A =50°,∠BDC =70°,DE ∥BC ,交AB 于点E , BD 是△ABC 的角平分线.求∠DEB 的度数.25. (本题满分6分)已知,如图,AC 和BD 相交于点O ,OA=OC ,OB=OD ,求证:AB ∥CD .26.(本题8分) 某公司准备把240吨白砂糖运往A 、B 两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,相关数据见下表:载重量 运往A 地的费用 运往B 地的费用 大车 15吨/辆 630元/辆 750元/辆 小车10吨/辆420元/辆550元/辆(1)求大、小两种货车各用多少辆?(2)如果安排10辆货车前往A 地,其中大车有m 辆,其余货车前往B 地,且运往A 地的白砂糖不少于115吨.①求m 的取值范围;②请设计出总运费最少的货车调配方案,并求最少总运费.27.(8分)(1)如图①,在凹四边形ABCD 中,∠BDC =135°,∠B =∠C =30°,则∠A = °;(2)如图②,在凹四边形ABCD 中,∠ABD 与∠ACD 的角平分线交于点E ,∠A =60°,∠BDC =140°,则∠E = °;(3)如图③,∠ABD ,∠BAC 的平分线交于点E ,∠C =40°,∠BDC =150°,求∠AEB 的度数;(4)如图④,∠BAC ,∠DBC 的角平分线交于点E ,则∠B ,∠C 与∠E 之间有怎样的数量关系 。
2016-2017学年广东省广州市荔湾区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在﹣2,,,3.14这4个数中,无理数是()A.﹣2 B.C.D.3.142.(3分)下列各点中,在第二象限的点是()A.(﹣1,4)B.(1,﹣4)C.(﹣1,﹣4)D.(1,4)3.(3分)如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°4.(3分)下列二元一次方程组的解为的是()A.B.C. D.5.(3分)已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+26.(3分)以下问题,不适合使用全面调查的是()A.对旅客上飞机前的安检B.航天飞机升空前的安全检查C.了解全班学生的体重D.了解广州市中学生每周使用手机所用的时间7.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14 B.12 C.10 D.88.(3分)二元一次方程x+2y=5,若x=﹣1,则y的值为()A.2 B.3 C.4 D.59.(3分)小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)10.(3分)在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)4的平方根是.12.(3分)若P(4,﹣3),则点P到x轴的距离是.13.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=度.14.(3分)计算:|2﹣|+﹣=.15.(3分)当x为时,3(x﹣1)的值不小于9.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2017的坐标为.三、解答题(本大题共7题,共62分,解答应写文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并把解集表示在数轴上.[注意有①②]18.(8分)解下列方程组:(1);(2).19.(8分)如图所示,小方格边长为1个单位,(1)请写出△ABC各点的坐标..(2)求出S△ABC(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.20.(8分)某品牌的共享自行车企业为了解工作日期间地铁站附近的自行车使用情况,做到精确投放,于星期二当天对荔湾区A、B、C三个地铁站该品牌自行车后使用量进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该品牌自行车当天在该三个地铁站区域投放了自行车辆.(2)请补全图1中的条形统计图;求出地铁A站在图2中所对应的圆心角的度数.(3)按统计情况,若该品牌车计划在这些区域再投放1200辆,估计在地铁B 站应投入多少辆.21.(8分)已知:如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BC∥DE.(2)求证:∠A=∠F.22.(12分)为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.甲型乙型价格(元/台)a b有效半径(米/台)150100(1)求a、b的值.(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.23.(12分)如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.(2)若∠O=∠ADC=60°,求∠ACE的度数.(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)2016-2017学年广东省广州市荔湾区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在﹣2,,,3.14这4个数中,无理数是()A.﹣2 B.C.D.3.14【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣2,,3.14是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)下列各点中,在第二象限的点是()A.(﹣1,4)B.(1,﹣4)C.(﹣1,﹣4)D.(1,4)【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【解答】解:A、(﹣1,4)在第二象限,故本选项符合题意;B、(1,﹣4)在第四象限,故本选项不符合题意;C、(﹣1,﹣4)在第三象限,故本选项不符合题意;D、(1,4)在第一象限,故本选项不符合题意.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)如图,已知∠2=100°,要使AB∥CD,则须具备另一个条件()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;据此判断即可.【解答】解:∵∠2=100°,∴根据平行线的判定可知,当∠4=100°,或∠3=100°,或∠1=80°时,AB∥CD.故选(D)【点评】本题主要考查了平行线的判定,解题时注意:只要满足同位角相等或内错角相等或同旁内角互补,都能得出两直线平行.4.(3分)下列二元一次方程组的解为的是()A.B.C.D.【分析】求出各项中方程组的解,检验即可.【解答】解:A、,①+②得:2x=2,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为,不符合题意;B、,①+②得:2x=﹣2,解得:x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为,不符合题意;C、,①+②得:2x=4,解得:x=2,把x=2代入①得:y=﹣2,则方程组的解为,符合题意;D、,①+②得:2x=﹣4,解得:x=﹣2,把x=﹣2代入①得:y=2,则方程组的解为,不符合题意,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.5.(3分)已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+2【分析】根据不等式两边加上(或减去)同一个数,不等号方向不变可对A、D 进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变对B 进行判断;根据不等式两边乘以(或除以)同一个正数,不等号方向不变对C 进行判断.【解答】解:A、若a<b,则a﹣2<b﹣2,故A选项正确;B、若a<b,则﹣2a>﹣2b,故B选项错误;C、若a<b,则2a<2b,故C选项正确;D、若a<b,则a+2<b+2,故D选项正确.故选:B.【点评】本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.6.(3分)以下问题,不适合使用全面调查的是()A.对旅客上飞机前的安检B.航天飞机升空前的安全检查C.了解全班学生的体重D.了解广州市中学生每周使用手机所用的时间【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对旅客上飞机前的安检是事关重大的调查,故A不符合题意;B、航天飞机升空前的安全检查是事关重大的调查,故B不符合题意;C、了解全班学生的体重适合普查,故C不符合题意;D、了解广州市中学生每周使用手机所用的时间适合抽样调查,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.(3分)二元一次方程x+2y=5,若x=﹣1,则y的值为()A.2 B.3 C.4 D.5【分析】把x的值代入方程计算即可求出y的值.【解答】解:把x=﹣1代入方程得:﹣1+2y=5,解得:y=3,故选B【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.9.(3分)小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)【分析】根据题意画出坐标系,进而确定公园的坐标.【解答】解:如图所示:公园的坐标是:(﹣100,﹣250).故选:C.【点评】此题主要考查了坐标确定位置,正确理解题意是解题关键.10.(3分)在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25【分析】频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率在频数分布直方图中,计算出中间一个小长方形的面积占总面积的比值为=,再由频率=计算频数.【解答】解:由于中间一个小长方形的面积等于其它10个小长方形面积的和的,则中间一个小长方形的面积占总面积的=,即中间一组的频率为,且数据有160个,∴中间一组的频数为=32.故选A.【点评】本题考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)4的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(3分)若P(4,﹣3),则点P到x轴的距离是3.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离.【解答】解:∵|﹣3|=3,∴P点到x轴的距离是3,故答案为3.【点评】此题主要考查点的坐标;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.13.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=56度.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.【点评】此题考查的知识点是垂线,关键是利用垂直的定义及余角的定义求解.14.(3分)计算:|2﹣|+﹣=3.【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|2﹣|+﹣=﹣2+5﹣=3故答案为:3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.15.(3分)当x为不小于4的数时,3(x﹣1)的值不小于9.【分析】根据题意列出不等式,求出不等式的解集即可.【解答】解:根据题意得:3(x﹣1)≥9,解得:x≥4,故答案为:不小于4的数.【点评】本题考查了解一元一次不等式,能根据题意列出不等式是解此题的关键.16.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2017的坐标为(1008,1).【分析】根据图形可找出点A1、A5、A9、A13、…、的坐标,根据点的坐标的变化(2n,1)(n为自然数)”,依此规律即可得出结论.可找出变化规律“A4n+1【解答】解:观察图形可知:A1(0,1),A5(2,1),A9(4,1),A13(6,1),…,(2n,1)(n为自然数).∴A4n+1∵2017=504×4+1,∴A2017(1008,1).故答案为:(1008,1).(2n,【点评】本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+11)(n为自然数)”是解题的关键.三、解答题(本大题共7题,共62分,解答应写文字说明,证明过程或演算步骤.)17.(6分)解不等式组,并把解集表示在数轴上.[注意有①②]【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣1,解不等式②,得:x<2,则不等式组的解集为﹣1<x<2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)解下列方程组:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)①+②得:8x=8,解得:x=1,把x=1代入①得:y=3,则方程组的解为;(2)把②代入①得:2y﹣2+y=﹣5,解得:y=﹣1,把y=﹣1代入②得:x=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图所示,小方格边长为1个单位,(1)请写出△ABC各点的坐标..(2)求出S△ABC(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据点的坐标求出BC的长,再求出点A到BC的距离,然后利用三角形的面积公式列式计算即可得解;(3)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)A(﹣2,3),B(1,0),C(5,0);(2)BC=5﹣1=4,点A到BC的距离为3,所以,S=×4×3=6;△ABC(3)△A′B′C′如图所示.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.(8分)某品牌的共享自行车企业为了解工作日期间地铁站附近的自行车使用情况,做到精确投放,于星期二当天对荔湾区A、B、C三个地铁站该品牌自行车后使用量进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该品牌自行车当天在该三个地铁站区域投放了自行车600辆.(2)请补全图1中的条形统计图;求出地铁A站在图2中所对应的圆心角的度数.(3)按统计情况,若该品牌车计划在这些区域再投放1200辆,估计在地铁B 站应投入多少辆.【分析】(1)根据地铁C站投放的自行车数量及其百分比,即可得到当天在该三个地铁站区域投放的自行车数量;(2)先求得地铁B站投放的自行车数量,再补全图1中的条形统计图,根据地铁A站投放的自行车数量,即可得到地铁A站在图2中所对应的圆心角的度数;(3)根据地铁B站投放的自行车数量所占的比例,即可得到地铁B站投放的自行车数量.【解答】解:(1)当天在该三个地铁站区域投放的自行车数量为:300÷50%=600(辆);故答案为:600;(2)地铁B站投放的自行车数量为:600﹣100﹣300=200(辆),地铁A站在图2中所对应的圆心角的度数为×360°=60°;(3)在地铁B站应投入×1200=400(辆).【点评】本题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)已知:如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BC∥DE.(2)求证:∠A=∠F.【分析】(1)先根据∠AGB=∠EHF=∠AHC,判定BD∥CE,即可得出∠D=∠CEF,再根据∠C=∠D,得到∠C=∠CEF,即可判定BC∥DE;(2)根据两直线平行,内错角相等进行证明即可.【解答】证明:(1)∵∠AGB=∠EHF=∠AHC,∴BD∥CE,∴∠D=∠CEF,又∵∠C=∠D,∴∠C=∠CEF,∴BC∥DE;(2)∵BC∥DE,∴∠A=∠F.【点评】本题主要考查了平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.22.(12分)为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.甲型乙型价格(元/台)a b有效半径(米/台)150100(1)求a、b的值.(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a、b的值;(2)可设购买甲型设备x台,则购买乙型设备(15﹣x)台,根据购买该批设备的资金不超过11000元列不等式,解之确定x的值,即可确定方案;(3)根据监控半径覆盖范围不低于1600米,列出不等式,根据x的值确定方案,然后对所需资金进行比较,并作出选择.【解答】解:(1)由题意得:,解得;(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意得850x+700(15﹣x)≤11000,解得x≤3,∵两种型号的设备均要至少买一台,∴x=1,2,3,∴有3种购买方案:①甲型设备1台,乙型设备14台;②甲型设备2台,乙型设备13台;③甲型设备3台,乙型设备12台;(3)依题意得:150x+100(15﹣x)≥1600,解得x≥2,∴x取值为2或3.当x=2时,购买所需资金为:850×2+700×13=10800(元),当x=3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点评】本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.23.(12分)如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.(2)若∠O=∠ADC=60°,求∠ACE的度数.(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)【分析】(1)根据平行线的性质得到∠BCD=∠O,等量代换得到∠BCD=∠CDA,于是得到结论;(2)根据邻补角的定义得到∠OCD=120°,根据平行线的性质得到∠DCA=∠CAO,等量代换得到∠DCA=FCA,由角平分线的定义得到∠OCE=∠FCE,于是得到结论;(3)根据平行线的性质得到∠CAD=∠OCA,推出∠AEC=∠CAD,根据平角的定义得到∠AEC+∠OEC=180°,于是得到结论.【解答】解:(1)∵CD∥OA,∴∠BCD=∠O,∵∠O=∠ADC,∴∠BCD=∠CDA,∴AD∥OB;(2)∵∠O=∠ADC=60°,∴∠BCD=60°,∴∠OCD=120°,∵CD∥OA,∴∠DCA=∠CAO,∵∠FCA=∠FAC,∴∠DCA=FCA,∵CE平分∠OCF,∴∠OCE=∠FCE,∴∠ECF+∠ACF=∠OCD=60°,∴∠ACE=60°;(3)∠CAD+∠OEC=180°,理由:∵AD∥OC,∴∠CAD=∠OCA,∵∠OCA=∠OCE+∠ACE=60°+∠OCE,∵∠AEC=∠O+∠OCE=60°+∠OCE,∴∠AEC=∠CAD,∵∠AEC+∠OEC=180°,∴∠CAD+∠OEC=180°.【点评】本题考查了平行线的判定和性质,角平分线的定义,正确的识别图形是解题的关键.21。