数学物理方法试卷B答案
- 格式:doc
- 大小:249.50 KB
- 文档页数:8
嘉应学院 物理 系 《数学物理方法》B 课程考试题一、简答题(共70分)1、试阐述解析延拓的含义。
解析延拓的结果是否唯一?(6分)2、奇点分为几类?如何判别? (6分)3、何谓定解问题的适定性?(6分)4、什么是解析函数?其特征有哪些?(6分)5、写出)(x δ挑选性的表达式(6分)6、写出复数231i +的三角形式和指数形式(8分)7、求函数2)2)(1(--z z z在奇点的留数(8分) 8、求回路积分 dz zzz ⎰=12cos (8分) 9、计算实变函数定积分dx x x ⎰∞∞-++1142(8分) 10、求幂级数k k i z k )(11-∑∞= 的收敛半径(8分) 二、计算题(共30分)1、试用分离变数法求解定解问题(14分)⎪⎪⎩⎪⎪⎨⎧=-===><<=-====0,2/100,000002t t t l x x x x xx tt u x u u u t l x u a u2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分)⎪⎪⎪⎩⎪⎪⎪⎨⎧===-==∆====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π3、求方程 满足初始条件y(0)=0,y ’(0)=1 的解。
(10分)嘉应学院 物理 系 《数学物理方法》A 课程考试题一、简答题(共70分)1、什么是解析函数?其特征有哪些?(6分)2、奇点分为几类?如何判别? (6分)3、何谓定解问题的适定性?(6分)4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)5、写出)(x δ挑选性的表达式(6分)6、求幂级数kk i z k )(11-∑∞= 的收敛半径(8分)7、求函数2)2)(1(1--z z 在奇点的留数(8分)8、求回路积分 dz zzz ⎰=12cos (8分) te y y y -=-'+''329、计算实变函数定积分dx x x ⎰∞∞-++1142(8分)10、写出复数231i +的三角形式和指数形式(8分)二、计算题(共30分)1、试用分离变数法求解定解问题(14分)⎪⎪⎩⎪⎪⎨⎧=-===><<=-====0,2/100,000002t t t l x x x x xx tt u x u u u t l x u a u2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分)⎪⎪⎪⎩⎪⎪⎪⎨⎧===-==∆====0,sin 0),(000b y y a x x u a x B u u y b Ay u u π3、求方程 满足初始条件y(0)=0,y ’(0)=0 的解。
《 数学物理方法 》试题(A 卷)说明:本试题共3页四大题,30小题。
1.z 为复数,则( )。
A ln z 没有意义;B ln z 为周期函数;C Ln z 为周期函数;D ln()ln z z -=-。
2.下列积分不为零的是( )。
A 0.51z dz z π=+⎰; B 20.51z dz z π=-⎰; C10.5z dzz π=+⎰; D211z dz z π=-⎰。
3.下列方程是波动方程的是( )。
A 2tt xx u a u f =+; B 2t xx u a u f =+;C 2t xx u a u =; D2tt x u a u =。
4.泛定方程2tt x u a u =要构成定解问题,则应有的初始条件个数为( )。
A 1个;B 2个;C 3个;D 4个。
5.二维拉普拉斯方程的定解问题是( )。
A 哥西问题; B 狄拉克问题; C 混合问题; D 狄里克雷问题。
6.一函数序列的序参量n趋于某值a时有()(,)()()n ax f n x dx x f x dx ϕϕ→−−−→⎰⎰则我们称( )。
A (,)f n x 收敛于()f x ;B (,)f n x 绝对收敛于()f x ;C (,)f n x 弱收敛于()f x ;D (,)f n x 条件收敛于()f x 。
7.傅里叶变换在物理学和信息学中能实现( )。
A 脉冲信号的高斯展宽;B 高斯信号压缩成脉冲信号;C 实空间信号的频谱分析;D 复频信号的单频滤波。
8.用分离变量法求解偏微分方程定解问题的一般步骤是( )。
A 分离变量 解单变量本征值问题 得单变量解得分离变量解; B 分离变量 得单变量解 解单变量本征值问题 得分离变量解; C 解单变量本征值问题 得单变量解 分离变量 得分离变量解; D 解单变量本征值问题 分离变量 得单变量解 得分离变量解。
9.下列表述中不正确的是( )。
A 3sin zz 在0z =处是二阶极点;B 某复变函数在开复平面内有有限个奇点,所有这些奇点的残数之和为零;C 残数定理表明,解析函数的围线积分为复数;D 某复变函数在某处为m 阶极点,则其倒函数在该奇点处为m 阶零点。
(物理)物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。
在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。
若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。
已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。
若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。
两小球重力均不计。
(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。
【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2BB122Tt nTt n==(2)如图所示,小球A经圆周运动后,在电场中做类平抛运动。
水平方向有A AL v t=③竖直方向有2A A A12y a t=④由牛顿第二定律得AqE ma=⑤解③④⑤式得2AA()2qE Lym v=⑥小球B在电场中做类平抛运动,同理有22B1B()2n qE Lyn m v=⑦由题意知By r=⑧应用几何关系得B A2y y r y∆=+-⑨解①⑥⑦⑧⑨式得123ry rn n∆=-2.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°,∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示)(1)这束入射光线的入射角多大?(2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】试题分析:(1)设光在AD 面的入射角、折射角分别为i 、r ,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示:ab 光线在AB 面的入射角为45°,设玻璃的临界角为C ,则: sinC===0.67sin45°>0.67,因此光线ab 在AB 面会发生全反射 光线在CD 面的入射角r′=r=30°根据n=,光线在CD 面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6°3.如图所示,直角MNQ △为一个玻璃砖的横截面,其中90Q ︒∠=,30N ︒∠=,MQ 边的长度为a ,P 为MN 的中点。
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
(物理)物理数学物理法题20套(带答案)含解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
高考物理数学物理法试题(有答案和解析)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
(物理)物理试卷分类汇编物理数学物理法(及答案)含解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R ',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。
专业课原理概述部分一、选择题(每题1分,共5分)A. 变分法B. 微分方程C. 蒙特卡洛方法D. 量子力学方法A. 热传导方程B. 波动方程C. 拉普拉斯方程D. 双曲型方程3. 下列哪种方法不适用于求解偏微分方程?A. 分离变量法B. 格林函数法C. 有限差分法D. 牛顿迭代法4. 在数学物理方法中,下列哪个概念描述的是波动现象?A. 稳态解B. 特征值C. 驻波D. 熵A. 微分方程B. 积分方程C. 赝势方法D. 特征函数展开二、判断题(每题1分,共5分)1. 数学物理方法主要研究物理现象的数学模型及其求解方法。
(√)2. 任何数学物理方程都可以通过解析方法求解。
(×)3. 数值方法在求解数学物理问题时,通常需要牺牲精度以换取计算速度。
(√)4. 在数学物理方法中,特征值问题一定是自共轭算子的本征值问题。
(×)5. 数学物理方程的边界条件对解的性质有重要影响。
(√)三、填空题(每题1分,共5分)1. 数学物理方法中,求解波动方程常用的方法有______法和______法。
2. 在求解热传导方程时,______边界条件是常见的边界条件之一。
3. 数学物理方程中的______方法,是通过将多变量偏微分方程转化为多个单变量常微分方程来求解。
4. 在量子力学中,______方程描述了粒子的运动规律。
5. 拉普拉斯方程是______型偏微分方程的一个典型例子。
四、简答题(每题2分,共10分)1. 简述数学物理方法在科学研究中的作用。
2. 举例说明数学物理方程中的本征值问题。
3. 简述分离变量法的基本思想。
4. 什么是有界域问题?它有哪些常见的边界条件?5. 简述数值解法在求解数学物理方程中的重要性。
五、应用题(每题2分,共10分)1. 求解一维无限深方势阱中的粒子能量本征值。
2. 利用分离变量法求解二维波动方程。
3. 计算一维热传导方程的稳态解。
4. 举例说明如何使用有限差分法求解数学物理方程。
2008—2009学年第二学期 《数学物理方法》试卷B 答案一、选择题(每题4分,共20分) 1.柯西问题指的是( B )A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( D )A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性.3.牛曼内问题 ⎪⎩⎪⎨⎧=∂∂=∇Γf n u u ,02 有解的必要条件是( C )A .0=f .B .0=Γu .C .0=⎰ΓdS f . D .0=⎰ΓdS u .4.用分离变量法求解偏微分方程中,特征值问题⎩⎨⎧==<<=+0)()0(0 ,0)()(''l X X lx x X x X λ的解是( B )A .) cos , (2x l n l n ππ⎪⎭⎫ ⎝⎛.B .) sin, (2x l n l n ππ⎪⎭⎫⎝⎛. C .) 2)12(cos ,2)12( (2x l n l n ππ-⎪⎭⎫ ⎝⎛-. D .) 2)12(sin,2)12( (2x l n l n ππ-⎪⎭⎫⎝⎛-. 5.指出下列微分方程哪个是双曲型的( D ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u .C .02222=++++y x yy xy xx u y xyu u y xyu u x .D .023=+-yy xy xx u u u .二、填空题(每题4分,共20分)1.求定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤==>-==><<=∂∂-∂∂====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x ut u t t t x x 的解是(x t cos sin 2).2.对于如下的二阶线性偏微分方程0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx其特征方程为( 0))(,(),(2))(,(22=++dx y x c dxdy y x b dy y x a ). 3.二阶常微分方程0)()4341()(1)(2'''=-++x y xx y x x y 的任一特解=y ( )21(23x J 或0).4.二维拉普拉斯方程的基本解为( r1ln ),三维拉普拉斯方程的基本解为( r1).5.已知x x x J x x x J cos 2)( ,sin 2)(2121ππ==-,利用Bessel 函数递推公式求=)(23x J ()s i n )(1(2)cos sin 1(223xxdx d x x x x x x ππ-=- ).三、(15分)用分离变量法求解如下定解问题22222000, 0, 00, 0, t 0, 0, 0x .x x l t t t u ua x l t t x uu x x u x ul ====⎧∂∂-=<<>⎪∂∂⎪∂∂⎪==>⎨∂∂⎪⎪==≤≤⎪⎩解:第一步:分离变量 (4分) 设)()(),(t T x X t x u =,代入方程可得)()()()()()()()(2''''''2''x T a x T x X x X t T x X a t T x X =⇒= 此式中,左端是关于x 的函数,右端是关于t 的函数。
因此,左端和右端相等,就必须等于一个与t x ,无关的常数。
设为λ-,则有⎪⎩⎪⎨⎧=+=+⇒-==.0)()(,0)()()()()()( ''2''2''''x X x X t T a t T x T a x T x X x X λλλ将),(t x u 代入边界条件得,0)()()()0(''==t T l X t T X从而可得特征值问题,0)()0(0)()(''''===+l X X x X x X λ第二步:求解特征值问题 (4分)1) 若0<λ,方程的通解形式为xxBe Aex X λλ---+=)(由定解条件知0,0==B A ,从而0)(≡x X ,不符合要求。
2) 若0=λ,方程的通解形式为B Ax x X +=)(由边界条件知,0=A ,从而B x X ≡)(。
3) 若0>λ,方程的通解形式为x B x A x X λλsin cos )(+=代入边界条件得⎪⎩⎪⎨⎧===⇒⎩⎨⎧==,...3,2,1 ,)(,00sin ,02n l n B l A B πλλ 从而得特征值问题的一系列特征值及相应的特征函数⎪⎪⎩⎪⎪⎨⎧====,...3,2,1 ,cos )(,...3,2,1,0 ,)(2n x l n A x X n ln n n n ππλ 第三步:求特解,并叠加出一般解 (3分) 求解了特征值问题后,将每特征值n λ代入函数)(t T 满足的方程可得出相应的解,...3,2,1 ,sin cos )()('''0'00=+=+=n at ln D at l n C t T tD C t T n nn ππ 因此,也就得到满足偏微分方程和边界条件的一般解,cos )sin cos(),(100∑∞=+++=n n n x ln at l n D at l n C t D C t x u πππ 第四步:确定叠加系数 (4分)由初始条件可知0cos cos1010=+=+∑∑∞=∞=n nn n x ln l a n D D x x ln C C πππ可得,2,1,0,03,2,1],1)1[(22220===--==n D n n lC lC n n n π故原方程的解为.)12(cos )12(cos )12(42 cos cos ]1)1[(22),(022122∑∑∞=∞=+++-=--+=n n n x ln l at n n l l xl n l at n n l l t x u ππππππ四、(10分)用行波法求解下列问题⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<∞->=∂∂-∂∂∂+∂∂==.,0 ,3 , ,0 ,03202022222x y u x u x y y uy x u xu y y 解:其特征方程为0)(32)(22=--dx dxdy dy (2分) 由此可得特征线方程为dy x c y x =+=-3 (2分)因此作变换⎩⎨⎧+=-=y x y x μξ,3 (2分) 从而可得ηξ∂∂∂u2=0 从而有)()3(),(y x G y x F y x u ++-=由初始条件可得)()3(3)()3(''2=+-=+x G x F x x G x F所以有C x G x F =-)(3)3(,从而可得Cxx G Cx x F +=-=43)(49)3(22(2分) 故而可知223)()3(),(y x y x G y x F y x u +=++-=。
(2分)五、(10分)用Laplace 变换法求解定解问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧<<=>==><<∂∂=∂∂===.20 ,sin ,0 ,0,0 ,20 ,02022x x u t u u t x x ut u t x x π 解:由题意知,需关于时间t 作拉普拉斯变换,记)},({),(t x u L s x U =,对方程做拉氏变换可得⎪⎩⎪⎨⎧==-=-==,,sin 2022x x U Ux sU dxUd π (4分) 用系数待定法很容易解求上常微分方程的一特解20sin ππ+=s xU (2分) 又上常微分方程相应的齐次问题的通解为xs xs Be AeU -+=1所以,上常微分方程的通解为2sin ππ+++=-s xBe AeU xs xs , (2分) 再由定解条件可得A =B =0,从而2sin ππ+=s xU 故而,原定解问题的解.sin }sin {}{),(2211x e s x L U L t x u tππππ---=+==。
(2分)六、(15分)用格林函数法求解下定解问题222200, y 0,() , .y u ux y u f x x =⎧∂∂+=<⎪∂∂⎨⎪=-∞<<+∞⎩解:设),(000y x M 为下半平面中任意一点。
已知二维调和函数的积分表达式为dS nur r n M u M u MM MM )1ln )1(ln )((21)(000∂∂-∂∂-=⎰Γπ (2分) 设v 为调和函数,则由第二格林公式知0)()(22=∂∂-∂∂=∇-∇⎰⎰⎰ΓΩdS nuv n v u d u v v u σ (2)(1)+(2)可得dS n u v r dS r n n v M u M u MM MM ])1ln 21(])1(ln 21)(([)(000⎰⎰ΓΓ∂∂-+∂∂-∂∂=ππ (2分) 若能求得v 满足⎪⎪⎩⎪⎪⎨⎧=<=∇==00201ln 210,0y MM y rv y v π (3)则定义格林函数v r M M G MM -=1ln 21),(0π,则有 dS nGM u M u ⎰Γ∂∂-=)()(0 (2分) 由电象法可知,),(001y x M -为),(000y x M 的象点,故可取11ln21MM r v π=(2分) 显然其满足(3)。
从而可得格林函数))()()()()()((21)1ln 1(ln 211ln 211ln 21),(202002020001010y y x x y y y y x x y y r r y y G n G r r M M G MM MM MM MM ++-+-+-+---=-∂∂=∂∂=∂∂-=ππππ (5分) 故而ξξξπd f y x y dS n G M u M u ⎰⎰+∞∞-Γ+--=∂∂-=)()(1)()(202000 (2分)七、(10分)将函数()f x x =在区间[0,1]上展成Bessel 函数系(1)11{()}m m J x μ∞=的级数,其中(1)m μ为Bessel 函数1()J x 的正零点,1,2,m = . 解:设()f x x =有如下级数形式∑∞==1)1(1)()(i i i x J A x f μ (1分)下面利用Bessel 函数的正交性确定系数i A易知,对上等式两边同时乘以)()1(1x xJ i μ并关于x 在[0,1]内积分可得⎰=10)1(12)1(22)()(2dx x J x J A i i i μμ (2分)再由递推公式)()]([1222x J x x J x dxd =,可得 dx x J x x J x d i ii )(])([)1(12)1()1(22μμμ= (2分)故而)(2)(2)()(2)()(2)1(0)1()1(2)1(1)1()1(22)1(2210)1(12)1(22i i i i i i i i i i J J x J x J dx x J x J A μμμμμμμμμ-====⎰ (3分) 这里用到递推公式)(2)()(11x J xnx J x J n n n =++-。