第七章 断裂韧性
- 格式:ppt
- 大小:713.50 KB
- 文档页数:46
断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力C小于许用应力[C ],即c <[C ], 就被认为是安全的了。
而[c ],对塑性材料[c ]= c s/n,对脆性材料[c ]= c b/n,其中n 为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith) 断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,弓I力和位移的关系如以正弦函数关系表示,当位移达到Xm时吸力最大以(T c表示, 拉力超过此值以后,引力逐图3-1原子间结合力随距离变化示意图渐减小,在位移达到正弦周期之半2时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
材料断裂行为及断裂韧性研究材料的断裂行为及其断裂韧性一直以来都是材料科学与工程中一个重要的研究领域。
断裂韧性是评估材料抵抗断裂的能力,也是材料在工程实际应用中的重要指标之一。
本文将就材料断裂行为和断裂韧性的研究进行探讨。
首先,我们来了解一下材料的断裂行为。
在材料中,断裂是指在外力作用下,材料出现明显的破裂现象,从而失去原有的连续性和完整性。
断裂行为常常与材料的内部结构和力学性能有关。
当外力作用超过材料的承载能力时,就会发生断裂现象。
而断裂行为的研究主要关注材料的断裂模式、断裂位置以及断裂扩展路径等。
材料的断裂行为与其力学性能密切相关。
在拉伸断裂实验中,材料的断裂行为可以通过观察断裂面的形貌来了解。
常见的断裂模式有静态断裂和动态断裂。
在静态断裂过程中,材料受到外力作用后,断裂面呈现出明显的剪切变形和拉伸形变;而在动态断裂过程中,由于外力作用速度较快,断裂面的形貌呈现出撕裂和破碎的特征。
然而,材料的断裂行为并不仅仅局限于静态和动态断裂模式。
有些材料在受到外力作用时会经历一系列复杂的断裂行为,如微裂纹扩展、局部韧性失效等。
这些断裂行为的研究对于提高材料的抗断裂能力和提前预警断裂现象具有重要意义。
接下来,我们来聚焦于断裂韧性的研究。
断裂韧性是评估材料抗断裂能力的指标之一,也是描述材料在工程应用中是否会发生脆性断裂的重要参数。
一般来说,韧性高的材料能够在受到外力作用后延迟发生破裂,并能够吸收较多的能量。
这种类型的材料被广泛应用于机械结构和工程材料中,以提高工程结构的可靠性和安全性。
断裂韧性的研究方法多种多样,其中最常用的一种方法是断裂韧性试验。
断裂韧性试验主要通过测量材料的断裂前后应力应变曲线来评估材料的韧性。
常见的试验方法包括缺口拉伸试验、冲击试验和剪切试验等。
通过这些试验,可以得到材料的断裂韧性指标,如断裂延伸率、断裂韧性断面积等。
除了试验方法外,断裂韧性也可以通过数值模拟方法进行研究。
数值模拟能够模拟材料受力过程中的断裂行为,并通过计算机程序得到材料的断裂韧性参数。
材料的断裂韧性研究断裂韧性是材料性能中的重要指标之一,它描述了材料在受力过程中抵抗断裂的能力。
随着科技的进步和工程领域对材料性能要求的提升,对材料的断裂韧性研究引起了广泛关注。
本文将介绍材料的断裂韧性的含义、重要性以及常用的研究方法。
一、断裂韧性的含义断裂韧性是材料在受力条件下抵抗断裂的能力,是材料强度和韧性的综合指标。
一个材料具有较高的断裂韧性通常意味着它能承受更大的载荷、更大的变形以及更高的应力集中。
断裂韧性的高低直接关系到材料在使用中的可靠性和安全性。
二、断裂韧性的重要性1. 工程设计:在工程设计中,材料的断裂韧性是评估材料是否能够承受外部冲击和载荷的重要依据。
只有具备较高的断裂韧性的材料才能确保工程结构的安全可靠。
2. 材料改进:通过研究和改进材料的断裂韧性,可以使材料在受力条件下不易发生断裂或变形。
这对于提高材料的使用寿命、减少材料的损耗具有重要意义。
三、断裂韧性的研究方法1. 断裂韧性测试:常用的断裂韧性测试方法包括冲击试验、拉伸试验和缺口试验等。
通过对材料在不同应力条件下的断裂性能进行测试,可以得到材料的断裂应力、断裂韧性等相关参数。
2. 断裂韧性的改进方法:研究材料的断裂韧性还可以通过改变材料的制备工艺、添加合适的增强相等方法进行。
例如,在金属材料中,通过精细调控晶界数量和晶粒尺寸,可以显著提高材料的断裂韧性。
3. 断裂韧性模型的建立:建立准确的断裂韧性模型是研究材料断裂行为的重要手段之一。
通过理论研究和数值模拟,可以预测材料在受力条件下的断裂性能,并指导材料设计和工程应用。
四、结语材料的断裂韧性是评估材料性能的重要指标之一,对保证工程结构的安全可靠以及提高材料使用寿命具有重要意义。
通过采用合适的断裂韧性测试方法、改进材料制备工艺以及建立准确的断裂韧性模型,可以为材料的研发和应用提供有效的参考和指导。
通过持续的研究和探索,我们可以进一步提高材料的断裂韧性,并不断推动工程科技的发展。
结构力学中的断裂韧性分析在结构力学中,断裂韧性分析是一个重要的研究领域。
它涉及到材料在受力作用下的破裂行为以及材料抵抗断裂的能力。
断裂韧性是评价材料抵抗断裂的重要指标,它直接关系到材料的可靠性和安全性。
本文将介绍断裂韧性的概念、分析方法和应用领域。
一、断裂韧性的概念断裂韧性是指材料在受力作用下抵抗破裂的能力。
通常用断裂韧性指标KIC来衡量。
断裂韧性分析的核心是破裂力学理论,其中断裂力学理论主要研究材料在应力场中的破裂行为。
在断裂韧性分析中,常用的方法有线弹性断裂力学、贝尔式断裂力学和能量法等。
二、断裂韧性的分析方法1. 线弹性断裂力学线弹性断裂力学是断裂韧性分析中应用最广泛的方法之一。
该方法通过在裂纹前端应力场的计算和分析来确定断裂韧性指标KIC。
线弹性断裂力学的基本假设是材料在断裂前是线弹性的,且裂纹尺寸相对结构尺寸较小。
2. 贝尔式断裂力学贝尔式断裂力学是一种近似解析方法,适用于解决复杂结构中的断裂韧性问题。
该方法可以解决复杂的应力场问题,并提供了估计断裂韧性的方法。
3. 能量法能量法是一种常用的近似方法,它通过分析系统的弹性和塑性能量来评估结构的断裂韧性。
能量法常用于工程结构中的断裂韧性分析,比如断裂的扩展路径和破坏机制等。
三、断裂韧性的应用领域断裂韧性的分析在工程领域具有广泛的应用价值。
以下是一些常见的应用领域:1. 材料选型与设计。
通过断裂韧性分析,可以评估不同材料的抗断裂性能,为材料的选择和设计提供依据。
2. 结构安全评估。
断裂韧性分析可以用于评估结构在受力情况下的破裂风险,为结构的安全性评估提供依据。
3. 断裂韧性改善。
通过分析和改善材料的断裂韧性,可以提高结构的耐用性和可靠性,减少破裂风险。
4. 破损检测和评估。
断裂韧性分析可以用于破损的检测和评估,提供定量的破损评估指标。
综上所述,断裂韧性分析在结构力学中起着重要的作用。
通过对材料破裂行为的研究和分析,可以评估材料的抗断裂能力,并为工程结构的设计和安全评估提供依据。
断裂韧性编辑词条参与讨论所属分类:冶金术语化学各种化学名称机械机械工程机械零件金属加工表征材料阻止裂纹扩展的能力,是度量材料的韧性好坏的一个定量指标。
在加载速度和温度一定的条件下,对某种材料而言它是一个常数。
当裂纹尺寸一定时,材料的断裂韧性值愈大,其裂纹失稳扩展所需的临界应力就愈大;当给定外力时,若材料的断裂韧性值愈高,其裂纹达到失稳扩展时的临界尺寸就愈大。
目录∙• 概述∙• 规律与测试∙• 论文∙• 参考资料断裂韧性-概述构件经过大量变形后发生的断裂。
主要特征是发生了明显的宏观塑性变形(不包括压缩失稳),如杆件的过量伸长或弯曲、容器的过量鼓胀。
断口的尺寸(如直径、厚度)比原始尺寸也明显变化。
韧性断裂的断口一般能寻见纤维区和剪唇区。
断口尺度较大时还出现放射形及人字形山脊状花纹。
形成纤维区断口的断裂机制一般是“微孔聚合”,在电子显微镜中呈韧窝状花样。
韧性断裂一般由超载引起,而材料的塑性与韧性又很优良。
纤维区一般是断裂源区。
剪切唇总是在断口的边缘,并与构件的表面约成45°夹角,是在平面应力受力条件下发生剪切撕裂而形成的断口,剪切唇表面较光滑,断裂时的名义应力高于材料的屈服强度。
断裂韧性-规律与测试随着概率断裂力学工程应用的逐步深入,材料断裂韧性分散性问题,已成为影响含缺陷结构概率安全评定的关键因素之一。
合理解决材料断裂韧性分散性是一个十分复杂的问题。
一方面巾于冶金过程等方面的偏差,造成材料断裂韧性的分散性;另一方面由于试样几何尺寸、裂纹长度测量等试验误差,亦会导致测试结果的不确定性,还有不同测试规范和标准对测试数据的处理也会导致测试结果的不确定性。
若缺陷位厂焊接部位,影响因素将更加复杂。
除上述原因外,还会有诸如焊接上艺、焊材、以及不同操作人员及焊后热处理等因素导致断裂韧性测试结果分散性更加严重。
尽管分析和解决其分散性问题如此复杂,十分困难,然而,在对含缺陷焊接结构(尤其是工业锅炉、压力容器和管道)进行安全评定时,重点就是焊接接头区而不是母材。