[原创]2011届艺术类考生数学复习单元训练卷(8)---立体几何
- 格式:doc
- 大小:523.50 KB
- 文档页数:9
高考数学模拟试题:立体几何初步△注意事项:1.填写答题卡请使用2B铅笔填涂2.提前5分钟收答题卡一、选择题(本大题共10小题)1.(2010海淀区期末文)是不重合的平面,下列命题是真命题的是()A.若B.若C.若 D.若【答案解析】C2.(2010山东苍山期末文)设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②,则;③若,,则;④,则。
其中正确命题的个数是A.0 B.1 C.2.D.3【答案解析】答案:C3.(2010青岛一模文)已知直线⊥平面,直线平面,下面有三个命题:①∥⊥;②⊥∥;③∥⊥;则真命题的个数为A. B.C.D.【答案解析】答案:C4.(2010朝阳区统考)已知是两条不同直线,是两个不同平面,下列命题中的真命题是 ( ) A .如果,那么B .如果,那么C .如果共面,那么∥D .如果∥,,,那么【答案解析】C5.(2010丰台区二模理)如图,在体积为V 1的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为所在边的中点,正方体的外接球的体积为V ,有如下四个命题;①BD 1=AB 3 ②BD 1与底面ABCD 所成角是45°; ③π231=V V ; ④MN//平面D 1BC 。
其中正确命题的个数为( ) A .4 B .3C .2D .1【答案解析】B6.(2010西城区抽样)已知一个平面,那么对于空间内的任意一条直线a ,在平面内一定存在一条直线b ,使得a 与b ( )A. 平行B. 相交C. 异面D. 垂直 【答案解析】D7.(2010湖北五市联考文)设a , b 为两条直线,α,β为两个平面,下列四个命题中,正确的命题是A .若a , b 与α所成角相等,则//a bB .若//,//,//a b αβαβ,则//a bC .若,,//⊂⊂a b a b αβ,则//αβD .若,,⊥⊥⊥a b αβαβ,则⊥a b【答案解析】D8.(2010海淀区二模理)在棱长均为2的正四棱锥P ABCD -中,点E 为PC 的中点,则下列命题正确的是 ( )E DCBAP(A )BE ∥平面PAD ,且BE 到平面PAD 的距离为3(B )BE ∥平面PAD ,且BE 到平面PAD 的距离为26(C )BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30︒ (D )BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30︒ 【答案解析】D9.(2010莒南一中阶段性测评文)对两条不相交的空间直线a 、b ,必存在平面,使得 ( )A .B .C .D .【答案解析】答案:B10. (2010山东省实验中学综合测试文)已知直线,有下面四个命题: (1); (2);(3); (4).其中正确的命题是( )A .(1)与(2)B .(1) 与 (3)C .(2) 与 (4)D .(3) 与 (4)【答案解析】答案:B二 、填空题(本大题共2小题,)11.(2010大丰调研)给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题:①若;②若m 、l 是异面直线,;③若;④若其中为真命题的是▲ . 【答案解析】答案:①②④12.(2010淄博一模)已知是不同的直线,是不重合的平面,给出下列命题:①若m平行与平面内的无数条直线②若③若④若上面命题中,真命题的序号是(写出所有真命题的序号)【答案解析】答案:①③④三、解答题(本大题共4小题,)13.(2010日照质检文)(12分)如图,菱形ABCD所在平面与矩形ACEF所在平面互相垂直,已知BD=2AF,且点M是线段EF的中点。
(名师选题)(精选试题附答案)高中数学第八章立体几何初步考点精题训练单选题1、设α、β为两个不重合的平面,能使α//β成立的是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α内有无数个点到β的距离相等D.α、β垂直于同一平面答案:B分析:应用几何体特例,如立方体可排除相关选项;而由面面平行的判定可知B正确应用立方体,如下图所示:选项A:α内有无数条直线可平行于l,即有无数条直线与β平行,但如上图α与β可相交于l,故A不一定能使α//β成立;选项B:由面面平行的判定,可知B正确选项C:在α内有一条直线平行于l,则在α内有无数个点到β的距离相等,但如上图α与β可相交于l,故C 不一定能使α//β成立;选项D:如图α⊥γ,β⊥γ,但α与β可相交于l,故D不一定能使α//β成立;故选:B小提示:本题考查了面面平行的判定,应用特殊与一般的思想排除选项,属于简单题2、“迪拜世博会”于2021年10月1日至2022年3月31日在迪拜举行,中国馆建筑名为“华夏之光”,外观取型中国传统灯笼,寓意希望和光明.它的形状可视为内外两个同轴圆柱,某爱好者制作了一个中国馆的实心模型,已知模型内层底面直径为12cm ,外层底面直径为16cm ,且内外层圆柱的底面圆周都在一个直径为20cm 的球面上.此模型的体积为( )A .304πcm 3B .840πcm 3C .912πcm 3D .984πcm 3答案:C分析:求出内层圆柱,外层圆柱的高,该模型的体积等于外层圆柱的体积与上下面内层圆柱高出的几何体的体积之和,计算可得解.如图,该模型内层圆柱底面直径为12cm ,且其底面圆周在一个直径为20cm 的球面上,可知内层圆柱的高ℎ1=2√(202)2−(122)2=16同理,该模型外层圆柱底面直径为16cm ,且其底面圆周在一个直径为20cm 的球面上,可知外层圆柱的高ℎ2=2√(202)2−(162)2=12此模型的体积为V =π(162)2×12+π(122)2×(16−12)=912π 故选:C3、如图已知正方体ABCD −A 1B 1C 1D 1,M ,N 分别是A 1D ,D 1B 的中点,则( )A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD −A 1B 1C 1D 1中,AD 1⊥A 1D ,AB ⊥平面AA 1D 1D ,所以AB ⊥A 1D ,AD 1∩AB =A ,所以A 1D ⊥平面ABD 1,D 1B ⊂平面ABD 1,所以A 1D ⊥D 1B ,且直线A 1D,D 1B 是异面直线,所以选项C 错误,选项A 正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A .√22B .1C .√2D .2√2答案:C分析:计算出V 方盖差,V ,即可得出结论. 由题意,V 方盖差=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3,所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×(√2r 2)=√26r 3, ∴ V 方盖差V 正=13r 3√2r 36=√2,故选:C .5、过半径为4的球O 表面上一点M 作球O 的截面,若OM 与该截面所成的角是30°,则O 到该截面的距离是( )A .4B .2√3C .2D .1答案:C分析:作出球的截面图,根据几何性质计算,可得答案.作出球的截面图如图:设A为截面圆的圆心,O为球心,则OA⊥截面,AM在截面内,即有OA⊥AM,=2 ,故∠OMA=30∘,所以OA=4×12即O到该截面的距离是2,故选:C6、设α,β是两个不同平面,m,n是两条直线,下列命题中正确的是()A.如果m⊥n,m⊥α,n//β,那么α⊥βB.如果m⊥n,m⊥α,n⊥β,那么α//βC.如果m//n,m⊥α,n⊥β,那么α//βD.如果α//β,m与α所成的角和n与β所成的角相等,那么m//n答案:C分析:A.由m⊥n,m⊥α,得到n//α或n⊂α,再利用平行于同一直线的两平面的位置关系判断;B. 由m⊥n,m⊥α,得到n//α或n⊂α,再利用面面垂直的判定定理判断; C. 由m//n,m⊥α,得到n⊥α,再利用垂直于同一直线的两平面平行判断;D.利用空间直线的位置关系判断.A.因为m⊥n,m⊥α,所以n//α或n⊂α,又n//β,则α,β位置不确定,故错误;B.因为m⊥n,m⊥α,所以n//α或n⊂α,又n⊥β,所以α⊥β,故错误;C. 因为m//n,m⊥α,所以n⊥α,又n⊥β,所以α//β,故正确;D.如果α//β,m与α所成的角和n与β所成的角相等,那么m//n,相交或异面,故错误.故选:C7、如图,“蘑菇”形状的几何体是由半个球体和一个圆柱体组成,球的半径为2,圆柱的底面半径为1,高为3,则该几何体的表面积为()D.26πA.18πB.20πC.22π3答案:A分析:由题意可知该几何体的体积是由半球的表面积加上圆柱的侧面积,再加上圆的面积即可解:由题意得,球的半径R=2,圆柱的底面半径r=1,高ℎ=3,则该几何体的表面积为S=2πR2+πR2+2πrℎ=8π+4π+2π×1×3=18π故选:A.8、如图,在三棱柱ABC−A1B1C1中,M,N分别为棱AA1,BB1的中点,过MN作一平面分别交底面三角形ABC 的边BC,AC于点E,F,则()A.MF//NEB.四边形MNEF为梯形C.四边形MNEF为平行四边形D.A1B1//NE答案:B解析:由已知条件及线面平行的性质可得MN∥EF且EF≠MN,可得四边形MNEF为梯形,可得答案.解:∵在▱AA1B1B中,AM=MA1,BN=NB1,∴AM∥BN,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB.显然在ΔABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形.故选:B.小提示:本题主要考查直线与平面平行的性质定理,需注意其灵活运用,属于基础题型.9、设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中的真命题为()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊥α,则m∥nC.若m∥α,m∥β,则α∥βD.若m⊥α,α⊥β,则m∥β答案:B分析:在正方体中取直线和平面可排除ACD,由线面垂直的性质可得B正确.在正方体ABCD−EFGH中,记底面ABCD为α,EF为m,EH为n,显然A不正确;记底面ABCD为α,EF为m,平面CDHG为β,故排除C;记底面ABCD为α,BF为m,平面ABFE为β,可排除D;由线面垂直的性质可知B正确.故选:B10、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解.由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.填空题11、早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36°按3计算,则5该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.答案:55√336π分析:可得正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R,正五边形的外接圆半径为r,正二十面体的棱长为l,可得r=5l6,R=3√1111l,即可表示出外接球的表面积和正二十面体的表面积,得出答案.由图知正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R,正五边形的外接圆半径为r,正二十面体的棱长为l,则l2r=sin36°=35,得r=5l6,所以正五棱锥的顶点到底面的距离是ℎ=√l2−r2=√l2−(5l6)2=√116l,所以R2=r2+(R−ℎ)2,即R2=(5l6)2+(R−√116l)2,解得R=3√1111l.所以该正二十面体的外接球表面积为S球=4πR2=4π×(3√1111l)2=36π11l2,而该正二十面体的表面积是S正二十面体=20×12×l×l×sin60°=5√3l2,所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于55√336π.所以答案是:55√336π.小提示:本题考查几何体的外接球问题,解题的关键是将正二十面体的外接球等价于上方正五棱锥的外接球,表示出半径.12、已知三个互不重合的平面α,β,γ,α∩β=m,n⊂γ,且直线m、n不重合,由下列三个条件:①m//γ,n⊂β;②m//γ,n//β;③m⊂γ,n//β.能推得m//n的条件是________.答案:①③分析:利用空间中直线与平面的位置关系,作图分析即可求解对于①m//γ,n⊂β成立,证明如下:证明如下:∵α∩β=m,∴m⊂β,∵n⊂γ,n⊂β,∴β∩γ=n,又m//γ,∴m//n;对于②m//γ,n//β;③m⊂γ,n//β,不成立,如图此时n和m是异面;对于③m⊂γ,n//β,成立,证明如下:证明如下:∵α∩β=m,n⊂γ,m⊂γ,∴m//n或m∩n=P,假设m∩n=P,则P∈n,P∈m,又α∩β=m,∴P∈β,这与n//β相矛盾,因此m∩n=P不成立,故m//n.所以答案是:①③.13、如图,平面OAB⊥平面α,OA⊂α,OA=AB,∠OAB=120°.平面α内一点P满足PA⊥PB,记直线OP与平面OAB所成角为θ,则tanθ的最大值是_________.答案:√612分析:作出图形,找出直线OP与平面OAB所成的角θ,证出PA⊥平面PBH,得出PA⊥PH,得出点P的轨迹就是平面α内以线段AH为直径的圆(A点除外),转化成与圆有关的最值问题,即可求出结果.如图,过点B作BH⊥OA,交OA的延长线于点H,连接PH,OP,取AH的中点为E,连接PE,过点P作PF⊥OA,垂足为F,∵平面OAB⊥平面α,且平面OAB∩平面α=OA,BH⊂平面OAB,PF⊂α,∴BH⊥α,PF⊥平面OAB,∴OP在平面OAB上的射影就是直线OA,故∠AOP就是直线OP与平面OAB所成的角θ,即∠AOP=θ,∵AP⊂α,∴AP⊥BH,又∵PA⊥PB,PB∩BH=B,PB,BH⊂平面PBH,∴PA ⊥平面PBH ,∵PH ⊂平面PBH ,∴PA ⊥PH ,故点P 的轨迹就是平面α内以线段AH 为直径的圆(A 点除外),∵OA =AB ,且∠OAB =120∘,∴∠BAH =60∘,设OA =a(a >0),则AB =a ,从而AH =AB ⋅cos 60∘=a 2,∴PE =12AH =a 4,如图,当且仅当PE ⊥OP ,即OP 是圆E 的切线时,角θ有最大值,tan θ有最大值,tan θ取得最大值为:PE OP =√OE 2−PE 2=a 4√(a+a 4)−(a 4)=√612. 所以答案是:√612.14、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.∵V =13π62⋅ℎ=30π∴ℎ=52 ∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π.所以答案是:39π.15、已知P,Q,R,S是相应长方体或空间四边形的边或对角线的中点,则这四点必定共面的是______.(写序号)答案:①③④分析:利用平面的基本性质及推论,逐一检验即可.①中,∵PR//QS,∴P,Q,R,S四点共面;②中,PR和QS是异面直线,故四点不共面;③中,∵PS//QR,∴P,Q,R,S四点共面;④中,∵PQ//RS//BC,∴P,Q,R,S四点共面;所以答案是:①③④解答题16、如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠ABC=90°,PA=2,AC=2√2.(1)求证:平面PBC⊥平面PAB;(2)若二面角P﹣BC﹣A的大小为45°,过点A作AN⊥PC于N,求直线AN与平面PBC所成角的大小.答案:(1)证明见解析(2)60°分析:(1)根据线线垂直得BC⊥平面PAB,再由面面垂直的判定定理可证得结论,(2)由题意求出AB,BC的长,过点A作AM⊥PB于M,连接MN,则∠ANM为直线AN与平面PBC所成的角,然后在Rt△ANM中可求得结果(1)证明:因为PA⊥底面ABC,BC⊂平面ABC,所以PA⊥BC,因为∠ABC=90°,所以AB⊥BC,因为PA∩AB=A,所以BC⊥平面PAB,因为BC⊂平面PBC,所以平面PBC⊥平面PAB,(2)由(1)可知BC⊥平面PAB,PB⊂平面PAB,所以BC⊥PB,因为AB⊥BC,所以∠ABP为二面角P−BC−A的平面角,所以∠ABP=45°,因为PA=2,AC=2√2,∠ABC=90°,所以AB=BC=2,过点A作AM⊥PB于M,则AM⊥平面PBC,且M为PB的中点,连接MN,则∠ANM为直线AN与平面PBC所成的角,在Rt△PAB中,AM=12PB=12×2√2=√2,在Rt△PAC中,PC=√PA2+AC2=√4+8=2√3,则AN=PA⋅ACPC =√22√3=2√63,在Rt△ANM中,sin∠ANM=AMAN =√22√63=√32,因为0°<∠ANM<180°,所以∠ANM=60°,所以直线AN与平面PBC所成角的大小为60°17、所有棱长均相等的三棱锥称为正四面体,如图,在正四面体A—BCD中,求证:AB⊥CD.答案:见解析分析:取CD的中点为M,连接AM,BM,根据线面垂直可得AB⊥CD.取CD的中点为M,连接AM,BM,因为四面体A−BCD为正四面体,故△ACD为等边三角形,故AM⊥CD,同理BM⊥CD,而AM∩BM=M,故CD⊥平面ABM,因为AB⊂平面ABM,故CD⊥AB.18、如图,G是正方体ABCD−A1B1C1D1的棱的DD1延长线上的一点,E,F是棱AB,BC的中点,试分别画出:(1)过点G,A,C的平面与正方体表面的交线;(2)过点E,F,D1的平面与正方体表面的交线.答案:(1)答案见解析(2)答案见解析分析:(1)连接AG,交A1D1于点H,连接GC,交C1D1于点I,从而可得到过点A,C,G的平面为平面ACIH;(2)根据基本性质三:若两个不重合平面有一个公共点,那么它们有且只有一条过该点的公共直线,即可作出平面与正方体表面的交线;(1)连接AG,交A1D1于点H,连接GC,交C1D1于点I,连接HI,AC,则过点A,C,G的平面为平面ACIH,过点G,A,C的平面与正方体表面的交线分别为:AH,HI,IC,AC.(2)延长EF,交DC的延长线于点Q,延长FE,交DA的延长线于点P,连接D1P交AA1于点O,连接D1Q交CC1于点R,连接OE,EF,FR,则过点E,F,D1的平面为平面EFRD1O,过点E,F,D1的平面与正方体表面的交线分别为:D1O,OE,EF,FR,RD1.19、四面体ABCD如图所示,过棱AB的中点E作平行于AD,BC的平面,分别交四面体的棱BD,DC,CA于点F,G,H.证明:E、F、G、H四点共面且四边形EFGH是平行四边形.答案:证明见解析分析:根据线面平行的性质定理,分别证得EH∥BC,FG∥BC,则得EH∥FG,从而可证得E、F、G、H四点共面,同理可证得EF∥HG,再根据平行四边形的判定定理可得结论因为BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,所以BC∥FG,BC∥EH,所以EH∥FG,所以E、F、G、H四点共面,同理可证得EF∥AD,HG∥AD,所以EF∥HG,所以四边形EFGH是平行四边形.。
第八单元 立体几何初步A 卷 基础过关必刷卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于直线m 、n 与平面α、β,有以下四个命题: ①若//m α,βn//且//αβ,则//m n ; ②若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③若m α⊥,βn//且//αβ,则m n ⊥; ④若//m α,n β⊥且αβ⊥,则//m n . 其中真命题的序号是( ) A .①②B .③④C .①④D .②③2.某几何体的三视图如图所示,其中俯视图中的半圆的直径为2,则该几何体的表面积为( )A .32π+B .42π+C .33π+D .43π+3.已知点,,,A B C D 在球O 的表面上,AB ⊥平面,BCD BC CD ⊥,若2,4,AB BC AC==与平面ABD 所成角的正弦值为105,则球O 表面上的动点P 到平面ACD 距离的最大值为( ) A .2B .3C .4D .54.菱形ABCD 中,2AB =,120DAB ∠=︒,将CBD 沿BD 折起,C 点变为E 点,当四面体E ABD -的体积最大时,四面体E ABD -的外接球的面积为( )A .20πB .40πC .60πD .80π5.如图,已知等边ABC 与等边ABD △所在平面成锐二面角3π,E ,F 分别为AB ,AD 中点,则异面直线EF 与CD 所成角的余弦值为( )A .233B .32C .34D .4336.棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( ) A .22323π-B .4812π-C .4283π-D .13203π-7.如图,一个四棱柱形容器中盛有水,在底面ABCD 中,//AB CD ,3AB =,1CD =,侧棱14AA =,若侧面11AA B B 水平放置时,水面恰好过1111,,,AD BC B C A D 的中点,那么当底面ABCD 水平放置时,水面高为( )A .2B .52C .3D .728.某中学开展劳动实习,学习加工制作食品包装盒.现有一张边长为6的正六边形硬纸片,如图所示,裁掉阴影部分,然后按虚线处折成高为3的正六棱柱无盖包装盒,则此包装盒的体积为( )A.144B.72C.36D.24二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.正方体ABCDA1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为98D.点C与点G到平面AEF的距离相等10.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时问称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A .沙漏中的细沙体积为31024cm 81πB .沙漏的体积是3128cm πC .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是1565秒()3.14π≈11.如图,圆柱的轴截面是四边形ABCD ,E 是底面圆周上异于,A B 的一点,则下列结论中正确的是( )A .AE CE ⊥B .BE DE ⊥C .DE ⊥平面CEBD .平面ADE ⊥平面BCE12.如图,在棱长均相等的四棱锥P ABCD -中,O 为底面正方形的中心,M ,N 分别为侧棱PA ,PB 的中点,有下列结论正确的有:A .PD ∥平面OMNB .平面PCD ∥平面OMNC .直线PD 与直线MN 所成角的大小为90 D .ON PB ⊥三、填空题:本题共4小题,每小题5分,共20分.13.已知球O的半径为4,3点,,,A B C D均在球面上,若ABC为等边三角形,且其面积为3,则三棱锥D ABC-的最大体积是___________.14.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.15.如图,过球的一条半径OP的中点1O,作垂直于该半径的平面,所得截面圆的面积与球的表面积之比为________.16.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确结论的个数为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,在Rt△AOB中,AO=OB=2,△AOC通过△AOB以OA为轴顺时针旋转120°得到(∠BOC =120°).点D为斜边AB上一点,点M为线段BC上一点,且CM=OM.(1)证明:OM 平面AOB;(2)当D为线段AB中点时,求多面体OA CM D的体积.18.如图:直角梯形ABCD中,AD//BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF// AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起成如图的位置,使AD=AE.(1)求证:BC//平面DAE;(2)求四棱锥D﹣AEFB的体积;(3)求面CBD 与面DAE 所成锐二面角的余弦值.19.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ,说明理由.20.如图,在四棱锥M ABCD -中,四边形ABCD 为梯形,90ABC BAD ∠=∠=,//BC AD ,22AD AB BC ==(1)若E 为MA 中点,证明:BE //面MCD(2)若点M 在面ABCD 上投影在线段AC 上,1AB =,证明:CD ⊥面MAC .21.如图,四棱锥P ABCD -的底面是边长为1的正方形,PA ⊥底面ABCD ,,E F 分别为,AB PC 的中点.(1)求证:EF //平面PAD ;(2)若2PA =,试问在线段EF 上是否存在点Q ,使得二面角 Q AP D --的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.22.已知圆锥的侧面展开图为半圆,母线长为23.(1)求圆锥的底面积;(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于直线m 、n 与平面α、β,有以下四个命题: ①若//m α,βn//且//αβ,则//m n ; ②若m α⊥,n β⊥且αβ⊥,则m n ⊥; ③若m α⊥,βn//且//αβ,则m n ⊥; ④若//m α,n β⊥且αβ⊥,则//m n . 其中真命题的序号是( ) A .①② B .③④C .①④D .②③【答案】D【解析】对于①,若//m α,βn//且//αβ,则m 与n 平行、相交或异面,①错误; 对于②,如下图所示:设a αβ⋂=,因为αβ⊥,在平面β内作直线l a ⊥,由面面垂直的性质定理可知l α⊥,m α⊥,//m l ∴,n β⊥,l β⊂,n l ∴⊥,因此,m n ⊥,②正确;对于③,若m α⊥,//αβ,则m β⊥, 因为βn//,过直线n 作平面γ使得a βγ=,由线面平行的性质定理可得//n a ,m β⊥,a β⊂,则m a ⊥,因此m n ⊥,③正确;对于④,若//m α,n β⊥且αβ⊥,则m 与n 平行、相交或异面,④错误. 故选:D.2.某几何体的三视图如图所示,其中俯视图中的半圆的直径为2,则该几何体的表面积为( )A .32π+B .42π+C .33π+D .43π+【答案】A【解析】这个几何体是由一个底面半径为1且高为1的半圆柱,和一个半径为1的半球的前半部分组成,所以它的下底面为半圆,面积为2π,后表面为一个矩形加半圆,面积为212π⨯+,前表面为半个圆柱侧面加14个球面,面积为1114124πππ⨯⨯+⨯⨯=,所以其表面积为32π+, 故选:A.3.已知点,,,A B C D 在球O 的表面上,AB ⊥平面,BCD BC CD ⊥,若2,4,AB BC AC==与平面ABD 所成角的正弦值为105,则球O 表面上的动点P 到平面ACD 距离的最大值为( ) A .2 B .3C .4D .5【答案】B【解析】如图,因为AB ⊥平面BCD ,BC CD ⊥,所以AD 为球的直径 由2,4AB BC ==得25AC =作CE BD ⊥,则CAE ∠即为AC 与平面ABD 所成角 所以105n 25si CE CEAC CAE ∠===,得22CE = 设CD x =由等面积法得242216x x =+,解得4x =所以22224161636AD AB BC CD =++=++=,即26R =,3R = 又平面ACD 过球心,所以P 到平面ACD 距离即为半径的长 所以P 到平面ACD 距离的最大值为3. 故选:B.4.菱形ABCD 中,2AB =,120DAB ∠=︒,将CBD 沿BD 折起,C 点变为E 点,当四面体E ABD -的体积最大时,四面体E ABD -的外接球的面积为( )A .20πB .40πC .60πD .80π【答案】A【解析】由题意,三棱锥E ABD -的底面ABD △的面积为定值,当平面EBD ⊥平面ABD 时,此时点E 到底面ABD 的距离最大,此时三棱锥E ABD -的体积取得最大值, 因为四边形ABCD 为菱形,且120DAB ∠=︒,连接AC 交BD 与点M , 可得CD CA CB ==,所以C 为ABD △的外心,过点C 作平面ABD 的垂线l ,可得l 上点到,,A B D 三点的距离相等,设l 存在点O 点,使得OE OA OB OD ===,即点O 为三棱锥E ABD -的外接球的球心, 设OC x =,可得2222()AC OC CM EM OC +=++, 即2241(1)x x +=++,解得1x =, 所以外接球的半径为2222215r AC OC =+=+=,所以外接球的表面积为2244(5)20S r πππ==⨯=. 故选:A.5.如图,已知等边ABC 与等边ABD △所在平面成锐二面角3π,E ,F 分别为AB ,AD 中点,则异面直线EF 与CD 所成角的余弦值为( )A.233B.32C .34D .433【答案】C【解析】连接CE ,DE ,等边ABC 与等边ABD △所在平面成锐二面角3π,可得3DEC π∠=,设等边ABC 与等边ABD △的边长为a , 则32DE CE a ==,即DEC 为等边三角形, 所以32DC a =, 因为E ,F 分别为AB ,AD 中点,所以//EF BD ,异面直线EF 与CD 所成角即为,BD CD 所成的角,在BCD △中,222323cos 4322a a a BDC a a⎛⎫+- ⎪⎝⎭∠==⋅. 故选:C6.棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( ) A .22323π-B .4812π-C .4283π-D .13203π-【答案】A【解析】由题可得小球在八个角不能到达的空间相当于边长为2的正方体中间挖掉一个半径为1的球的剩余部分,其体积为334421833ππ-⨯=-, 小球在12条边活动不到的空间相当于高为2,底面积为4的正四棱柱中间挖掉底面积为π,高为2的圆柱剩下的部分,且有3个,则其体积为()4223246ππ⨯-⨯=-, 则小球不能到达的空间的体积为()4228+2463233πππ⎛⎫--=- ⎪⎝⎭. 故选:A.7.如图,一个四棱柱形容器中盛有水,在底面ABCD 中,//AB CD ,3AB =,1CD =,侧棱14AA =,若侧面11AA B B 水平放置时,水面恰好过1111,,,AD BC B C A D 的中点,那么当底面ABCD 水平放置时,水面高为( )A .2B .52C .3D .72【答案】B【解析】设四棱柱的底面梯形的高为2a ,,AD BC 的中点分别为,F E ,所求的水面高为h ,则水的体积1(23)(13)2422ABEF ABCD a aV S AA S h h ++=⋅=⋅=⋅=⋅, 所以52h =, 故选:B .8.某中学开展劳动实习,学习加工制作食品包装盒.现有一张边长为6的正六边形硬纸片,如图所示,裁掉阴影部分,然后按虚线处折成高为3的正六棱柱无盖包装盒,则此包装盒的体积为( )A .144B .72C .36D .24【答案】B【解析】如图:由正六边形的每个内角为23π, 按虚线处折成高为3的正六棱柱,即3BF =,所以1tan 60BFBE ==可得正六棱柱底边边长6214AB =-⨯=, 所以正六棱柱体积:1364437222V =⨯⨯⨯⨯⨯=.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.正方体ABCD A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点.则( )A .直线D 1D 与直线AF 垂直B .直线A 1G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点C 与点G 到平面AEF 的距离相等 【答案】BC【解析】根据题意,假设直线D 1D 与直线AF 垂直,又1DD AE ⊥,,,AEAF A AE AF =⊂平面AEF ,所以1DD ⊥平面AEF ,所以1DD EF ⊥,又11//DD CC ,所以1CC EF ⊥,与4EFC π∠=矛盾,所以直线D 1D 与直线AF 不垂直,所以选项A 错误;因为A 1G ∥D 1F ,A 1G ⊄平面AEFD 1,1D F ⊂平面AEFD 1,所以A 1G ∥平面AEFD 1,故选项B 正确. 平面AEF 截正方体所得截面为等腰梯形AEFD 1,由题得该等腰梯形的上底2,2EF =下底12AD =,腰长为52,所以梯形面积为98,故选项C 正确;假设C 与G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于H ,而H 不是CG 中点,则假设不成立,故选项D 错误. 故选:BC .10.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时问称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02cm 3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为31024cm 81πB .沙漏的体积是3128cm πC .细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD .该沙漏的一个沙时大约是1565秒()3.14π≈ 【答案】AC【解析】A .根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比, 所以细沙的底面半径28433r cm =⨯=, 所以体积23121641610243339381h V r cm πππ=⋅⋅=⋅⋅=B.沙漏的体积223 11256 22483233hV h cmπππ⎛⎫=⨯⨯⨯⨯=⨯⨯⨯⨯=⎪⎝⎭;C.设细沙流入下部后的高度为1h,根据细沙体积不变可知:21 102418132hh ππ⎛⎫⎛⎫=⨯⨯⎪⎪⎪⎝⎭⎝⎭,所以11102416, 2.4813h h cmππ=≈所以;D.因为细沙的体积为3102481cmπ,沙漏每秒钟漏下30.02cm的沙,所以一个沙时为:1024810.02π1024 3.1450198581⨯=⨯≈秒.故选:AC.11.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于,A B的一点,则下列结论中正确的是()A.AE CE⊥B.BE DE⊥C.DE⊥平面CEB D.平面ADE⊥平面BCE【答案】ABD【解析】由AB是底面圆的直径,得90AEB︒∠=,即AE EB⊥,∵圆柱的轴截面是四边形ABCD, BC⊥底面AEB,BC AE∴⊥,又EB BC B=,BC,BE⊂平面BCE,AE∴⊥平面BCE,AE CE∴⊥,故A正确;同理可得,BE DE⊥,故B正确;若DE⊥平面CEB,则DE BC⊥,//BC AD,DE AD∴⊥,在ADE中AD AE⊥, DE AD∴⊥不成立,DE∴⊥平面CEB不正确,故C不成立,由A的证明可知AE⊥平面BCE,AE⊂平面ADE,所以平面BCE⊥平面ADE.可得,,A B D正确.故选:ABD.12.如图,在棱长均相等的四棱锥P ABCD-中,O为底面正方形的中心,M,N分别为侧棱PA,PB的中点,有下列结论正确的有:A.PD∥平面OMN B.平面PCD∥平面OMNC.直线PD与直线MN所成角的大小为90D.ON PB⊥【答案】ABD【解析】选项A,连接BD,显然O为BD的中点,又N为PB的中点,所以PD∥ON,由线面平行的判定定理可得,PD∥平面OMN;选项B, 由M,N分别为侧棱PA,PB的中点,得MN∥AB,又底面为正方形,所以MN∥CD,由线面平行的判定定理可得,CD∥平面OMN,又选项A 得PD∥平面OMN,由面面平行的判定定理可得,平面PCD∥平面OMN;选项C,因为MN∥CD,所以∠ PDC为直线PD与直线MN所成的角,又因为所有棱长都相等,所以∠ PDC= 60,故直线PD与直线MN所成角的大小为60;选项D,因底面为正方形,所以222AB AD BD+=,又所有棱长都相等,所以222PB PD BD+=,故PB PD⊥,又PD∥ON,所以ON PB⊥,故ABD均正确.三、填空题:本题共4小题,每小题5分,共20分.13.已知球O的半径为4,3点,,,A B C D均在球面上,若ABC为等边三角形,且其面积为3,则三棱锥D ABC-的最大体积是___________.【答案】23 314.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【答案】55336π【解析】由图知正二十面体的外接球即为上方正五棱锥的外接球, 设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =, 所以正五棱锥的顶点到底面的距离是222251166l h l r l l ⎛⎫=-=-= ⎪⎝⎭,所以222()R r R h =+-,即22251166l R R l ⎛⎫⎛⎫=+- ⎪⎪ ⎪⎝⎭⎝⎭,解得31111R l =. 所以该正二十面体的外接球表面积为22231136441111S R l l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2120sin 60532S l l l =⨯⨯⨯⨯︒=正二十面体,所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于55336π. 故答案为:55336π. 15.如图,过球的一条半径OP 的中点1O ,作垂直于该半径的平面,所得截面圆的面积与球的表面积之比为________.【答案】3 16【解析】截面圆半径为r,球半径为R,则由题意得221322r R R R⎛⎫=-=⎪⎝⎭,所以截面圆面积与球表面积比为221223344416RS rS R Rππππ⨯===.故答案为:3 16.16.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.其中正确结论的个数为________.【答案】4【解析】(1)如图所示:四边形ABCD为矩形,故(1)满足条件;(2)四面体D-A1BC1为每个面均为等边三角形的四面体,故(2)满足条件;(3)四面体D-B1C1D1为每个面都是直角三角形的四面体,故(3)满足条件;(4)四面体C-B1C1D1为有三个面是等腰直角三角形,有一个面是等边三角形的四面体,故(4)满足条件;故正确的结论有4个. 故答案为:4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.如图,在Rt △AOB 中,AO =OB =2,△AOC 通过△AOB 以OA 为轴顺时针旋转120°得到(∠BOC =120°).点D 为斜边AB 上一点,点M 为线段BC 上一点,且CM =OM .(1)证明:OM ⊥平面AOB ;(2)当D 为线段AB 中点时,求多面体OA CM D 的体积. 【答案】(1)证明见解析;(2)439. 【解析】(1)证明:在△OBC 中,由题意可得OB =OC ,∠OCB =30°, ∵CM=OM ,∴∠COM =∠O CM =30°, 又∵∠BOC =120°,∴OM OB ⊥,根据题意,OA ⊥OB ,OA ⊥OC ,OB ∩OC =O ,∴OA ⊥平面OBC , 而OM ⊂平面OBC ,∴OA OM ⊥, 又OA ∩OB =O ,∴OM ⊥平面AOB ; (2)解:由(1)得,233OM =, ∵D 为线段AB 的中点,∴113232223223A BOC V -=⨯⨯⨯⨯⨯=, 112323213239D OMB V -⨯⨯⨯⨯==. ∴多面体OACMD 的体积为:---232343399O ACMD A BOC D OBM V V V =-=-=.18.如图:直角梯形ABCD中,AD//BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF// AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起成如图的位置,使AD=AE.(1)求证:BC//平面DAE;(2)求四棱锥D﹣AEFB的体积;(3)求面CBD与面DAE所成锐二面角的余弦值.【答案】(1)证明见解析;(2)433;(3)55.【解析】(1)证明:∵直角梯形ABCD中,AD//BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF//AB,∴CF//DE,CF⊂面CBF,DE⊄面CBF,则DE//面CBF;FB//AE,FB⊂面CBF,AE⊄面CBF,则AE//面CBF;又∵AE∩DE=E,DE、AE⊂面DAE∴面CBF//面DAE又BC⊂面CBF,所以BC//平面DAE(2)取AE的中点H,连接DH∵EF⊥ED,EF⊥EA,ED∩EA=E∴EF⊥平面DAE又DH⊂平面DAE,∴EF⊥DH∴AE=ED=DA=2,∴DH⊥AE,DH =3, 又AE∩EF =E∴DH⊥面AEFB…所以四棱锥D ﹣AEFB 的体积14332233V=⨯⨯⨯=(3)如图以AE中点为原点,AE为x轴建立空间直角坐标系则A(﹣1,0,0),D(0,0,3),B(﹣1,﹣2,0),E(1,0,0),F(1,﹣2,0)因为12CF DE=,所以C(12,﹣2,32)易知BA是平面ADE的一个法向量,BA=1n=(0,2,0)设平面BCD的一个法向量为2n=(x,y,z)由3322230x zx y z⎧+=⎪⎨⎪++=⎩令x=2,则y=2,z=﹣23,∴2n=(2,2,﹣23),∴cos<1n,2n>=55所以面CBD与面DAE所成锐二面角的余弦值为5519.如图,边长为2的正方形ABCD所在的平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ,说明理由. 【答案】(1)证明见解析;(2)存在,理由见解析.【解析】(1)∵平面CMD ⊥平面ABCD ,平面MDC ⋂平面ABCD CD =,BC CD ⊥,BC ⊂平面ABCD ,∴BC ⊥平面CMD ,DM ⊂平面CMD ,∴BC DM ⊥,∵CD 为直径,∴CM DM ⊥,BCCM C =,,BC CM ⊂平面BMC ,∴DM ⊥平面BMC ,DM ⊂平面AMD , ∴平面AMD ⊥平面BMC ;(2)存在.当P 为AM 中点时,//MC 平面PBD , 证明如下:连AC ,BD ,ACBD O =,∵ABCD 为正方形,∴O 为AC 中点, 连接OP ,P 为AM 中点,∴//MC OP , ∵MC ⊄平面PBD ,OP ⊂平面PBD , ∴//MC 平面PBD .20.如图,在四棱锥M ABCD -中,四边形ABCD 为梯形,90ABC BAD ∠=∠=,//BC AD ,22AD AB BC ==(1)若E 为MA 中点,证明:BE //面MCD(2)若点M 在面ABCD 上投影在线段AC 上,1AB =,证明:CD ⊥面MAC . 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)取MD 中点为F ,连接EF ,CF , 则EF 为△MAD 中位线,∴1//2EF AD 且1=2EF AD , 又四边形ABCD 是直角梯形,22AD AB BC ==1//2BC AD ∴,1=2BC AD//BC EF ∴且=BC EF ,∴四边形BCFE 为平行四边形,所以//BE CF ,因为BE ⊄面MCD ,CF ⊂面 MCD ,所以//BE 面MCD .(2)在四棱锥M ABCD -中,四边形ABCD 是直角梯形,222AD AB BC ===,90ABC BAD ∠=∠=,22112AC CD ∴==+=222AC CD AD ∴+=,AC CD ∴⊥,设点M 在面ABCD 上投影在线段AC 上,设为点H ,MH ∴⊥面ABCD ,CD ⊂面ABCD ,MH CD ∴⊥,又AC CD ⊥,AC MH H ⋂=, CD面MAC .21.如图,四棱锥P ABCD -的底面是边长为1的正方形,PA ⊥底面ABCD ,,E F 分别为,AB PC 的中点.(1)求证:EF //平面PAD ;(2)若2PA =,试问在线段EF 上是否存在点Q ,使得二面角 Q AP D --的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.【答案】(1)证明详见解析;(2)满足条件的Q 存在,是EF 中点. 【解析】证明:(1)取PD 中点M,连接MF 、MA,在△PCD 中,F 为PC 的中点,∴1//2MF DC =,正方形ABCD 中E 为AB 中点,∴1//2AE DC =,∴=//AE MF , 故四边形EFMA 为平行四边形,∴EF∥AM , 又∵EF ⊄平面PAD,AM ⊂平面PAD, ∴EF∥平面PAD ;(2)结论:满足条件的Q 存在,是EF 中点.理由如下: 如图:以点A 为坐标原点建立空间直角坐标系,则P (0,0,2),B (0,1,0),C (1,1,0),E (0,12,0),F (12,12,1), 由题易知平面PAD 的法向量为n =(0,1,0), 假设存在Q 满足条件:设EQ EF λ=, ∵1(,0,1)2EF =,∴1(,,)22Q λλ=,1(,,)22AQ λλ=,λ∈[0,1], 设平面PAQ 的法向量为(,,)x y z ∏=,由10{220x y z z λλ++==,可得(1,,0)λ∏=-, ∴2cos ,1m n m n m n λλ⋅-==+, 由已知:2551λλ-=+,解得:12λ=,所以满足条件的Q 存在,是EF 中点.22.已知圆锥的侧面展开图为半圆,母线长为23.(1)求圆锥的底面积;(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积. 【答案】(1)3π;(2)98π. 【解析】解:(1)沿母线AB 剪开,侧展图如图所示:设OB R =,在半圆⊙A 中,23AB =, 弧长'23BB π=, 这是圆锥的底面周长,所以223R ππ=, 所以3R =,故圆锥的底面积为23S R ππ==圆锥; (2)设圆柱的高1OO h =,OD r =, 在Rt AOB 中,223AO AB OB =-=,11AO D △AOB ,所以111AO O D AO OB=,即33h -=,3h =, 222(33)23(3)S rh r r r r πππ==-=--圆柱侧面积,23332322r ππ⎛⎫=--+ ⎪ ⎪⎝⎭, 所以,当32r =,32h =时,圆柱的侧面积最大,此时298V r h ππ==圆柱。
2011届艺术类考生数学复习单元训练卷(3)不等式一、选择题(本大题共10小题,每小题5分,共50分)1.设全集I =R ,集合P ={x |2x 2-x <0},集合Q ={x |x1≤2},则( )A.P R QB.P =R QC.P ∪Q =RD.P ∪Q ={x |x >0}2.不等式xx 1-≥2的解集为( ) A.[-1,0) B.[-1,+∞) C.(-∞,-1] D.(-∞,-1]∪(0,+∞)3.若关于x 的不等式(a 2-1)x 2-(a -1)x -1<0对于x ∈R 成立,则实数a 的取值范围是( ) A.(-53,1]B.[-53,1]C.(-53,1)D.(-∞,-53)∪[1,+∞)4.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于( )A.7B.-1C.1D.-75.已知a 、b 、c ∈R ,则下面推理中正确的是( )A.a >b ⇒am 2>bm 2B.ca >c b⇒a >b C.a 3>b 3,ab >0⇒a 1<b 1 D.a 2>b 2,ab >0⇒a1<b 16.设x +3y -2=0,则函数z =3x +27y +3的最小值是 ( ) A.332B.3+22C.6D.97.若t ∈(0,1],则t +t2有最小值 ( ) A.22B.3C.-22D.不存在8若a >0,a 2-2ab +c 2=0,bc >a 2,则 ( ) A.a >b >c B.b >c >a C.c >b >a D . b >a >c9不等式ba -1+cb -1+ac -λ<0在满足a >b >c 时恒成立,则λ的取值范围是( )A.(-∞,0]B.(-∞,1]C.(-∞,4]D.(4,+∞)10.已知x 2+y 2=4,则22-+y x xy的最小值为 ( )A.-2B.-34 C.2-22 D.2+22二、填空题(本大题共4小题,每小题5分,共20分) 11.方程|21-+x x |=xx -+21的解集是__________. 12.建造一个容积为18 m 3,深为2 m 的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么池的最低造价为__________.13.设a ,a +1,a +2为钝角三角形的三边,则a 的取值范围是__________. ZXXK]14.已知关于x 的不等式|ax +2|<8的解集为(-3,5),则a =__________.分析:本题考查含绝对值不等式的解法.三、解答题(本大题共3小题,共30分.15.(本小题满分10分)解不等式(x 2+x +1)(x +1)3(x -2)2(3-x )>0.16.(本小题满分10分) 已知函数f (x )=264x x -+,g (x )=x 2-3ax +2a 2(a <0),若不存在...实数x 使得f (x )>1和 g (x )<0同时成立,试求a 的范围.学科 17.(本小题满分10分)已知实数p 满足不等式212++x x <0,试判断方程u 2-2u +5-p 2=0有无实根,并给出证明.2011届艺术类考生数学复习单元训练卷(3)答题卡一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)学。
2011年高考艺术类数学复习小节训练卷(7) 不等式的性质、简单绝对值与分式不等式、二次不等式一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、如果0,0a b <>,那么,下列不等式中正确的是( )A .11a b< B <C .22a b < D . ||||a b > 2、不等式2230x x +->0的解集是( ).(A ){}13x x -<< (B ){3x x >或}1x <-(C ){}31x x -<< (D ){1x x >或}3x <-3、若0,0<>+b b a ,那么,,a b a b --的大小关系是( )A 、a b b a >>->-B 、a b a b >->->C 、a b b a ->>->D 、a b a b >>->- 4、不等式240x ax ++<的解集为空集,则a 的取值范围是( ).A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞) 5、不等式53x +>的解集是 ( ) (A) {}88x x -<< (B) {}22x x -<< (C){ {2x x <-或}2x > (D) {8x x <-或}2x >- 6、不等式102x x+≤-的解集为( ) A .{|12}x x -≤≤ B .{|12}x x -≤<C .{|1x x ≤-或2}x ≥D .{|1x x ≤-或2}x >7、与不等式1232≥--x x 同解的不等式是( ) A 、01≥-x B 、0232≥+-x xC 、lg (232+-x x )>0 D 、021≥--x x 8、已知,,,a b c d 为实数,且c d >。
正视图 图1 侧视图图2图3 2011年高考数学试题汇编---立体几何1(安徽卷8)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (D) 80(1题图) (2题图)2(北京卷5)某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32(B)16+ (C)48 (D)16+3(广东卷7)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 4(广东卷9)如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .B .4C .D .2(4题图) (5题图)5(湖南卷4)设图1是某几何体的三视图,则该几何体的体积为A .942π+B 3618π+C .9122π+ D .9182π+ 6(湖北卷7)设球的体积为V ,它的内接正方体的体积为V ,下列说法中最合适的是A. V 比V 大约多一半B. V 比V 大约多两倍半C. V 比V大约多一倍 D. V 比V大约多一杯半7(辽宁卷10)已知球的直径SC=4,A.,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为 (A(C)8(江西卷9)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为9(辽宁卷8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 (A )4 (B )32 (C )2 (D )310(全国II12)已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 (A)7π (B)9π (C)11π (D)13π11(重庆卷10S ABCD -的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为 (A(B(C )32 (D 12(四川卷6) 1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 (A )12l l ⊥,23l l ⊥13//l l ⇒(B )12l l ⊥,23//l l ⇒13l l ⊥(C )233////l l l ⇒1l ,2l ,3l 共面(D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面13(浙江卷4)若直线l 不平行于平面a ,且l a ∉,则(A) a 内存在直线与异面 (B)a 内不存在与l 平行的直线(C)a内存在唯一的直线与l 平行 (D) a 内的直线与l 都相交 14(浙江卷7)几何体的三视图如图所示,则这个几何体的直观图可以是15(新课标8)已知直二面角lαβ--,点Aα∈,AC l⊥,C为垂足,Bβ∈,BD l⊥,D为垂足,若2,1AB AC BD===,则CD=(A)2 (B(C(D)1(16题图)(17题图)(18题图)16(陕西卷5)某几何体的三视图如图所示,则它的体积是()(A)283π-(B)283π-(C)8-2π(D)23π17(山东卷11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)018(四川卷15)如图,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________.(19题图)(20题图)(21题图)19(福建15)如图,正方体1111ABCD A BC D-中,2AB=,点E为AD的中点,点F在CD上,若1//EF AB C平面,则线段EF的长度等于_____________.20(天津卷10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为3m.21(新课标15)已知正方体1111ABCD A BC D-中,E为11C D的中点,则异面直线AE与BC所成角的余弦值为.22(北京卷17)如图,在四面体PABC中,,,PC AB PA BC⊥⊥点,,,D E F G分别是棱,,,AP AC BC PB的中点。
2011届高考数学专题练习 立体几何试卷一、填空题 (共 小题,每小题 分)1. 如图,正方体1111ABCD A BC D -中,E 、F 分别为AB 、AD 的中点,则1AD 与EF 所成角的大小为 .2. 如图是一个几何体的三视图,若它的体积是33,则a=________.3. 如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是 。
4. 已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积等于__________________.二、选择题 (共 小题,每小题 分)5. 若直线a b ⊥,且直线//a 平面α,则直线b 与平面α的位置关系是 .A .b α⊂B .//b αC .b α⊂或//b αD .b 与α相交或b α⊂或//b α6. 在正四棱柱1111ABCD A BC D -中,顶点1B 到对角线1BD和到平面11A BCD 的距离分别为h 和d ,则下列命题中正确的是( )A .若侧棱的长小于底面的变长,则hd的取值范围为(0,1)B .若侧棱的长小于底面的变长,则h d 的取值范围为223( C .若侧棱的长大于底面的变长,则h d 的取值范围为23(2)3 D .若侧棱的长大于底面的变长,则h d 的取值范围为23()+∞7. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
则该集合体的俯视图可以是8. 设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线,则//αβ的一个充分而不必要条件是A. 1////m l βα且B. 12////m l l 且nC. ////m n ββ且D. 2////m n l β且9. 如图,在三棱柱ABC-A 1B 1C 1中,∠ACB=900,∠ACC 1=600,∠BCC 1=450,侧棱CC 1的长为1,则该三棱柱的高等于 A.21 B.22 C.23 D.3310. 如图,正方体1111ABCD A BC D -的棱线长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中错误的是 (A )AC BE ⊥(B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )AEF BEF ∆∆的面积与的面积相等11. 一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为(A )48122+(B )48242+ (C )36122+(D )36242+三、解答题 (共 小题,每小题 分)12. 如图,已知PA ⊥正方形ABCD 所在平面,E 、F分别是AB ,PC 的中点,45PDA ∠=.(1)求证://EF 面PAD ;(2)求证:面PCE ⊥面PCD .13. 如图,在五面体ABCDEF 中,AB ∥DC ,2BAD π∠=,2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3,7FC ED ==(Ⅰ)直线AB 到平面EFCD 的距离;A 1B 1C 1D 1 (Ⅱ)二面角F ADE --的平面角的正切值.14. 如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.15. 如图,在四棱锥ABCD P -中,ABCD PD 平面⊥,CD AD ⊥,且DB 平分ADC ∠,E 为PC 的中点,1==CD AD ,22=DB(Ⅰ)证明BDE PA 平面// (Ⅱ)证明PBD AC 平面⊥(Ⅲ)求直线BC 与平面PBD 所成的角的正切值16. 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,∠ABM=60。
2011届艺术类考生数学复习单元训练卷(1)集合与函数一、选择题(共10小题,每小题5分,共50分)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或0 2. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .133. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 44.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( ) A .增函数且最小值是5- B .增函数且最大值是5- C .减函数且最大值是5- D .减函数且最小值是5-5.函数y =)A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]36. 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )7. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b == B.2a b = C .2,1a b == D.a b ==8. 求函数132)(3+-=x x x f 零点的个数为 ( )A .1B .2C .3D .49. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或10. 若方程310x x -+=在区间(,)(,,1)a b a b Z b a ∈-=且上有一根,则a b +的值为( )A .1-B .2-C .3-D .4- 二.填空题(共4小题,每小题5分,共20分)11.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是 12. 函数422--=x x y 的定义域 。
高三数学立体几何高考题1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )182.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π47.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )89(2016年7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33 (D )1311.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.4.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.5.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
(容器壁的厚度忽略不计,结果保留π)6.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.7.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.8.如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________ m.9.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________.10.已知直三棱柱ABC -A 1 B 1 C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1 =12,则球O 的半径为( )A.3172 B .210 C.132D .310 11.(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.12.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为( )A.52B.3-1C.12D.2-113.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛16.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为_______.17.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.18.在三棱锥A -BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为22,32,62,则该三棱锥外接球的表面积为()A.2πB.6πC.46πD.24π19.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.(1)求证:PC⊥AB;(2)求点C到平面APB的距离.20.如图所示,在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.立体几何单元复习卷(二)21.到空间不共面的四点距离相等的平面的个数为()A.1 B.4C.7 D.822.如图,平面α∥平面β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.23.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.24.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n25.已知m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若m⊥α,n⊥β,m⊥n,则α⊥βB.若m∥α,n∥β,m⊥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n∥β,α∥β,则m∥n26.如图,在直三棱柱ABC-A′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P的轨迹长度为()A.2 B.2πC.2 3 D.427.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若m⊂β,α⊥β,则m⊥αB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n28.在直三棱柱ABC-A1B1C1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC 1B1;③平面α⊥平面BCFE.其中正确命题的序号是________.29.如图,在直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( ) A.12B .1 C.32 D .230.如图,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P -ABC 中直角三角形的个数为( )A .4B .3C .2D .131.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF32.如图,PA ⊥⊙O 所在平面,AB 是⊙O 的直径,C 是⊙O 上一点,AE ⊥PC ,AF ⊥PB ,给出下列结论:①AE ⊥BC ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ,其中真命题的序号是________.33.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .34.(2017·江苏高考)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.35.如图,S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.36.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.37.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=2 2.(1)求证:DE∥平面BCF;(2)求证:CF⊥平面ABF;(3)当AD=23时,求三棱锥F-DEG的体积.立体几何单元复习卷(一)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体.2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形.答案:②③④3.已知正三角形ABC的边长为2,那么△ABC的直观图△A′B′C′的面积为________.解析:如图,图①、图②分别表示△ABC的实际图形和直观图.从图②可知,A′B′=AB=2,O′C′=12OC=32,C′D′=O′C′sin 45°=32×22=64.所以S△A′B′C′=12A′B′·C′D′=12×2×64=64.答案:6 44.已知圆锥的表面积等于12πcm2,其侧面展开图是一个半圆,则底面圆的半径为________cm.解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.6.(2018·苏州零模)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________。
2011届艺术类考生数学复习单元训练卷(8)立体几何第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 下面表述正确的是( )A 、空间任意三点确定一个平面B 、分别在不同的三条直线上的三点确定一个平面C 、直线上的两点和直线外的一点确定一个平面D 、不共线的四点确定一个平面2. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( ) A .充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 非充分非必要条件3. 如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是( )A 、平行B 、相交C 、平行或相交D 、无法确定 4. 平面α、β的公共点多于两个,则 ( )① α、β重合 ② α、β至少有三个公共点 ③ α、β至少有一条公共直线 ④α、β至多有一条公共直线 以上四个判断中不成立的个数为n ,则n 等于( ) A , 0 B , 1 C , 2 D , 35. 设M ={正四棱柱},N ={长方体},P ={直四棱柱},Q ={正方体},则这些集合之间关系是( ) A. Q MN P 缮 B. Q M N P 烫 C. Q N M P 缮 D.Q N M P 烫6. 一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.底面是正方形,每个侧面都是全等矩形的四棱柱7. 如图,ABCD —A 1B 1C 1D 1是正方体,E ,F ,G ,H ,M ,N 分别是所在棱的中点,则下列结论正确的是( )A .GH 和MN 是平行直线;GH 和EF 是相交直线B .GH 和MN 是平行直线;MN 和EF 是相交直线C .GH 和MN 是相交直线;GH 和EF 是异面直线D .GH 和EF 是异面直线;MN 和EF 也是异面直线8. 已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2) 9. 给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④10.,,a b c 分别表示三条不同直线,M 表示平面,给出下列四个命题:①若//,//a M b M 则//a b ;②若,//b M a b ⊂,则//a M ;③若,a c b c ⊥⊥,则//a b ;④若,a M b M ⊥⊥,则//a b . 其中正确命题的个数有( )A .0个B .1个C .2个D .3个 二、填空题:本大题共4小题,每小题5分,满分20分.11.如下图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,则这个几何体的的侧面积为 。
主视图左视图俯视图ABA 1B 1D 1CD C 1EF N H GM12. 两个球的体积之比为8:27,那么这两个球的表面积的比为 。
13.直角ABC ∆中,AB=3,BC=4,AC=5,将三角形绕直角边AB 旋转一周所成的几何体的体积为_____________.14. 正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 . 三、解答题:(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤) 15.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A,B 的任意一点,(1)求证:BC ⊥平面PAC(2)求证:平面PAC ⊥平面PBC ;16. 如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ABCD ⊥平面,且PA AB =,点E 是PD 的中点.(1)求证:AC PB ⊥; (2)求证:PB ∥平面AEC .17. 如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,PA =2,∠PDA=45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ; (2)求三棱锥C -BEP 的体积.EFBACDP2011届艺术类考生数学训练卷(8)答题卡一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 2 3 4 5 6 7 8 9 10 分数二、填空题:(本大题共4小题,每小题5分,满分20分)11、_________________ 12、__________________13、_________________ 14、__________________三、解答题:(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)15.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,(1)求证:BC⊥平面PAC(2)求证:平面PAC⊥平面PBC;16. 如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ABCD ⊥平面,且PA AB =,点E 是PD 的中点.(1)求证:AC PB ⊥; (2)求证:PB ∥平面AEC .17. 如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,PA =2,∠PDA=45°,点E 、F 分别为棱AB 、PD 的中点.(1)求证:AF ∥平面PCE ; (2)求三棱锥C -BEP 的体积.EFBACDP2011届艺术类考生数学复习单元训练卷(8)立体几何参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 2 3 4 5 6 7 8 9 10 CACCBDBBDB1. 由公理知:不共线的三点确定一个平面,D 错;A 、B 中三点可能在一条直线上,故错。
故选C.2. “这两条直线为异面直线”能推出“这两条直线没有公共点”; 而“这两条直线没有公共点”不能推出“这两条直线为异面直线”,因为两直线也可平行。
故是充分非必要条件。
故选A.3.“当两个平面平行或相交时,都有这种直线存在。
”故选C.4. 平面α、β的公共点多于两个,则这两个平面可能相交与一条直线或重合。
所以①④错,②③对。
故选C 。
5.由棱柱的相关知识:直四棱柱包含长方体,长方体包含正四棱柱,正四棱柱包含正方体。
故选B 。
6.由棱柱的概念知:D 正确。
故选D 。
7. 由图及正方形的性质知:GH 和MN 是平行直线; MN 和EF 是相交直线;GH 和EF 是异面直线。
故选B. 8.(1)、若βα//,⊥l 平面α,则l b ^,所以m l ⊥。
(3)、若⊥l 平面α,m l //,则⊥l 平面b ,所以βα⊥。
所以(1)(3)对,(2)(4)错。
故选B 。
9. ①“两相交直线”才对;③垂直于同一直线的两条直线可能平行,相交或异面。
所以①③错,②④对。
故选D.10. ①中直线,a b 可平行、相交和异面,故①错;直线与平面平行,不包括直线在平面内,②中直线a 可能在M 内,故②错;在空间中,③中直线,a b 可平行、相交和异面,故③错;④正确,故选B 。
ABA 1B 1D 1CD C 1EF N H GM二、填空题:本大题共4小题,每小题5分,满分20分. 11、4π 12、4:9 13、16π 14、平行11. 还原后是底面半径为1,高为2的圆柱,所以22124S rh πππ==⨯⨯=侧。
12. 设两球的半径分别为1R 和2R ,由3113224R V 834V 27R 3p p == 得12R 2R 3=,所以211222S 4R 4S 94R p p == 13. 旋转后得到的是圆锥,如右图:底面半径 为BC=4,高为AB=3,所以:211431633V Sh ππ==⨯⨯= 14.∵11//AB C D ,11//AD C B ,且11AB AD A = ,111C B C D C = ,∴111//C B D A B D 面面。
三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 15. 证明:(1)设O 所在的平面为α,由已知条件,PA α⊥,BC 在α内, ∴PA BC ⊥∵点C 是圆周上不同于,A B 的任意一点,AB 是O 的直径, ∴BCA ∠是直角,即BC AC ⊥。
又∵PA 与AC 是PAC ∆所在平面内的两条相交直线, ∴BC ⊥平面PAC(2)由(1)知BC ⊥平面PAC 又∵BC 在平面PBC 内 ∴平面PAC ⊥平面PBC16. 证明:(1)∵PA ABCD ⊥平面 ∴PA AC ⊥又∵AB AC ⊥ P A A BA = ∴AC AB 平面P ⊥ ∴AC PB ⊥(2)连接BD 交AC 于点O ,连OE∵ABCD 为平行四边形 ∴O 为BD 的中点 又∵点E 是PD 的中点 ∴//PB OE又∵AEC OE Ì平面 ∴//AEC PB 平面17. 证明: (1)取PC 的中点G ,连结FG 、EG ∴FG 为△CDP 的中位线 ∴FG 21//CD ∵四边形ABCD 为矩形,E 为AB 的中点 ∴AB 21//CD ∴FG //AE∴四边形AEGF 是平行四边形 ∴AF ∥EG又EG ⊂平面PCE ,AF ⊄平面PCE ∴AF ∥平面PCE(2)解法一:CB 是三棱锥C -BEP 的高,在直角三角形PAD 中,∠PDA=45°∴△PAD 为等腰直角三角形 ∴PA =AD=2 ∴BC =AD=21112122BEP S BE PA ∆=⋅⋅=⋅⋅= V C -BEP =11212333BEP S CB ∆⋅=⋅⋅=解法二:三棱锥C -BEP 即为三棱锥P -BCEPA 是三棱锥P -BCE 的高, Rt △BCE 中,BE=1,BC=2, ∴三棱锥C -BEP 的体积: V C -BEP =V P -BCE =111112122332323BCE S PA BE BC PA ∆⋅=⋅⋅⋅⋅=⋅⋅⋅⋅=GE FBAC DP。