2015年历年华东师大版初三数学中考总复习三十投影与视图精练精析1及答案
- 格式:doc
- 大小:3.46 MB
- 文档页数:16
中考总复习:投影与视图—巩固练习【巩固练习】一、选择题1.下面四个几何体中,俯视图不是圆形的几何体的个数是().A.1个 B.2个 C.3个 D.4个2.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是()3.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y与x之间函数关系的图象大致为()4.(2015春•杭州校级月考)有一个底面为正三角形的直三棱柱,三视图如图所示,则这个直棱柱的侧面积为()A.24 B.8 C.12 D.24+85.如图,是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()6.如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是( )A .275(1+B .2751cm ⎛+ ⎝ C .275(2 D .2752cm ⎛ ⎝二、填空题7.(2015•杭州模拟)一个直棱柱,主视图是边长为2的正方形、俯视图是边长为2的正三角形,则左视图的面积为 .8.如图,上体育课,甲、乙两名同学分别站在C ,D 的位置时,乙的影子恰好在甲的影子里边,已知甲、乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是_________米.第8题 第9题 第10题9.如图,小明在A 时测得某树影长为2m ,B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为________m .10.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为__________.11.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是_________.12.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设垂直于地面时的影长为AC (假定AC >AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >AC ;②m =AC ;③n =AB ;④影子的长度先增大后减小,其中正确结论的序号是___ _____.三、解答题13.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的13到B2处时,求其影子B2C2的长;当小明继续走剩下路程的14到B3处,……按此规律继续走下去,当小明走剩下路程的11n到B n处时,其影子n nB C的长为________m(直接用含n的代数式表示).14.(2014•东海县一模)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.合肥市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).(1)合肥的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米?(2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的1.2倍;按照此规定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本题参考值:sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61;sin34.88°=0.57,cos34.88°=0.82,tan34.88°=0.70)15.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°角.≈1.4≈1.7)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答)①求树与地面成45°角时的影长;②求树的最大影长.16.如图(1)是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形,现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图(2)),然后用这条平行四边形纸带按如图(3)的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图(2)中,计算裁剪的角度∠BAD;(2)计算按图(3)方式包贴这个三棱柱包装盒所需的矩形纸带的长度.【答案与解析】一、选择题1.【答案】A;【解析】俯视图不是圆形的几何体只有正方体,所以选A.2.【答案】D;【解析】只有D答案体现了后排只有一层.3.【答案】A;【解析】根据中心投影的性质,小亮的影长y随x逐渐变小再逐渐变大,且y是x的一次函数.4.【答案】C;【解析】这个直棱柱的侧面积为:2×2×3=12.故选:C.5.【答案】D;【解析】根据俯视图可知主视图有两列,左边一列的最大高度为2,右边一列的高度是3,故选D.6.【答案】C;【解析】由三视图知此包装纸盒是一个正六棱柱,其全面积2256255615075(2S=⨯⨯+⨯⨯==+.二、填空题7.【答案】6;【解析】过A作AD⊥BC,∵俯视图是边长为2的正三角形,∴BC=2,∠B=60°,∴AD=ABsin60°=2×=3,∵主视图是边长为2的正方形,∴左视图的面积为3×=6.8.【答案】6;【解析】设甲的影长AC=x米,则乙的影长AD=(x-1)米.根据同一时刻物高与影长成比例,可得1 1.51.8xx-=.解得x=6(米).9.【答案】4;【解析】如图,设树高CD=h,在Rt△CEF中,由题意得ED=2,FD=8.由Rt△CDE∽△RFCD,可得CD EDDF CD=.即28CDCD=.∴ CD2=16.故CD=4m.即树的高度为4m.10.【答案】7:【解析】由主视图知几何体左右共两排,由左视图知几何体前后三排,且左排最高两层,所以组成这个几何体的小正方体的个数最多为7个.11.【答案】6;【解析】主视图能反映每一列的最大高度,左视图能反映每一行的最大高度,俯视图能反映行列数,由三视图可发现俯视图中行列的高度如图所示,则图中棱长为1的正方体的个数是1+1+1+1+2=6(个).12.【答案】①③④ ;【解析】如图所示.当AB 转至AE 时影长最大值m =AD >AC ,当AB 转至AB ′时影长最小值;当AB 转至AB ′时影长最小值n =AB ,影子的长度先增大后减小,所以正确结论的序号是①③④.三、解答题13.【答案与解析】解:(1)如图:(2)由题意得△ABC ∽△GHC . ∴AB BC GH HC=. ∴1.6363GH =+. ∴GH =4.8m .(3)∵△A 1B 1C 1∽△GHC 1, ∴11111A B B C GH HC =.设B 1C 1长为xm , 则1.64.83x x =+.解得32x =,即B 1C 1=32m . 同理22221.64.82B C B C =+,解得221m B C =,31n n B C m n =+.14.【答案与解析】解:(1)如图所示:AC为太阳光线,太阳高度角选择冬至日的34.88度,即∠ACE=34.88°,楼高AB为2.80×20=56米,窗台CD高为1米;过点C作CE垂直AB于点E,所以AE=AB﹣BE=AB﹣CD=55米;在直角三角形ACE中,由tan∠ACE=,得:BD=CE=即两栋住宅楼的楼间距至少为78.6米.(2)利用(1)题中的图:此时∠ACE=34.88°,楼高AB为2.80×20=56米,楼间距BD=CE=AB×1.2=67.2米;在直角三角形ACE中,由tan∠ACE=,得:AE=CE×tan∠ACE=67.2×0.70=47.04m则CD=BE=AB﹣AE=8.96m而8.96=2.8×3+0.56,故北侧住宅楼1至3楼的住户的采光受影响,4楼及4楼以上住户不受影响.15.【答案与解析】=7(米).(结果也可以保留一位小数,下同) 解:(1)AB=ACtan30°=12×3答:树高约7米.(2) 解析:①在Rt△ABC中,AB=ACtan30°;②过B1作B1N⊥AC1,在Rt△AB1N和Rt△B1NC1中分别求AN和NC1.当树与地面成60°角时影长最大(如图AC2)≈5(米).NC1=NB1tan60°=8(米).①如图,B1N=AN=ABsin 45°=2AC1=AN+NC1=5+8≈13(米).答:树与地面成45°角时影长为13米.②如图,当树与地面成60°角时影长最大,为AC2=2AB2≈14(米)(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)16.【答案与解析】解析:(1)观察图(3)的包贴方式知AB的长等于三棱柱的底面周长,则AB =30.由AM =15可以求出∠ABM =30°.由AD ∥BC 求出∠BAD =∠ABM =30°.(2)可将三棱柱的侧面展开,利用平面图形计算MC 的长.解:(1)由图(3)的包贴方法知:AB 的长等于三棱柱的底面周长,∴AB =30.∵纸带宽为15,sin ∠DAB =sin ∠ABM =151302AM AB ==, ∴∠DAB =30°.(2)在图(3)中,将三棱柱沿过点A 的侧棱剪开,得到如图甲的侧面展开图,将图甲中的△ABE 向左平移30 cm ,△CDF 向右平移30 cm ,拼成如图乙中的平行四边形ABCD , 此平行四边形即为图(2)中的平行四边形ABCD .由题意,知:BC =BE+CE =2CE =2×cos30CD =°∴所需矩形纸带的长为MB+BC =30·cos30°+=.。
投影与视图☞解读考点知识点名师点晴投影1.投影的定义知道什么是物体的投影.2.平行投影知道什么是平行投影.3.中心投影知道什么是平行投影.视图4.物体的三视图知道主视图、俯视图、左视图,并能准确判断三种视图.☞2年中考【2015年题组】1.(2015北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(2015南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A .B . C. D.【答案】B.考点:简单组合体的三视图.3.(2015柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(2015桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C .D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C .考点:由三视图判断几何体.5.(2015梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(2015扬州)如图所示的物体的左视图为()A . B. C. D .【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(2015攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(2015达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )A.B .C .D .【答案】D . 【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D ; 故选D .考点:1.由三视图判断几何体;2.作图-三视图.9.(2015德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是( )A .200πcm 3B .500πcm 3C .1000πcm 3D .2000πcm 3【答案】B .考点:由三视图判断几何体.10.(2015南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B.C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(2015襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(2015齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(2015连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(2015随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(2015牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(2015西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(2015青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(2015镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O 点的位置,并画出他位于点F 时在这个灯光下的影长FM (不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m /s .试题解析:(1)如图,(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =AF ﹣MF =(4x ﹣1.2)m ,EG =2×1.5x =3xm ,BM =AB ﹣AM =12﹣(4x ﹣1.2)=13.2﹣4x ,∵点C ,E ,G 在一条直线上,CG ∥AB ,∴△OCE ∽△OAM ,△OEG ∽△OMB ,∴CE OE AM OM =,EG OE BM OM =,∴CE EG AM BM =,即234 1.213.24x xx x=--,解得x =1.5,经检验x =1.5为方程的解,∴小明原来的速度为1.5m /s . 答:小明原来的速度为1.5m /s .考点:1.相似三角形的应用;2.中心投影.19.(2015兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(2015宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO 1,如图所示,∵EO 1=6米,OO 1=4米,∴EO =EO 1﹣OO 1=6﹣4=2米,∵AD =BC =8米,∴OA =OD =4米,在Rt △AOE 中,tan ∠EAO =2142EO OA ==,则∠EAO ≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.【2014年题组】1.(2014·绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B . C. D .【答案】B.考点:简单组合体的三视图.2.(2014·吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(2014·衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B.【解析】试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B选项不是这个立体图形的三视图.故选B.考点:简单几何体的三视图.4.(2014·十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.正方体长方体球圆锥【答案】B.考点:简单几何体的三视图.5.(2014·宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是()A210cmπ B.2210cmπ C.26cmπ D.23cmπ【答案】A.【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm,高为3cm,∴根据勾10cm.∴侧面积=()2112r l211010cm22πππ⋅⋅=⨯⨯.故选A.考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理.6.(2014·湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3. 【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3. 考点:简单组合体的三视图。
一、选择题1.如图所示几何体的左视图正确的是()A.B.C.D.2.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面和上面看到的形状图,该几何体最少要用________个立方块搭成,最多要用________个立方块搭成()A.7,12 B.8,11 C.8,10 D.9,133.由5个相同的小正方体组成的几何体如图所示,该几何体的主视图是()A.B.C.D.4.如图是由四个相同的小正方体组成的立体图形,它的主视图为().A.B.C.D.5.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A .B .C .D .6.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( )A .4πB .2πC .32πD .π7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是( )A .B .C .D . 8.一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为( ).A .B .C .D . 9.物体的形状如图所示,则从上面看此物体得到的平面图形是( )A.B.C.D.10.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.11.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④12.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题13.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.14.某几何体是由若干个小正方体组成的,它无论从正面看还是从左面看得到的视图都是如图的样子,堆成该几何体的正方体数最少与最多的块数分别是、n,则+=______.m n15.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为__________.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是________.17.如图()1表示一个正五棱柱形状的建筑物,如图()2是它的俯视图,小明站在地面上观察该建筑物,当只能看到建筑物的一个侧面时,他的活动区域有________个.18.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为_____.19.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.20.在某一时刻,测得一根高为2m的竹竿的影长为3m,同时测得一根旗杆的影长为21m,那么这根旗杆的高度为_______m.三、解答题21.如图,在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学在测量树的高度时,发现树的影子有一部分(0.2 米)落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是 4.62米.”小强说:“要是没有台阶遮挡的话,树的影子长度肯定比 4.62米要长.”(1)你认为谁的说法对?并说明理由;(2)请根据小玲和小强的测量数据计算树的高度.【答案】(1)小强的说法对,理由见解析;(2)8米.【分析】(1)画出解题示意图,利用同一时刻,物高与影长成正比,计算判断即可;(2)利用同一时刻,物高与影长成正比,计算判断即可;【详解】解:(1)小强的说法对;根据题意画出图形,如图所示,根据题意,得10.6 DEEH,∵DE=0.3米,∴0.30.60.18EH =⨯=(米).∵GD ∥FH ,FG ∥DH ,∴四边形DGFH 是平行四边形,∴0.2FH DG ==米.∵AE=4.42米,∴AF=AE+EH+FH=4.42+0.18+0.2=4.8(米),即要是没有台阶遮挡的话,树的影子长度是4.8米,∴小强的说法对;(2)由(1)可知:AF=4.8米. ∵10.6AB AF =, ∴8AB =米. 答:树的高度为8米.【点睛】本题考查了太阳光下的平行投影问题,准确理解影长的意义,灵活运用同一时刻,物高与影长成正比是解题的关键.22.如图,在平整的地面上,用8个完全相同的小正方体堆成一个几何体,请画出从三个方向看到的几何体的形状图.【答案】画图见解析【分析】根据三视图的定义画出图形即可.【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是建立空间观念,正确画出图形.23.如图,正三棱柱的底面周长为18,截去一个底面周长为6的正三棱柱,求所得几何体的俯视图的周长.【答案】16【分析】依题意可得截去三棱柱底面三角形边长是2,进而可得所求几何体的俯视图是一个梯形,-=,据此计算即可.其上底是2,下底是6,两腰是624【详解】解:依题意可得截去三棱柱底面三角形边长是2,-=,所得几何体的俯视图是一个梯形,其上底是2,下底是6,两腰是624+++=.故周长是244616故答案为:16.【点睛】本题考查了常见的几何体和几何体的三视图,正确理解题意、掌握解答的方法是关键.24.如图,AB和DE是直立在地面上的两根立柱.AB=6m,某时刻AB在阳光下的投影为BC.(1)请在图中画出此时DE在阳光下的投影;(2)如果测得BC=4m,DE在阳光下的投影长为6m,请计算DE的长.【答案】(1)答案见解析;(2)9m.【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】(1)如图所示,DE在阳光下的投影为EF;(2)∵AB∥DE,AC∥DF,∴△ABC∽△DEF,∴AB BCDE EF=,即646 DE=,∴DE=9.答:DE的长为9m.【点睛】此题主要考查了应用设计与作图,正确掌握平行投影的性质是解题关键.25.如图,在阳光下,身高165cm的小军测得自己的影长为0.9m,同时还测得教学楼的影长为8.1m,求该教学楼的高度.【答案】14.85m【分析】在平行投影的条件下,物体的高度与其影长的比值是一定的,即物体的高度与其影长成正比例关系,据此即可列方程求解.【详解】解:设教学楼的高度为xm,根据题意得:1.650.98.1x , 解得:x =14.85,答:教学楼的高度为14.85m .【点睛】本题主要考查了平行投影,掌握平行投影的性质,依据物体的高度与其影长的比值一定列出方程是关键.26.由几个小立方体搭成的几何体从上面看到的图形如图所示,小正方体中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和左面看到的图形.【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,4,3,左视图有3列,每列小正方形数目分别为3,4,3,据此可画出图形.【详解】从正面看从左面看【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从几何体的左面看所得到的图形是:故选:A.【点睛】本题考查了简单几何体的三视图,关键是掌握左视图所看的位置.2.B解析:B【分析】根据题意可以得到该几何体从正面和上面看至少有多少个小立方体,综合考虑即可解答本题.【详解】解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时:;最多时最少时需要8个,最多时需要11个,故选:B.【点睛】本题考查简单组合体的三视图,在俯视图上相应位置标出所摆放的个数是解决问题的关键.3.D解析:D【分析】找到从几何体的正面看所得到的图形即可.【详解】解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.【点睛】此题主要考查了简单几何体的三视图,主视图是从物体的正面看得到的视图.4.A解析:A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故答案为:A.【点睛】此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.5.B解析:B【分析】分别画出四个选项中简单组合体的三视图即可.【详解】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选B .【点睛】 此题主要考查了简单组合体的三视图,关键是掌握左视图和主视图的画法.6.D解析:D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长⨯圆柱体的高=11ππ⨯⨯= 故答案为:D .【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.7.A解析:A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B ;当第二层第二列有1个小正方体时,主视图为选项C ;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D ;故选:A .【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8.A解析:A【分析】根据垂直于圆柱底面的截面是矩形,可得答案.【详解】由水平面与圆柱的底面垂直,得水面的形状是长方形.故选:A .【点睛】本题考查了截几何体和认识立体图形.解题的关键是能够正确认识立体图形,明确垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.9.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.10.A解析:A【分析】利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【详解】A、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高;主视图的长方形的宽为三棱柱的底面三角形的边长,所以A选项正确;B、左视图和主视图都是相同的正方形,所以B选项错误;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选A.【点睛】本题考查了简单几何体的三视图:画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.会画常见的几何体的三视图.11.B解析:B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆.∴三视图有两个相同,而另一个不相同的几何体是圆柱和圆锥.故选B.12.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系应为:当小红走到灯下以前:l 随S 的增大而减小;当小红走到灯下以后再往前走时:l 随S 的增大而增大,∴用图象刻画出来应为C .故选C .考点:1.函数的图象;2.中心投影;3.数形结合.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据三视图可得出该几何体为圆锥圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开是一个扇形)用字母表示就是S=πr²+πrl (其中l=母线是圆锥的顶点到圆锥的底面圆周之间的距离解析:16π【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl (其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴²42616S r rl πππππ=+=+⨯⨯=故答案为:16π.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.14.【分析】根据题意画出最少和最多的两种情况得出m 和n 计算即可【详解】由题意可画如图:m=5n=9∴m+n=14故答案为:14【点睛】本题考查三视图根据主视图和左视图得出画出俯视图中最多和最少的情况是解解析:【分析】根据题意画出最少和最多的两种情况,得出m 和n ,计算即可.【详解】由题意可画如图:m =5 n =9∴m +n =14.故答案为:14.【点睛】本题考查三视图,根据主视图和左视图得出画出俯视图中最多和最少的情况是解题关键. 15.【分析】由已知三视图为圆柱首先得到圆柱底面半径从而根据圆柱体积=底面积乘高求出它的体积【详解】解:由三视图可知圆柱的底面直径为4高为6∴底面半径为2∴V=πr2h=22×6•π=24π故答案是:24解析:24【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.【详解】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故答案是:24π.【点睛】此题考查的是圆柱的体积及由三视图判断几何体,关键是先判断圆柱的底面半径和高,然后求其体积.16.5【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】结合主视图和俯视图可知左边上层最多有2个左边下层最多有2个右边只有一层且只有解析:5【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.【分析】根据正五棱柱形状的建筑物它的俯视图可知当只能看到建筑物的一个侧面时正好是以正五边形其中一条边的正三角形即可得出符合要求的活动区域【详解】根据正五棱柱形状的建筑物它的俯视图可知当只能看到建筑物解析:5【分析】根据正五棱柱形状的建筑物,它的俯视图,可知当只能看到建筑物的一个侧面时,正好是以正五边形其中一条边的正三角形,即可得出符合要求的活动区域.根据正五棱柱形状的建筑物,它的俯视图,可知,当只能看到建筑物的一个侧面时,他的活动区域是以每一条正五边形的边长为以其中一条边的正三角形,∴当只能看到建筑物的一个侧面时,他的活动区域有 5个,是以每一条边构成的等边三角形.故答案为5.【点睛】此题主要考查了视点、视角与盲区,根据题意得出当只能看到建筑物的一个侧面时的盲区是以正五边形其中一条边的正三角形是解决问题的关键.18.48【分析】观察该几何体的三视图发现该几何体为正六棱柱然后根据提供的尺寸求得其侧面积即可【详解】由三视图知该几何体是底面边长为2高为4的正六棱柱∴其侧面积之和为2×4×6=48故答案为48【点睛】本解析:48【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【详解】由三视图知该几何体是底面边长为2、高为4的正六棱柱,∴其侧面积之和为2×4×6=48.故答案为48.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.19.15π【解析】试题分析:由三视图可知这个几何体是母线长为5高为4的圆锥∴a=2=6∴底面半径为3∴侧面积为:π×5×3=15π考点:1三视图;2圆锥的侧面积解析:15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.20.14【分析】利用同时同地物的高与影长成正比列式计算即可【详解】解:设旗杆高度为xm由題意得解得:x=14故答案为14【点睛】本题考查了相似三角形的应用掌握同时同地物高与影长成正比例是解答本题的关键解析:14【分析】利用同时同地物的高与影长成正比列式计算即可.解:设旗杆高度为xm 由題意得,2=321x 解得:x=14 故答案为14.【点睛】本题考查了相似三角形的应用,掌握同时同地物高与影长成正比例是解答本题的关键.三、解答题21.无22.无23.无24.无25.无26.无。
第五章投影与视图 2024--2025学年北师大版九年级数学上册专题一投影【知识聚焦】投影通常考查画图与计算两个方面:画图可根据投影的定义,利用平行投影中光线平行为已知条件;中心投影常利用两条直线相交确定光;计算常利用相似知识解决.1. 投影的相关概念物体在光线的照射下,在某个平面内形成的影子叫做投影. 这时,照射光线叫做投影线,影子(投影)所在的平面叫做投影面.2. 平行投影的概念由平行光线形成的投影是平行投影. (注意:平行投影的投影线都是平行的)3. 正投影的概念投影线垂直于投影面产生的投影叫做正投影. 在实际作图中,正投影被广泛应用,主要有线段、平面图形及立体图形.4. 中心投影的概念由同一点(点光) 发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)5. 视点、视线和盲区的概念由同一点(点光)发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)【典例精讲】题型1 平行投影的应用【例1】如图所示,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一段高度未知的电线杆 CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量;某一时刻,在太阳光照射下,旗杆落在围墙的影子 EF的长度为2米,落在地面上的影子BF的长度为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长度为5米. 依据这些数据,该小组的同学计算出了电线杆的高度.(1) 该小组的同学在这里利用的是投影的有关知识进行计算的.(2) 试计算出电线杆的高度,并写出计算过程.举一反三。
1. 如图所示,该小组发现8米高的旗杆DE 的影子 EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动. 小刚身高1.6米,测得其影长为2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长度) 为2米,求小桥所在圆的半径.题型 2 中心投影的应用【例2】如图所示,不透明圆锥体 DEC 放在直线 BP 所在的水平面上且 BP 过圆锥底面的圆心,圆锥的高为23m,底面圆半径为2m,一点光位于点 A处,照射到圆锥体后,在水平面上留下的影长BE=4m.(1) 求∠ABC的度数;(2) 若∠ACP=2∠ABC, 求光A距水平面的高度.举一反三2. 小明现有一根2m长的竹竿,他想测出自家门口马路上一盏路灯的高度,但又不能直接测量,他采用了如下办法:①先走到路旁的一个地方,竖直放好竹竿,测量此时的影长为1m;②沿竹竿影子的方向向远处走了两根竹竿的长度4m,然后又竖直放好竹竿,测量此时竹竿的影子长正好为2m.小明说他可以计算出路灯的高度,他如何计算?题型3 盲区的实际应用问题【例3】如图所示,AB 表示一坡角为60°、高为2003米的山坡,一架距地面1000 米的飞机(点C)在山前飞行,此时从飞机看山顶A的俯角为30°.(1) 请在图中画出飞机向山后看的盲区的大小;(2) 求当飞机继续向高处飞多少米时向山后看无盲区?举一反三3. 如图所示,左边的楼高,AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P 位于距C点 15m处.(1) 请画出从A 处能看到的地面上距离点 C 最近的点,这个点与点C之间的距离为多少?(2) 从A 处能看见目标P吗? 为什么?题型 4 几何知识型问题【例4】如图所示,已知一纸板ABCD的形状为正方形,其边长为10cm,AD,BC与投影面β平行,AB,CD与投影面β不平行,正方形在投影面β上的正投影为. A₁B₁C₁D₁,若∠ABB₁=45°,求正投影A₁B₁C₁D₁的面积.举一反三4. 如图所示,在Rt△ABC中,∠C=90°,在阳光的垂直照射下,点C 落在斜边AB上的点 D.(1) 试探究线段AC,AB和AD 之间的关系,并说明理由;(2) 线段BC,AB和BD之间也有类似的关系吗?专题二视图【知识聚焦】对同一个物体从不同方向看,可以得到不同的视图,画一个物体的三视图(主视图、俯视图、左视图)是有具体规定的.主视图、俯视图:长对正;主视图、左视图:高平齐;俯视图、左视图:宽相等.可简单记为口诀:主、俯长对正;主、左高平齐;俯、左宽相等.其次是:看得见,画实线;看不见,画虚线.有了三视图,我们既可以由几何体画出其三视图,也可以由物体的三种视图还原几何体的形状,从而求出几何体的表面积和体积.【典例精讲】题型1 物体三视图【例1】如图所示是一个螺母的示意图,它的俯视图是 ( )举一反三1. 如图所示的几何体的俯视图是 ( )题型 2 组合体识别型应用问题【例2】图中的三视图所对应的几何体是( )举一反三2. 如图所示的几何体的三视图是 ( )题型3 截面三视图识别型应用问题【例3】如图所示,一个正方体被截去四个角后得到一个几何体,它的俯视图是 ( )举一反三3. 如图所示是一个正方体截去一角后得到的几何体,它的主视图是( )题型4 三视图与几何体求解型应用问题【例4】如图是某几何体的三视图,则该几何体的体积是( )A.183B.543C.1083D.2163举一反三4. 如图所示是某几何体的三视图,根据图中数据,该几何体的体积为( )A. 60πB. 70πC. 90πD. 160π题型5 组合体计数型应用问题【例5】如图所示是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的个数是 ( )A. 9个B. 8个C. 7个D. 6个举一反三5. 如图所示是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.题型6 规律探究思想型问题【例6】(1)如图1是用积木摆放的一组图案,观察图案并探索:第五个图案中共有块积木,第n个图案中共有块积木.(2)一样大小的小立方体,如图2所示那样,堆放在房间一角,若按此规律一共垒了十层,这十层中看不见的木块共有多少个?举一反三6. 如图1是棱长为a的小正方体,图2和图3是由这样的小正方体摆放而成的几何体. 按照这样的方法继续摆放,自上而下分别叫第1层、第2层……第n层.(1) 用含n的代数式表示第n层的小正方体的个数;(2) 求第10层小正方体的个数.。
初三数学投影与视图试题答案及解析1.用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】从上面看可得到一个有2个小正方形组成的长方形.故选A.【考点】三视图2.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()【答案】A.【解析】从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A.【考点】简单组合体的三视图.3.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】C.【解析】∵俯视图是圆,∴排除A,D;∵主视图与左视图均是长方形,∴排除B.故选C.【考点】由三视图判断几何体.4.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.【答案】D【解析】俯视图是从物体上面看所得到的图形.从几何体的上面看俯视图是,故选:D.【考点】简单几何体的三视图.5.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.6.下面四个立体图形中,主视图为圆的是()【答案】B【解析】长方体的主视图是长方形,球的主视图是圆,圆锥的主视图是三角形,圆柱的主视图是长方形.故选B.7.如图是某物体的三视图,则这个物体的形状是()A.四面体B.直三棱柱C.直四棱柱D.直五棱柱【答案】B【解析】由主视图知物体是三棱柱,由左视图和俯视图知是直三棱柱,故选B.8.如图所示,几何体的主视图是 ()【答案】B【解析】主视图反映的是物体的长和高,是从物体的正面看到的图形,故应选B.9.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是___ ___ ,影子的长短随人的位置的变化而变化的是___ .【答案】太阳光下形成的影子;灯光下形成的影子.【解析】根据平行投影和中兴投影的性质分别分析得出答案即可.试题解析:根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.考点: 1.平行投影;2.中心投影.10.如图,空心圆柱的主视图是()A.B.C.D.【答案】A.【解析】如图所示,空心圆柱体的主视图是圆环.故选A.【考点】简单组合体的三视图.11.下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是A.正方体B.圆柱C.圆锥D.球【答案】A【解析】俯视图是从物体上面看所得到的图形,因此,正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆。
图形的变化——投影与视图1一.选择题(共9小题)1.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A.6 B.8 C.10 D.122.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15 C.10 D.3.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球4.如图所示的几何体的俯视图是()A.B.C.D.5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆锥D.球6.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.7.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.8.将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.9.如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.二.填空题(共7小题)10.写出一个在三视图中俯视图与主视图完全相同的几何体_________.11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是_________.12.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是_________cm3.13.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为_________.14.写出图中圆锥的主视图名称_________.15.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是_________.(填写序号)16.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是_________.三.解答题(共7小题)17.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)18.如图,S为一个点光源,照射在底面半径和高都为2m的圆锥体上,在地面上形成的影子为EB,且∠SBA=30°.(以下计算结果都保留根号)(1)求影子EB的长;(2)若∠SAC=60°,求光源S离开地面的高度.19.画如图所示几何体的三视图(1)主视图(2)左视图(3)俯视图.20.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为_________;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.22.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是_________(立方单位),表面积是_________(平方单位)(2)画出该几何体的主视图和左视图.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.图形的变化——投影与视图1参考答案与试题解析一.选择题(共9小题)1.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.12考点:由三视图判断几何体.专题:几何图形问题.分析:根据主视图以及俯视图,可得出共有2行,根据俯视图可得出该几何体由2列组成,故可得出小正方体最少块数.解答:解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选A.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.2.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A.B.15 C.10 D.考点:平行投影.专题:计算题.分析:根据题意建立直角三角形DCE,然后根据∠CED=60°,DE=10可求出答案.解答:解:由题意得:DC=2R,DE=10,∠CED=60°,∴可得:DC=DEsin60°=15.故选B.点评:本题考查平行投影的知识,属于基础题,解答本题的关键是建立直角三角形,然后利用三角函数值进行解答.3.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体 C.圆锥D.球考点:简单几何体的三视图.分析:根据主视图是物体从前往后看得到的视图,俯视图是物体从上往下看得到的视图,逐一判断即可.解答:解:A、圆柱的主视图是矩形,俯视图是矩形,主视图与俯视图相同,故A 选项错误;B、正方体的主视图是正方形,俯视图是正方形,主视图与俯视图相同,故B选项错误;C、圆锥的主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故C选项正确;D、球的主视图是圆,俯视图是圆,主视图与俯视图相同,故D选项错误.故选:C.点评:本题考查了简单几何体的三视图及空间想象能力,比较简单.4.如图所示的几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:该几何体的俯视图为:.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看到的视图.5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A.正方体B.圆柱C.圆锥D.球考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.解答:解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.6.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.考点:简单几何体的三视图.专题:常规题型.分析:主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答:解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:找到从上面看所到的图形即可.解答:解:从上面看可得到左右相邻的3个矩形.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看到的视图.8.将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B. C D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,故选:C.点评:本题考查了简单组合体的三视图,注意能看到的棱用实线画出.9.如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从物体左面看,第一层有3个正方形,第二层的中间有1个正方形.故选:C.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.二.填空题(共7小题)10.写出一个在三视图中俯视图与主视图完全相同的几何体球或正方体(答案不唯一).考点:简单几何体的三视图.专题:开放型.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是3.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.解答:解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.故答案为:3.点评:本题考查了简单组合体的三视图,先确定俯视图,再求面积.12.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18cm3.考点:由三视图判断几何体.分析:首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.点评:本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.13.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为5.考点:由三视图判断几何体.分析:易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.解答:解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为:5.点评:本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.14.写出图中圆锥的主视图名称等腰三角形.考点:简单几何体的三视图.分析:找到从正面看所得到的图形即可.解答:解:根据所给的图形,看到的主视图是等腰三角形.故答案为:等腰三角形.点评:本题考查了三视图的知识,用到的知识点是主视图是从物体的正面看得到的视图.15.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是③④.(填写序号)考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:正方体的主视图、左视图和俯视图都是正方形;球的主视图、左视图和俯视图都是圆;圆锥的主视图和左视图是等腰三角形,俯视图是圆;圆柱主视图和左视图是等腰长方形,俯视图是圆;故答案为:③④点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.16.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是5.考点:由三视图判断几何体.分析:根据三视图的特点,几何体的底层有4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.解答:解:几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个.故答案为5.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就能容易得到答案了.三.解答题(共7小题)17.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)考点:平行投影.分析:(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.解答:解:(1)AB=ACtan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A 相切时影长最大)AC2=2AB2=;点评:此题考查了平行投影;通过作高线转化为直角三角形的问题,当太阳光线与圆弧相切时树影最长,是解题的关键.18.如图,S为一个点光源,照射在底面半径和高都为2m的圆锥体上,在地面上形成的影子为EB,且∠SBA=30°.(以下计算结果都保留根号)(1)求影子EB的长;(2)若∠SAC=60°,求光源S离开地面的高度.考点:中心投影;解直角三角形的应用.分析:(1)根据已知得出CH=HE=2m,进而得出HB的长,即可得出BE的长;(2)首先求出CD的长进而得出∠DSC=45°,利用锐角三角函数关系得出SC的长即可.解答:解:(1)∵圆锥的底面半径和高都为2m,∴CH=HE=2m,∵∠SBA=30°,∴HB=2m,∴影长BE=BH﹣HE=2﹣2(m);(2)作CD⊥SA于点D,在Rt△ACD中,得CD=ACcos30°=AC=,∵∠SBA=30°,∠SAB=∠SAC+∠BAC=60°+45°=105°,∴∠DSC=45°,∴SC===2,∴SB=2+BC=2+4,∴SF=SB=(+2)m,答:光源S离开地面的高度为(2+)m.点评:此题主要考查了解直角三角形的应用以及中心投影的知识,熟练应用锐角三角函数关系得出是解题关键.19.画如图所示几何体的三视图(1)主视图(2)左视图(3)俯视图.考点:作图-三视图.分析:(1)根据实际物体,主视图有两列分别不同形状的长方形;(2)左视图为两个长方形拼接而成;(3)俯视图为一大长方形和一小长方形拼接而成.解答:解:(1)主视图如图所示:(2)左视图如图所示:(3)俯视图如图所示:点评:此题主要考查了如何画三视图,具体画法及步骤:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.20.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为26cm2;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.考点:作图-三视图;几何体的表面积.分析:(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.解答:解:(1)该几何体的表面积(含下底面)为:4×4+2+4+4=26(cm2);故答案为:26cm2;(2)如图所示:点评:此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题关键.21.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.考点:中心投影.专题:作图题.分析:根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段MN是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,MN处于视点的盲区.解答:解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,MN处于视点的盲区.点评:本题考查中心投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.22.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是5(立方单位),表面积是22(平方单位)(2)画出该几何体的主视图和左视图.考点:作图-三视图.专题:作图题.分析:(1)几何体的体积为5个正方体的体积和,表面积为22个正方形的面积;(2)主视图从左往右看3列正方形的个数依次为2,1,2;左视图1列正方形的个数为2.解答:解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为:5,22;(2)作图如下:点评:考查组合几何体的计算和三视图的画法;用到的知识点为:主视图,左视图分别是从物体的正面和左面看到的平面图形.23.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.考点:平行投影;相似三角形的性质;相似三角形的判定.专题:计算题;作图题.分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).解答:解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.。
图形的性质——图形认识初步1一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A.3 B.2 C.3或5 D.2或69.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是_________ cm2(结果保留π).11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是_________ .12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=_________ °.13.计算:50°﹣15°30′=_________ .14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=_________ °.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________ .16.已知∠A=43°,则∠A的补角等于_________ 度.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.19.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=_________ ;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.图形的性质——图形认识初步1参考答案与试题解析一.选择题(共9小题)1.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.点评:只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱考点:认识立体图形.专题:几何图形问题.分析:根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.解答:解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.点评:此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.3.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体.分析:根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功 C 考D.祝考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.8.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于()A. 3 B.2 C.3或5 D.2或6考点:两点间的距离;数轴.专题:压轴题.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线 B.垂线段最短C.两点之间线段最短 D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.二.填空题(共7小题)10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).考点:几何体的表面积.分析:直接利用圆柱体侧面积公式求出即可.解答:解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.点评:此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.11.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.专题:规律型.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=45 °.考点:角的计算;翻折变换(折叠问题).分析:根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠AB D,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,得出∠EBD+∠DBF=45°,从而求出答案.解答:解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.13.计算:50°﹣15°30′=34°30′.考点:度分秒的换算.专题:计算题.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解答:解:原式=49°60′﹣15°30′=34°30′.故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′=65 °.考点:角的计算;翻折变换(折叠问题).分析:根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.解答:解:∵∠AEB′是△AEB沿AE折叠而得,∴∠AEB′=∠AEB.又∵∠BEC=180°,即∠AEB′+∠AEB+∠CEB′=180°,又∵∠CEB′=50°,∴∠AEB′==65°,故答案为:65.点评:本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.16.已知∠A=43°,则∠A的补角等于137 度.考点:余角和补角.分析:根据补角的和等于180°计算即可.解答:解:∵∠A=43°,∴它的补角=180°﹣43°=137°.故答案为:137.点评:本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.三.解答题(共8小题)17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.考点:几何体的表面积;由三视图判断几何体.专题:几何综合题.分析:由已知三视图可以确定为四棱柱,首先得到棱柱底面菱形的对角线长,则求出菱形的边长,从而求出它的侧面积和体积.解答:解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.∴菱形的边长为cm,棱柱的侧面积=×4×8=80(cm2).棱柱的体积=×3×4×8=48(cm3).点评:此题考查的是几何体的表面积及由三视图判断几何体,关键是先判断几何体的形状,然后求其侧面积和体积.18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.考点:比较线段的长短.分析:点M的线段AB中点,AM=MB,点P是线段MB的中点,所以MP=PB,由此可得:AM=2MP,所以AP=3MP.解答:解:∵P是MB中点∴MB=2MP=6cm又AM=MB=6cm∴AP=AM+MP=6+3=9cm.点评:本题考点:线段中点的性质,线段的中点将线段分成两个相等的线段,根据题意和图形得出各线段之间的关系,AP=AM+MP得出,然后结合已知条件求出AM和MP的长度,从而求出线段AP的长度.19如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.考点:专题:正方体相对两个面上的文字;二元一次方程的解.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.3与a是相对,5﹣x与y+1相对,y与2x ﹣5相对.解答:解:根据题意,得(4分)解方程组,得x=3,y=1.(6分)点评:注意运用空间想象能力,找出正方体的每个面相对的面20.已知:点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.考点:两点间的距离.分析:先根据D为AC的中点,DC=14cm求出AC的长,再根据BC=AB得出AB=AC,由此可得出结论.解答:解:∵D为AC的中点,DC=14cm,∴AC=2CD=28cm.∵BC=AB,∴AB=AC=×28=cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:EF:FC=1:1:3,求DE、DF的长.考点:两点间的距离.分析:根据BC=2AB,AC=6c m,得出AB,BC的长,再由AD=DB,BE:EF:FC=1:1:3,得出BD,DE,EF的长,即可得出答案.解答:解:∵BC=2AB,AC=6cm,∴AB=2cm,BC=4cm,∵AD=DB,∴AD=BD=1cm,∵BE:EF:FC=1:1:3,∴BE=EF=BC=×4=cm,∴DE=BD+BE=1+=cm,DF=BD+BE+EF=1++=cm.点评:本题考查了两点之间的距离,注意各线段之间的联系是解题的关键.22.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.考点:角平分线的定义.分析:根据角平分线的性质,可得∠BOE的大小,根据角的和差,可得∠BOD的大小,根据角平分线的性质,可得答案.解答:解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.点评:本题考查了角平分线的定义,利用了角平分线的性质,角的和差.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)当∠AOB=80°时,∠MON=40°;(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.考点:角平分线的定义.分析:(1)设∠CON=∠BON=x°,∠MOC=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,由∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°=80,可得∠MON=∠MOB+∠NOB,即可求解.(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON可得结论.解答:解:(1)∵ON平分∠BOC,∴∠CON=∠BON,设∠CON=∠BON=x°,∠MOB=y°,则∠MOC=∠MOB+∠BOC=2x°+y°,又∵OM平分∠AOC∴∠AOM=∠=2x°+y°,∴∠AOB=∠AOM+∠MOB=2x°+y°+y=2(x+y)°∵∠AOB=80°∴2(x+y)°=80°,∴x°+y°=40°∴∠MON=∠MOB+∠NOB=x°+y°=40°故答案为:40°.(2)2∠MON=∠AOB.理由如下:∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.点评:本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.。
投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做,如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。
其中,从看到的图形称为主视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出,在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和。
【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵n边形的直棱柱展开图是两个n边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:简单几何体的三视图例1 (2017•锦州)下列几何体中,主视图和左视图不同的是()A.B.C.D.思路分析:分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.点评:本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图.对应训练1.(2017•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④考点二:简单组合体的三视图例2 (2017•湛江)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.思路分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.对应训练2.(2017•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()圆柱正方体正三棱柱球A.B.C.D.考点三:由三视图判断几何体例3(2017•扬州)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥思路分析:如图所示,根据三视图的知识可使用排除法来解答.解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.例4 (2017•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()碗A.8 B.9 C.10 D.11思路分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练3.(2017•云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(2017•玉林)某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块4.C考点四:几何体的相关计算例5(2017•贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3思路分析:根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.点评:本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.对应训练5.(2017•宁夏)如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π【聚焦中考】1.(2017•烟台)下列水平放置的几何体中,俯视图不是圆的是()A.B.C.D.2.(2017•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.(2017•莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个4.(2017•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.5.(2017•潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是()A.B.C.D.6.(2017•青岛)如图所示的几何体的俯视图是()A.B.C.D.7.(2017•济南)图中三视图所对应的直观图是()A.B.C.D.8.(2017•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.(2017•聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个9.B10.(2017•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm210.C11.(2017•济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.【备考真题过关】一、选择题1.(2017•成都)如图所示的几何体的俯视图可能是()A.B.C.D.2.(2017•昆明)下面几何体的左视图是()A.B.C.D.3.(2017•安徽)如图所示的几何体为圆台,其主(正)视图正确的是()A.B.C.D.4.(2017•本溪)如图放置的圆柱体的左视图为()A.B.C.D.5.(2017•舟山)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.6.(2017•义乌)如图几何体的主视图是()A.B.C.D.7.(2017•株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A .B .C .D .8.(2017•营口)如图,下列水平放置的几何体中,主视图是三角形的是()A .B .C . D.9.(2017•宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .10.(2017•新疆)下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④11.(2017•桂林)下列物体的主视图、俯视图和左视图不全是圆的是( )A .橄榄球B .兵乓球C .篮球D .排球12.(2017•广东)下列四个几何体中,俯视图为四边形的是( )A .B .C .D .13.(2017•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A .B .C .D .正方体 圆柱 圆锥 球14.(2017•泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.15.(2017•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.16.(2017•南平)如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3 B.4 C.5 D.6 17.(2017•宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3 B.4 C.5 D.618.(2017•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.19.(2017•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A.B.C.D.20.(2017•盘锦)如图下面几何体的左视图是()A.B.C.D.21.(2017•茂名)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A.B.C.D.22.(2017•荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.23.(2017•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.24.(2017•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.25.(2017•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.26.(2017•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C. D27.(2017•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.728.(2017•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个29.(2017•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.30.(2017•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.31.(2017•乐山)一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π31.D32.(2017•杭州)如图是某几何体的三视图,则该几何体的体积是()A.183B.543C.1083D.2163二、填空题33.(2017•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.34.(2017•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.35.(2017•无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.。
九年级数学投影与视图专练一.选择题(共4小题)1.(2015?怀化)如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同2.(2014?漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A.7盒B.8盒C.9盒D.10盒3.如图①为五角大楼示意图,图②是它的俯视图、小红站在地面上观察这个大楼,若想看到大楼的两个侧面,小红应站在的区域是()A.A区域B.B区域C.C区域D.三区域都可以4.(2015?庆阳)某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体()A.3 B.4 C.5 D.6二.填空题(共4小题)5.(2011秋?靖江市期末)一个几何体的主视图和俯视图如图所示,若这个几何体最多有m 个小正方体组成,最少有n个小正方体组成,m+n= .6.(2010?上海模拟)某一物体由若干相同的小正方体组成,其主视图,左视图分别如图,则该物体所含小正方体的个数最多有个.7.(2010秋?扬中市校级月考)一个几何体的主视图和俯视图如图所示,若这个几何体最多有个小正方体组成,最少有个小正方体组成.8.(2011秋?焦作期末)由若干相同的小正方体组成新的大正方体,如果不允许切割,至少要个小正方体.三.解答题(共21小题)9.(2012秋?玉田县期末)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B (如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米(精确到)10.(2012秋?福鼎市校级期中)如图,某汽车司机在平坦的公路上行驶,前面出现两个建筑物,在A处司机能看到甲建筑物一部分(把汽车看成一个点),这时视线与公路夹角为30°,乙建筑物的高度为15米;(1)汽车行驶到什么位置时,司机刚好看不到甲建筑物请在图中标出这个D点;(2)若汽车刚好看不到甲建筑物时,司机的视线与与公路夹夹角为45°,请问他行驶了多少米11.(2011秋?宝安区校级期中)如图,一张圆形桌面的直径AB=2米,高度为1.8米,桌面的上方有一盏电灯泡.(1)请在图中画出灯泡发光时,桌面在地上的影子的最大宽度EF;(2)若EF=5米,请求出灯泡离地面的高度.12.(2015?石河子校级模拟)如图是某工件的三视图,求此工件的全面积和体积.13.(2015秋?龙口市校级期中)如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少14.(2015?杭州模拟)有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.15.(2015?余姚市模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)请说出这个几何体模型的最确切的名称是.(2)如图2是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和粗实线表示的三角形),请在网格中画出该几何体的左视图.(3)在(2)的条件下,已知h=20cm,求该几何体的表面积16.(2015?盐城校级模拟)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m 的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.17.(2015秋?萧县校级月考)一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.18.(2014?祁阳县校级模拟)如图所示是一个直四棱柱及正视图和俯视图(等腰梯形).根据图中所给数据可求得俯视图(等腰梯形)的高为.19.(2014?河北模拟)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)20.(2014?杭州模拟)某一空间图形的三视图如图,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的圆以及高为1的矩形;俯视图:半径为1的圆.求此图形的体积.21.(2014?溧水县二模)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)22.(2014?溧水县校级模拟)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积.(结果可保留根号)23.(2014?永嘉县校级模拟)如图,正方形ABCD的边长为4,点M,N,P分别为AD,BC,CD的中点.现从点P观察线段AB,当长度为1的线段l(图中的黑粗线)以每秒1个单位长的速度沿线段MN从左向右运动时,l将阻挡部分观察视线,在△PAB区域内形成盲区.设l的右端点运动到M点的时刻为0,用t(秒)表示l的运动时间.(1)请你针对图(1)(2)(3)中l位于不同位置的情形分别画出在△PAB内相应的盲区,并在盲区内涂上阴影.(2)设△PAB内的盲区面积是y(平方单位),在下列条件下,求出用t表示y的函数关系式.①1≤t≤2.②2≤t≤3.③3≤t≤4.根据①~③中得到的结论,请你简单概括y随t变化而变化的情况.24.(2014?武汉模拟)如图,正方形ABCD的边长为4,点M,N,P分别为AD,BC,CD的中点.现从点P观察线段AB,当长度为1的线段l(图中的黑粗线)以每秒1个单位长的速度沿线段MN从左向右运动时,l将阻挡部分观察视线,在△PAB区域内形成盲区.设l的左端点从M点开始,运动时间为t秒(0≤t≤3).设△PAB区域内的盲区面积为y(平方单位).(1)求y与t之间的函数关系式;(2)请简单概括y随t的变化而变化的情况.25.(2013秋?宜兴市校级期末)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些有色液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (注:图1中∠CBE=α,图2中BQ=3dm).探究:如图1,液面刚好过棱CD,并与棱BB′交于点Q,其三视图及尺寸如图2所示,那么:图1中,液体形状为(填几何体的名称);利用图2中数据,可以算出图1中液体的体积为dm3.(提示:V=底面积×高)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出.若从正面看,若液面与棱C′C或CB交于点P、点Q始终在棱BB′上,设PC=x,请你在下图中把此容器主视图补充完整,并用含x的代数式表示BQ的长度.26.(2014秋?泰兴市校级期末)在某广场儿童游乐园门口需要修建一个由正方体和圆柱组合而成的一个立体图形,已知正方体的边长与圆柱的直径及高相等,都是2m.(1)请画出它的主视图、左视图、俯视图.(2)为了好看,需要在这立体图形表面(不包括正方体的下底面)刷一层油漆,已知油漆每平方米40元,那么一共需要花费多少元(结果保留π)27.(2014秋?尤溪县期末)如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m 长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)28.(2014秋?南昌期末)如图,图①所示的正方体木块,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,分别画出②从正面看、从左面看和从上面看到的平面图形.29.(2013?河北)一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△B CQ×高AB)(3)求α的度数.(注:sin49°=cos41°=,tan37°=)拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3.。