高中新课程选修课的讲授 - 广州市第七中学
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
七中特色班课程设计一、课程目标知识目标:1. 学生能掌握本章节的核心知识点,如公式、概念、原理等,并能够准确理解和运用。
2. 学生能够通过实例分析,掌握知识点在实际问题中的运用,形成知识网络。
技能目标:1. 学生能够运用所学知识解决实际问题,培养解决问题的能力和创新思维。
2. 学生能够在小组合作中,学会沟通、协作,提高团队协作能力。
情感态度价值观目标:1. 学生通过本章节学习,培养对学科的兴趣,激发学习热情。
2. 学生在学习过程中,树立正确的价值观,认识到知识对社会、国家发展的意义。
3. 学生能够养成自主学习、探究学习的习惯,培养终身学习的意识。
课程性质:本课程为特色班课程,注重培养学生的学科素养和创新能力。
学生特点:特色班学生具备较高的学习能力和自主性,对学科有浓厚兴趣。
教学要求:1. 教师应关注学生的个体差异,因材施教,提高教学效果。
2. 教师应注重启发式教学,引导学生主动探究,培养创新思维。
3. 教师应结合实际,设计丰富多样的教学活动,激发学生的学习兴趣和参与度。
二、教学内容本章节依据课程目标,选择以下教学内容:1. 知识点讲解:包括基础理论、核心概念、重要公式等,按照教材章节顺序进行系统讲解。
- 教材章节:第二章“……”(具体章节名称)- 内容列举:……(具体知识点)2. 实例分析:通过典型案例,引导学生运用所学知识解决实际问题。
- 教材章节:第二章“……”(具体章节名称)- 内容列举:……(具体实例)3. 小组讨论与展示:组织学生进行小组合作,针对特定问题进行讨论,培养学生的沟通协作能力。
- 教材章节:第二章“……”(具体章节名称)- 内容列举:……(具体问题)4. 创新思维训练:设计创新性练习,激发学生的创新意识,提高创新能力。
- 教材章节:第二章“……”(具体章节名称)- 内容列举:……(具体练习)教学大纲安排:1. 第一周:讲解基础理论,完成相应练习。
2. 第二周:深入学习核心概念,进行实例分析。
广州市普通高中新课程英语教学指导意见广州市教育局教研室中学英语科为了贯彻落实教育部《基础教育课程改革纲要(试行)》和《普通高中课程方案(实验)》的精神,根据《普通高中英语课程标准(实验)》的内容和要求,结合我市高中英语教学实际情况,提出实施新课程的教学指导意见如下。
一、理解和认识高中英语课程的性质和基本理念《高中英语课程标准》中对英语课程性质进行了比较明确和完整的阐述,明确了高中英语课程是义务教育后普通高级中学的一门主要课程,既具有人文性又具有工具性特征,它对促进人生的发展具有重要意义,也对国家的发展具有重要意义。
高中阶段开设英语课程的目的是使学生通过学习英语来“促进心智、情感、态度与价值观的发展和综合人文素养的提高”,也就是说我们要使英语课程在促进学生的情感发展、价值观形成和综合素质的提高方面发挥积极的促进作用。
与原来的高中英语课程相比,新课程的设计发生了一些变化。
总的来说,它具有以下五个方面的特征:1、强调课程的基础性,即强调高中课程为学生终身学习和发展打基础的重要作用。
2、强调课程应力求提供多种选择以适应个性发展的需求。
课程由必修课程和选修课程两部分组成。
3、强调要优化学习方式,改变学生被动学习的现状,提倡积极主动的参与,强调着眼于对学生的终身学习能力的培养。
4、指出高中英语课程应同时对学生的整体人文素养的形成起到积极的促进作用。
因此,课程应强调关注学生情感,强调与其他学科课程的有机结合。
5、评价改革是课程改革的关键环节之一。
新高中英语课程旨在促进学生全面发展的多元化评价体系广大英语教师应认真学习和研究《高中英语课程标准》及有关新课程改革的文件和书籍,正确理解高中英语课程改革的要旨,做好实验工作。
二、积极稳妥地推进高中英语课改实验工作为了做好高中英语课程改革工作,由广州市教育局教学研究室中学英语科牵头,成立“广州市高中英语课程改革实验工作指导小组”,负责实验工作的整体规划,指导、评估和监督。
广州市普通高中新课程语文教学指导意见广州市普通高中新课程语文教学指导意见为全面贯彻《国务院关于基础教育改革与发展的决定》和教育部《基础教育课程改革纲要(试行)》精神,落实《广东省基础教育课程改革实施意见》和广州市××局教研室《关于当前我市高中新课程教学工作的若干意见》提出的各项任务,深化对新一轮普通高中课程改革的理解,并稳步推进我市高中语文课程改革的进程,结合我市高中语文教学工作的实际,提出如下意见。
一、准确理解高中语文新课程实验的指导思想、基本理念和目标任务,积极推进高中语文新课程实验的开展1、坚持素质教育,树立与时俱进的思想,积极稳妥地开展教学改革实验高中语文新课程实验,必须坚持以“教育要面向现代化、面向世界、面向未来”和“科学发展观”的重要思想为指导,全面贯彻党的教育方针,全面提高高中语文教学质量。
坚持以现代课程观念指导整个高中语文新课程实验工作,把转变语文教学观念作为一项重要任务贯彻于实验的始终。
坚持高中语文课标及教材实验为核心,重点围绕更新语文教学观念,优化语文教学过程,转变语文教学方式,改进语文教学评价等方面开展实验。
坚持“科学性与灵活性相结合”的原则,充分发挥区县教研室、区县中语会、基层学校和广大教师的积极性、主动性和创造性。
坚持“继承和发展”的科学体的教学情景中的基本规律和运用策略。
(2)基本理念《普通高中语文课程标准》在过去的《普通高中语文教学大纲》的基础上,进一步提出了三项基本理念:①全面提高学生的语文素养,充分发挥语文课程的育人功能;②注重语文应用、审美与探究能力的培养,促进学生均衡而有个性地发展;③遵循共同基础与多样选择相统一的原则,构建开放、有序的语文课程。
在实践中,我们要结合实验教科书的基本特点,在教学设计、教学实施的过程中,逐步体会和探索出这些理念的价值。
在充分分析各种教育背景和教育资源配置情况的前提下,在承传教学传统的过程中,要研究语文教学需要调整哪些教学行为,学习和掌握哪些基本的技能,才能体现高中语文新课程的基本理念和基本思想。
第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)312>;(3)312>吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x<;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.1③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.三、巩固练习:1. 练习:教材 P4 1、2、32. 作业:教材P9 第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数232=-+有两个零点.y x x二、讲授新课:1. 教学四种命题的概念:原命题逆命题否命题逆否命题若p,则q若q,则p若⌝p,则⌝q若⌝q,则⌝p ①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练→个别回答→教师点评)2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.23 原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+;(3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题第一课时 1.2.1充分条件与必要条件(一)教学要求:正确理解充分条件、必要条件及充要条件的概念.教学重点:理解充分条件和必要条件的概念. 教学难点:理解必要条件的概念.教学过程:一、复习准备:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假:(1)若0ab =,则0a =;(2)若0a >时,则函数y ax b =+的值随x 的值的增加而增加.二、讲授新课:1. 认识“⇒”与“”:①在上面两个命题中,命题(1)为假命题,命题(2)为真命题. 也就是说,4 命题(1)中由“0ab =”不能得到“0a =”,即0ab=0a =;而命题(2)中由“0a >”可以得到“函数y ax b =+的值随x 的值的增加而增加”,即0a >⇒函数y ax b =+的值随x 的值的增加而增加.②练习:教材P12 第1题2. 教学充分条件和必要条件:①若p q ⇒,则p 是q 的充分条件(sufficient condition ),q 是p 的必要条件(necessary condition ).上述命题(2)中“0a >”是“函数y ax b =+的值随x 的值的增加而增加”的充分条件,而“函数y ax b =+的值随x 的值的增加而增加”则是“0a >”的必要条件.②例1:下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若1x >,则33x -<-;(2)若1x =,则2320x x -+=;(3)若()3x f x =-,则()f x 为减函数;(4)若x 为无理数,则2x 为无理数.(5)若12//l l ,则12k k =.(学生自练→个别回答→教师点评)③练习:P12页 第2题④例2:下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若0a =,则0ab =;(2)若两个三角形的面积相等,则这两个三角形全等;(3)若a b >,则ac bc >;(4)若x y =,则22x y =.(学生自练→个别回答→教师点评)⑤练习:P12页 第3题⑥例3:判断下列命题的真假:(1)“x 是6的倍数”是“x 是2的倍数”的充分条件;(2)“5x <”是“3x <”的必要条件.(学生自练→个别回答→学生点评)3. 小结:充分条件与必要条件的理解.三、巩固练习:作业:教材P14页 第1、2题5 第二课时 1.2.2充要条件教学要求:进一步理解充分条件、必要条件的概念,同时学习充要条件的概念. 教学重点:充要条件概念的理解.教学难点:理解必要条件的概念.教学过程:一、复习准备:指出下列各组命题中,p 是q 的什么条件,q 是p 的什么条件?(1):p a Q ∈,:q a R ∈;(2):p a R ∈,:q a Q ∈;(3):p 内错角相等,:q 两直线平行;(4):p 两直线平行,:q 内错角相等.二、讲授新课:1. 教学充要条件:①一般地,如果既有p q ⇒,又有q p ⇒,就记作p q ⇔. 此时,我们说,p 是q 的充分必要条件,简称充要条件(sufficientand necessary condition ). ②上述命题中(3)(4)命题都满足p q ⇔,也就是说p 是q 的充要条件,当然,也可以说q 是p 的充要条件.2. 教学典型例题:①例1:下列命题中,哪些p 是q 的充要条件?(1):p 四边形的对角线相等,:q 四边形是平行四边形;(2):p 0b =,:q 函数2()f x ax bx c =++是偶函数;(3):p 0,0x y <<,:q 0xy >;(4):p a b >,:q a c b c +>+.(学生自练→个别回答→教师点评)②练习教材P14 练习第1、2题③探究:请同学们自己举出一些p 是q 的充要条件的命题来.④例2:已知:O 的半径为r ,圆心O 到直线l 的距离为d . 求证:d r =是直线l 与O 相切的充要条件.(教师引导→学生板书→教师点评)3. 小结:充要条件概念的理解.三、巩固练习:1. 从“⇒”、“”与“⇔”中选出适当的符号填空:(1)1x >- 1x >; (2)a b >11a b <; (3)2220a ab b -+= a b =; (4)A ⊆∅ A =∅.2. 判断下列命题的真假:6 (1)“a b >”是“22a b >”的充分条件;(2)“a b >”是“22a b >”的必要条件;(3)“a b >”是“22ac bc >”的充要条件;(4)“5a +是无理数”是“a 是无理数”的充分不必要条件;(5)“1x =”是“2230x x --=”的充分条件.3. 作业:教材P14页 习题第3、4题第一课时 1.3.1简单的逻辑联结词(一)教学要求:通过教学实例,了解逻辑联结词“且”、“或”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”的含义,并能正确表述这“p q ∧”、“p q ∨”、这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”.教学过程:一、复习准备:1. 讨论:下列三个命题间有什么关系?(1)菱形的对角线互相垂直;(2)菱形的对角线互相平分;(3)菱形的对角线互相垂直且平分.2. 发现:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.二、讲授新课:1. 教学命题p q ∧:①一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.②规定:当p ,q 都是真命题时,p q ∧是真命题;当p ,q 两个命题中有一个命题是假命题时,p q ∧是假命题.③例1:将下列命题用“且”联结成新命题,并判断它们的真假:(1)p :正方形的四条边相等,q :正方形的四个角相等;(2)p :35是15的倍数,q :35是7的倍数;(3)p :三角形两条边的和大于第三边,q :三角形两条边的差小于第三边. (学生自练→个别回答→教师点评)④例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:(1)12是48与60的公约数;(2)1既是奇数,又是素数;(3)2和3都是素数.(学生自练→个别回答→学生点评)2. 教学命题p q ∨:7 ①一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.②规定:当p ,q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p ,q 两个命题都是假命题时,p q ∨是假命题.例如:“22≤”、“27是7或9的倍数”等命题都是p q ∨的命题.③例3:判断下列命题的真假:(1)34>或34<;(2)方程2340x x --=的判别式大于或等于0;(3)10或15是5的倍数;(4)集合A 是A B ⋂的子集或是A B ⋃的子集;(5)周长相等的两个三角形全等或面积相等的两个三角形全等.(学生自练→个别回答→教师点评)3. 小结:“p q ∧”、“p q ∨”命题的概念及真假三、巩固练习:1. 练习:教材P20页 练习第1、2题2. 作业:教材P20页 习题第1、2题.第二课时 1.3.2简单的逻辑联结词(二)教学要求:通过教学实例,了解逻辑联结词“且”、“或”、“非”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p q ∧”、“p q ∨”、“p ⌝”这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”、“p ⌝”.教学过程:一、复习准备:(1)命题“6是自然数且是偶数”是 的形式;(2)命题“3大于或等于2”是 的形式;(3)命题“正数或0的平方根是实数”是 的形式.2. 下列两个命题间有什么关系?(1)7是35的约数;(2)7不是35的约数.二、讲授新课:1. 教学命题p ⌝:①一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定.②规定:若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. ③例1:写出下列命题的否定,并判断它们的真假:(1)p:tan=是周期函数;y x(2)p:32<;(3)p:空集是集合A的子集;(4)p:若220+=,则,a b全为0;a b(5)p:若,a b都是偶数,则a b+是偶数.(学生自练→个别回答→学生点评)④练习教材P20页练习第3题⑤例2:分别指出由下列各组命题构成的“p q⌝”形式的复∨”、“p∧”、“p q合命题的真假:(1)p:9是质数,q:8是12的约数;(2)p:1{1,2}⊂;∈,q:{1}{1,2}(3)p:{0}∅=;∅⊂,q:{0}(4)p:平行线不相交.2. 小结:逻辑联结词的理解及“p q⌝”这些新命题的正确∨”、“p∧”、“p q表述和应用.三、巩固练习:1. 练习:判断下列命题的真假:(1)23≥.≤;(2)22≤;(3)782. 分别指出由下列命题构成的“p q⌝”形式的新命题的真∨”、“p∧”、“p q假:(1)p:π是无理数,q:π是实数;(2)p:23>,q:8715+≠;(3)p:李强是短跑运动员,q:李强是篮球运动员.3. 作业:教材P20页习题第1、2、3题第一章 1.4全称量词和存在量词及其否定教学要求:了解生活和数学中经常使用的两类量词的含义,并会判断此类命题的真假.教学重点:判断全称命题和特称命题的真假.教学难点:会判断全称命题和特称命题的真假.教学过程:一、复习准备:思考:下列语句是命题吗?⑴与⑶,⑵与⑷之间有什么关系?89 ⑴3x >;⑵21x +是整数;⑶对所有的x R ∈,3x >;⑷对任意一个x Z ∈,21x +是整数.(学生回答——教师点评——引入新课)二、讲授新课:1. 全称量词:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词. 符号:∀全称命题:含有全称量词的命题. 符号:(),x M p x ∀∈例如:对任意的n Z ∈,21n +是奇数;所有的正方形都是矩形都是全称命题.2. 例1 判断下列全称命题的真假.⑴所有的素数都是奇数; ⑵2,11x M x ∀∈+≥;⑶对每一个无理数x ,2x 也是无理数;⑷每个指数函数都是单调函数. (教师分析——学生回答——教师点评)3. 思考:下列语句是命题吗?⑴与⑶,⑵与⑷之间有什么关系?⑴213x +=;⑵x 能被2 和3 整除;⑶存在一个0x R ∈,使0213x +=; ⑷至少有一个0x Z ∈,0x 能被2 和3 整除. (学生回答——教师点评——引入新课)4. 存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做全称量词. 符号:∃特称命题:含有存在量词的命题. 符号:()00,x M p x ∃∈例如:有的平行四边形是菱形;有一个素数不是奇数.5. 例2 判断下列全称命题的真假.⑴有一个实数0x ,使200230x x ++=; ⑵存在两个相交平面垂直于同一条直线;⑶有些整数只有两个正因数;⑷00,0x R x ∃∈≤;⑸有些数的平方小于0. (教师分析——学生回答——教师点评)6.思考:写出下列命题的否定:⑴所有的矩形都是平行四边形;⑵每一个素数都是奇数.7.全称命题P :(),x M p x ∀∈,它的否定P ⌝:()00,x M p x ∃∈⌝;特称命题()00:,P x M P x ∃∈,它的否定():,P x M P x ⌝∀∈⌝.8.例3写出下列命题的否定.⑴所有能被3整除的整数都是奇数;⑵每一个四边形的四个顶点共圆; ⑶对任意x Z ∈,2x 的个位数字不等于3;⑷有一个素数含有三个正因数; ⑸有的三角形是等边三角形. (教师分析——学生回答——教师点评)三、巩固练习10 1. 练习:教材26P ,28P 的练习.2. 精讲精练第6练.3. 作业:29P 1,2第二章 2.1.1椭圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程教学难点:椭圆标准方程的推导教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数.二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b a c =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b +=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -. 通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和11 222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==(教师引导——学生回答)例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c +=-=. 2. 作业:40P 第2题.第二章2.1.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例 1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为22的动点的轨迹方程.12 (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.第二章2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形.方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,13 ()()()()1212,0,,0,,0,,0A a A a B b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比ca称为离心率.记ce a=.可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹. (教师分析——示范书写) 三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程. ⑴经过点()()22,0,0,5P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.第一课时 2.2.1 双曲线及其标准方程教学要求:学生掌握双曲线的定义和标准方程,以及标准方程的推导. 教学重点:双曲线的定义和双曲线的标准方程.教学难点:在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、14 推理等能力. 教学过程: 一、新课导入: 1. 提问:椭圆的定义是什么?椭圆的标准方程是什么?(学生口答,教师板书)2. 在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系,若5,3a b ==,则?c =写出符合条件的椭圆方程。
广州新课标高中英语课广州新课标高中英语课程旨在培养学生的英语综合应用能力,包括听、说、读、写四个方面。
课程内容涵盖了语言知识、语言技能、文化意识、学习策略和情感态度等方面,以适应21世纪全球化背景下对英语能力的需求。
课程目标:1. 培养学生的英语交际能力,使之能够在不同情境中使用英语进行有效沟通。
2. 加强学生的英语阅读能力,能够理解和分析不同文体的英语文本。
3. 提高学生的英语写作技巧,能够撰写不同类型和目的的英语文章。
4. 培养学生的英语听力理解能力,能够听懂并理解英语口语和听力材料。
5. 增强学生的跨文化交际意识,了解不同文化背景下的交流方式和礼仪。
课程内容:1. 基础语言知识:包括词汇、语法、句型结构等,为学生打下坚实的语言基础。
2. 语言技能训练:通过多种教学活动,如角色扮演、小组讨论、辩论赛等,提高学生的英语实际应用能力。
3. 文化意识培养:通过学习英语国家的文化背景,提高学生的跨文化理解力和适应力。
4. 学习策略指导:教授学生有效的英语学习方法和技巧,帮助他们自主学习。
5. 情感态度教育:鼓励学生积极参与英语学习,培养积极的学习态度和自信心。
教学方法:1. 采用任务型教学法,通过完成具体任务来学习语言知识。
2. 利用多媒体教学资源,如视频、音频、网络资源等,丰富教学内容。
3. 鼓励学生进行合作学习,通过小组合作完成学习任务。
4. 定期组织英语角、英语演讲比赛等活动,提高学生的口语表达能力。
评估方式:1. 形成性评价:通过课堂表现、作业完成情况、小组活动等进行持续评估。
2. 终结性评价:通过期中、期末考试来检验学生的学习成果。
3. 综合评价:结合学生的平时表现和考试成绩,进行全面评价。
课程特色:1. 强调实用性,注重学生英语实际应用能力的培养。
2. 融合信息技术,利用网络平台和工具辅助教学。
3. 强化跨文化交流,拓宽学生的国际视野。
通过广州新课标高中英语课程的学习,学生不仅能够掌握扎实的英语基础知识,还能在实际应用中灵活运用英语,为将来的学术发展和职业发展打下坚实的基础。
论思维教学广州七中杜厚生思维教学是指将思维方法作为中学数学课堂教学的一个内容,明确地进行课堂讲授。
近年来,中国教育界正兴起一股教学改革的浪潮。
从数学教育来看,无论是教材、教法、素质教育、能力培养各方面,都有许多不同的方法,正是一派百家争鸣的景象,其中不乏对思维能力与数学能力关系的讨论。
统而观之,有的提出了思维方式对数学学习的影响,如直觉思维的指向性原则、简单性原则的使用;创造性思维中的发散性思维、集中性思维的特点与品质;有的提出了思维规律中形式逻辑与辩证逻辑在数学中的体现;有的研究了思维发展的年龄特征;有的提出了在课堂教学中掌握知识与思维训练并重的的建议与做法;更多的是单论思维的某一类型在教学中的作用,如发散性思维、逆向思维、创造性思维、思维定势、思维的迁移等等在教学中的作用。
不少研究者理论与实践并重,在教学过程中得到了不少有一定说服力的调查数据与实验数据,所有这些工作,都为确立思维教学的地位提供了极为有利的条件。
但同时有事情的另一面。
中国现行的教育制度,特别是教育质量的考核方法,是重知识轻能力,或者口头上说并重,实际上偏重的。
大者如高考、中考,小者如会考、期考、单元考,总是那些知识记忆牢固、解题类型熟悉的学生占优。
特别是在高考这根指挥棒下,无论学生还是教师,学和教的重点都在知识本身,而不在解决实际问题的能力,提到思维教学,师生都有难言之苦。
另外,一部分教师多年来形成了强烈的“授业”意识,课堂教学以统编为本,不敢越雷池半步,自己怎么学回来的,弟子也就怎么学回去。
社会上多年宣扬的“知识就是力量”的观点,影响所及,也使人们偏重知识,以为知识的多少与智力的高低成正比。
前几年,中央及各省市电视台组织的中学生智力竞赛,试题涉及中学生所学的全部科目,时有偏怪题出现。
1986年团中央与中央电视台联合举办的《第四届蒲公英“五四”青年智力竞赛电视公开赛》,一些题目连专家也未必能回答。
作为评委的一位专家也直率地提出自己的意见,认为这不能叫智力竞赛,这只是记忆的竞赛。
附:2007年全国普通高考广东卷中选修课程知识占分比例和分布
2007高考试题中选修部分相关知识纲目表
2007.9.19 选修模块题号题型知识点分值小计
3-1 1
3
6
13
15
19
20
选择题
选择题
选择题
实验题
计算题
计算题
计算题
物理学史
电势差与电势能
带电粒子在匀强
电场中的运动图
象
直流电路综合实
验
带电粒子在匀强
电场中运动
静电场的力电综
合
带电粒子在匀强
磁场中的运动
4
4
4
12
6
17
18
65
3-2
1
7
18 选择题
选择题
计算题
物理学史
交流电
电磁感应与能量
转化
(已
算在
3-1)
4
17
21
3-3
9
10 选择题
选择题
气态方程
内能
4
4
8
3-4 11
12
选择题
选择题
光的本性
机械波
4
4 8
3-5 2
15
17
选择题
计算题
计算题
原子跃迁
原子核的结构
放射线
动量守恒
4
4
4
12。