气凝胶的详细介绍共28页
- 格式:ppt
- 大小:2.56 MB
- 文档页数:28
其实气凝胶是一种固体物质形态,是世界上密度小的固体之一。
一般常见的气凝胶为硅气凝胶,也有碳气凝胶存在。
目前轻的硅气凝胶仅有3毫克每立方厘米,比空气重三倍,所以也被叫做“冻结的烟”或“蓝烟”。
气凝胶气凝胶物理性能包装形式:卷状厚度:3mm,5mm,6mm,10mm。
宽度:910mm,1200mm,1500mm。
密度:200kg/m3。
高适用温度:650℃或800℃。
疏水性:整体疏水。
导热系数:<0.018w/mk(25℃时)。
A1级防火气凝胶特点:孔隙率很高,可高达99.8%;纳米级别孔洞(20~100nm)和三维纳米骨架颗粒(2~5nm);高比表面积,可高达1000m2/g;低密度,可低至0.003g/cm3;气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(mK);强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。
气凝胶物理性能:参数密度12.5-18kg/m3,比表面积500-650m2/g,孔隙率95-98%,孔径20-70nm,孔容3.5ml/g,导热系数0.01-0.018w/mk,疏水性:疏水或亲水两类。
产品特性:1、独特纳米结构材料内部孔隙均在50-80纳米之间,本材料孔隙率高达90%以上。
气凝胶材料不同于传统隔热材料,相比传统隔热材料(玻璃纤维毡,硅酸铝棉)可以在达到同样隔热效果的前提下降低3至8倍的厚度及重量。
2、优越的隔热性能常温下(25℃)导热系数可达到0.015w/mk。
3、良好的耐温性能不同系列的本材料可分别耐受高600℃-1000℃的高温,低温使用范围接近绝对零度。
以上就是对于气凝胶讲述,相信大家已经有所了解,产品在使用时是有着很好的作用,当然我们的产品是有保证的,也有着很好的使用效果。
气凝胶——超级绝热保温材料气凝胶——改变世界的神奇材料二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是3迄今为保温性能最好的材料。
因其具有纳米多孔结构(1~100nm)、低密度(1,500kg/m)、低介电常数(1.1~2.5)、低导热系数(0.003~0.025 w/m•k)、高孔隙率(80,,99 8,)、高比表2面积(200~1000m/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用前景,被称为“改变世界的神奇材料”。
气凝胶的特性及应用特性应用在所有固体材料中热导率最低,建筑节能材料,热学轻质,保温隔热材料,透明,浇铸用模具等。
超低密度材料密度 ICF以及X光激光靶 3(最低可达3kg/m)高比表面积,催化剂,吸附剂,缓释剂、离子交孔隙率多组分。
换剂、传感器等低折射率, Cherenkov探测器,光学透明,光波导,多组分, 低折射率光学材料及其它器件声学低声速声耦合器件低介电常数,微电子行业中的介电材料,电学高介电强度,电极,超级电容器高比表面积。
弹性,高能吸收剂,机械轻质。
高速粒子捕获剂气凝胶的发展世界上第一个气凝胶产品是1931年制备出的。
当时,美国加州太平洋大学(College of the Pacific)的Steven.S. Kistler提出要证明一种具有相同尺寸的连续网络结构的固体“凝胶”,其形状与湿凝胶一致。
证明这种设想的简单方法,是从湿凝胶中去除液体而不破坏固体形状。
如按照通常的技术路线,很难做到这一点。
如果只是简单地让湿凝胶干燥,凝胶将会收缩,常常使原来的形状破坏,破裂成小碎片。
也就是说,这种收缩经常是伴随着凝胶的严重破裂。
Kistler推测:凝胶的固体构成是多微孔的,液体蒸发时的液一气界面存在较大的表面张力,该表面张力使孔道坍塌。
此后,Kistler发现了气凝胶制备的关键技术(Kistler,1932)。
气凝胶的15个吉尼斯记录(原创版)目录1.气凝胶的概述2.气凝胶的吉尼斯记录种类3.气凝胶的特点4.气凝胶的应用领域5.气凝胶的未来发展前景正文气凝胶是一种新型的高科技材料,它具有低密度、高孔隙度、低热导率等优异性能,因此被广泛应用于各个领域。
气凝胶由于其独特的性质,已经创造了 15 个吉尼斯世界纪录,下面我们将详细介绍这些记录。
1.气凝胶的概述气凝胶是一种由纳米级颗粒组成的多孔材料,它具有良好的绝热性能、低热导率和低密度。
气凝胶的主要成分是硅、氧、碳等元素,它具有很高的孔隙度,可以达到 90% 以上。
2.气凝胶的吉尼斯记录种类气凝胶目前保持着 15 个吉尼斯世界纪录,包括以下记录:(1) 最轻的固体材料:气凝胶的密度非常低,最低可以达到 0.16mg/cm3,因此被认为是世界上最轻的固体材料。
(2) 最高的孔隙度:气凝胶的孔隙度可以达到 90% 以上,因此具有非常好的绝热性能。
(3) 最低的热导率:气凝胶的热导率非常低,可以低至 0.013 W/m·K,因此被广泛应用于绝热材料。
(4) 最长的使用寿命:气凝胶具有非常长的使用寿命,可以长达 20 年以上。
(5) 最高的吸附能力:气凝胶具有非常高的吸附能力,可以吸附大量的气体和液体。
3.气凝胶的特点气凝胶具有以下特点:(1) 低密度:气凝胶的密度非常低,可以低至 0.16 mg/cm3。
(2) 高孔隙度:气凝胶的孔隙度可以达到 90% 以上。
(3) 低热导率:气凝胶的热导率非常低,可以低至 0.013 W/m·K。
(4) 耐高温:气凝胶可以耐受高温,最高可以达到 1200℃。
(5) 耐腐蚀:气凝胶具有很好的耐腐蚀性能,可以抵抗各种化学物质的侵蚀。
4.气凝胶的应用领域气凝胶由于其优异的性能,被广泛应用于各个领域,包括:(1) 绝热材料:气凝胶具有非常好的绝热性能,因此被广泛应用于建筑、家电等领域。
(2) 吸附材料:气凝胶具有非常高的吸附能力,因此被广泛应用于吸附气体和液体。
气凝胶的特性
孔隙率很高,可高达99.8% ;
纳米级别孔洞和三维纳米骨架颗粒;
高比表面积;
极低密度;
气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(m.K);强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。
性能参数
密度 12.5-18
比表面积 1400-1630
孔隙率 95-98%
孔径 7-14nm
孔容 3.5ml/g
导热系数 <0.018
产品性能:
1、超乎寻常的保温隔热性能
2、优异的吸附性能
3、高度多孔结构
4、高度疏水性能
5、透光度好
6、极低的密度
7、优良的隔音效果
8、良好的阻燃效果
9、绿色环保,无毒,无腐蚀,不含任何对人体有害的物质。
二氧化硅气凝胶简介气凝胶(aerogels)通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。
气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。
气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。
最常见的气凝胶为二氧化硅气凝胶。
SiO2气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m•k)。
正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。
一、气凝胶发展历史早在1931年,Steven.S.Kistler就开始研究气凝胶。
他最初采用的方法是用硅酸钠水溶液进行酸性浓缩,用超临界水再溶解二氧化硅,用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。
这种材料的特点是透明、低密度、高孔隙率。
但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。
上世纪七十年代,在法国政府的支持下,Stanislaus Teichner在寻找一种用于存储氧和火箭燃料的多孔材料的过程中,找到一种新的合成方法,即把溶胶- 凝胶化学方法用于二氧化硅气凝胶的制备中。
这种方法推动了气凝胶科学的发展。
此后,气凝胶科学和技术得到了快速发展。
1983年Arlon Hunt 在Berkeley 实验室发现可用更安全、更廉价的二氧化硅气凝胶制作方法。
与此同时,微结构材料研究小组发现可用具有更低临界温度和临界压力的二氧化碳超临界流体取代乙醇作为超临界干燥的流体,使得超临界干燥技术得以向实用化阶段迈进。
八十年代后期,Larry Hrubesh 领导的研究者在Lawrence Livermore National Laboratory (LLNL) 制备了世界上最轻的二氧化硅气凝胶,密度是0.003 g/cm 3,仅有空气的3倍。