【苏教版】【步步高】2014届高三数学(理)大一轮复习学案第2章学案9幂函数
- 格式:doc
- 大小:334.50 KB
- 文档页数:8
§3.3 幂函数一、基础过关1.下列结论错误的个数为________.①幂函数图象一定过原点;②当α<0时,幂函数y =x α是减函数;③当α>1时,幂函数y =x α是增函数;④函数y =x 2既是二次函数,也是幂函数.2.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为________. 3.函数y =x 12-1的图象关于x 轴对称的图象大致是______.(填图象编号)4.下列表示y =x 23的图象的是________.(填图象编号)5.给出以下结论:①当α=0时,函数y =x α的图象是一条直线;②幂函数的图象都经过(0,0),(1,1)两点;③若幂函数y =x α的图象关于原点对称,则y =x α在定义域内y 随x 的增大而增大; ④幂函数的图象不可能在第四象限,但可能在第二象限.则正确结论的个数为________.6.函数y =x 12+x -1的定义域是________. 7.已知函数f (x )=(m 2+2m )·xm 2+m -1,m 为何值时,函数f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.8.已知幂函数f (x )=xm 2-m -3为奇函数,且在区间(0,+∞)上是减函数(m ∈N *,且m ≥2).(1)求f (x );(2)比较f (-2 008)与f (-2)的大小.二、能力提升9.设a =,b =,c =,则a ,b ,c 的大小关系为________.10.函数f (x )=x α,x ∈(-1,0)∪(0,1),若不等式f (x )>|x |成立,则在α∈{-2,-1,0,1,2}的条件下,α可以取值的个数是________.11.已知幂函数f (x )的图象过点(2,2),幂函数g (x )的图象过点⎝⎛⎭⎫2,14. (1)求f (x ),g (x )的解析式;(2)当x 为何值时,①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).三、探究与拓展12.已知幂函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a )-m 3的a 的取值范围.答案1.32.13.②4.②5.16.(0,+∞)7.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1,m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1,m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2,m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.8.解 (1)因为幂函数f (x )=xm 2-m -3为奇函数,且m ∈N *,所以m 2-m -3为奇数.因为f (x )在区间(0,+∞)上是减函数,所以m 2-m -3<0,又m ∈N *,且m ≥2,当m =2时,m 2-m -3=4-2-3=-1,当m =3时,m 2-m -3=3>0,即m >3时,m 2-m -3>0.所以f (x )=x -1. (2)由(1)知f (x )=,所以f (-2 008)==-12 008, f (-2)==-12. 因为-12 008>-12,所以f (-2 008)>f (-2).9.a >c >b10.211.解 (1)设f (x )=x α,∵其图象过点(2,2),故2=(2)α,解得α=2,∴f (x )=x 2.设g (x )=x β,∵其图象过点⎝⎛⎭⎫2,14,∴14=2β, 解得β=-2,∴g (x )=x -2. (2)在同一坐标系下作出f (x )=x 2与g (x )=x-2的图象,如图所示.由图象可知:f (x ),g (x )的图象均过点(-1,1)与(1,1).∴①当x >1或x <-1时,f (x )>g (x );②当x =1或x =-1时,f (x )=g (x );③当-1<x <1且x ≠0时,f (x )<g (x ).12.解 ∵函数在(0,+∞)上递减,∴m 2-2m -3<0,解得-1<m <3.∵m ∈N *,∴m =1,2.又函数的图象关于y 轴对称,∴m 2-2m -3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1.而f (x )=x -13在(-∞,0),(0,+∞)上均为减函数, ∴(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a . 解得a <-1或23<a <32. 故a 的取值范围为⎩⎨⎧⎭⎬⎫a |a <-1或23<a <32.。
学案10 函数的图象导学目标: 1.掌握作函数图象的两种基本方法:描点法,图象变换法.2.掌握图象变换的规律,能利用图象研究函数的性质.自主梳理1.应掌握的基本函数的图象有:一次函数、二次函数、幂函数、指数函数、对数函数等.2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性);④画出函数的图象.3.利用基本函数图象的变换作图: (1)平移变换:函数y =f (x +a )的图象可由y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到;函数y =f (x )+a 的图象可由函数y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到.(2)伸缩变换:函数y =f (ax ) (a >0)的图象可由y =f (x )的图象沿x 轴伸长(0<a <1)或缩短(____)到原来的1a倍得到;函数y =af (x ) (a >0)的图象可由函数y =f (x )的图象沿y 轴伸长(____)或缩短(______)为原来的____倍得到.(可以结合三角函数中的图象变换加以理解)(3)对称变换:①奇函数的图象关于______对称;偶函数的图象关于____轴对称; ②f (x )与f (-x )的图象关于____轴对称; ③f (x )与-f (x )的图象关于____轴对称; ④f (x )与-f (-x )的图象关于______对称;⑤f (x )与f (2a -x )的图象关于直线______对称;⑥曲线f (x ,y )=0与曲线f (2a -x,2b -y )=0关于点______对称;⑦|f (x )|的图象先保留f (x )原来在x 轴______的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;⑧f (|x |)的图象先保留f (x )在y 轴______的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.自我检测1.(·北京改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点向(填“左”或“右”)________平移________个单位长度,再向(填“上”或“下”)________平移________个单位长度.2.(·烟台一模)已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是________(填序号).①y =f (|x |);②y =|f (x )|;③y =f (-|x |);④y =-f (-|x |).3.函数f (x )=1x-x 的图象关于________对称.4.使log 2(-x )<x +1成立的x 的取值范围是________.5.(·淮安模拟)已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________(填序号).探究点一 作图例1 (1)作函数y =|x -x 2|的图象;(2)作函数y =x 2-|x |的图象;(3)作函数y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 作函数y =1|x |-1的图象.探究点二 识图 例2 (1)函数2log 2xy =|的图象大致是________(填入正确的序号).(2)函数f (x )的部分图象如图所示,则函数f (x )的解析式是下列四者之一,正确的序号为________.①f (x )=x +sin x ;②f (x )=cos xx;③f (x )=x cos x ;④f (x )=x ·(x -π2)·(x -3π2).变式迁移2 已知y =f (x )的图象如图所示,则y =f (1-x )的图象为________(填序号).探究点三 图象的应用例3 若关于x 的方程|x 2-4x +3|-a =x 至少有三个不相等的实数根,试求实数a 的取值范围.变式迁移3 (·全国Ⅰ)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.数形结合思想例 (5分)(·北京东城区一模)定义在R 上的函数y =f (x )是减函数,且函数y =f (x -1)的图象关于(1,0)成中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4时,ts的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤-12,1 解析 因函数y =f (x -1)的图象关于(1,0)成中心对称,所以该函数的图象向左平移一个单位后的解析式为y =f (x ),即y =f (x )的图象关于(0,0)对称,所以y =f (x )是奇函数.又y =f (x )是R 上的减函数,所以s 2-2s ≥t 2-2t ,令y =x 2-2x =(x -1)2-1,图象的对称轴为x =1,当1≤s ≤4时,要使s 2-2s ≥t 2-2t ,即s -1≥|t -1|,当t ≥1时,有s ≥t ≥1,所以14≤ts≤1;当t <1时,即s -1≥1-t ,即s +t ≥2,问题转化成了线性规划问题,画出由1≤s ≤4,t <1,s +t ≥2组成的不等式组的可行域.t s为可行域内的点到原点连线的斜率,易知-12≤ts<1.【突破思维障碍】当s ,t 位于对称轴x =1的两边时,如何由s 2-2s ≥t 2-2t 判断s ,t 之间的关系式,这时s ,t 与对称轴x =1的距离的远近决定着不等式s 2-2s ≥t 2-2t 成立与否,通过数形结合判断出关系式s -1≥1-t ,从而得出s +t ≥2,此时有一个隐含条件为t <1,再结合1≤s ≤4及要求的式子的取值范围就能联想起线性规划,从而突破了难点.要画出s ,t 所在区域时,要结合t s的几何意义为点(s ,t )和原点连线的斜率,确定s 为横轴,t 为纵轴.【易错点剖析】当得到不等式s 2-2s ≥t 2-2t 后,如果没有函数的思想将无法继续求解,得到二次函数后也容易只考虑s ,t 都在二次函数y =x 2-2x 的增区间[1,+∞)内,忽略考虑s ,t 在二次函数对称轴两边的情况,考虑了s ,t 在对称轴的两边,也容易漏掉隐含条件t <1及联想不起来线性规划.1.掌握作函数图象的两种基本方法(描点法,图象变换法),在画函数图象时,要特别注意到用函数的性质(如单调性、奇偶性等)解决问题.2.合理处理识图题与用图题(1)识图.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性.(2)用图.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具,要重视数形结合解题的思想方法,常用函数图象研究含参数的方程或不等式解集的情况.(满分:90分)一、填空题(每小题6分,共48分)1.(·重庆改编)函数f (x )=4x+12x 的图象关于______对称.2.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围为__________________.3.(·北京海淀区一模)在同一坐标系中画出函数y =log a x ,y =a x,y =x +a 的图象,可能正确的是________(填序号).4.设函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0x 2-2x +1, x >0,若关于x 的方程f 2(x )-af (x )=0恰有四个不同的实数解,则实数a 的取值范围为________.5.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为________.6.为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x的图象向________平移________个单位长度.7.(·连云港模拟)若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有2个公共点,则a 的取值范围为________.8.如图所示,向高为H 的水瓶A 、B 、C 、D 同时以等速注水,注满为止.(1)若水量V 与水深h 函数图象是下图的(a),则水瓶的形状是________;(2)若水深h 与注水时间t 的函数图象是下图的(b),则水瓶的形状是________. (3)若注水时间t 与水深h 的函数图象是下图的(c),则水瓶的形状是________; (4)若水深h 与注水时间t 的函数的图象是图中的(d),则水瓶的形状是________.二、解答题(共42分)9.(14分)(·无锡模拟)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.10.(14分)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.11.(14分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.答案 自主梳理3.(1)左 右 |a | 上 下 |a | (2)a >1 a >1 0<a <1 a (3)①原点 y ②y ③x ④原点 ⑤x =a ⑥(a ,b ) ⑦上方 ⑧右方 自我检测1.左 3 下 1 2.③3.坐标原点解析 ∵f (-x )=-1x +x =-⎝ ⎛⎭⎪⎫1x -x =-f (x ),∴f (x )是奇函数,即f (x )的图象关于原点对称.4.(-1,0)解析 作出y =log 2(-x ),y =x +1的图象知满足条件的x ∈(-1,0).5.②解析 由f (4)·g (-4)<0得a 2·log a 4<0, ∴0<a <1. 课堂活动区例1 解 (1)y =⎩⎪⎨⎪⎧x -x 2, 0≤x ≤1,-(x -x 2),x >1或x <0, 即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎫x -122-14, x >1或x <0,其图象如图所示.(2)y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -122-14,x ≥0,⎝ ⎛⎭⎪⎫x +122-14,x <0,其图象如图所示.(3)作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,加上y =⎝ ⎛⎭⎪⎫12x的图象中x >0的部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 解 定义域是{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).例2 解题导引 对于给定的函数的图象,要能从图象的左右、上下分布范围、变化 趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.答案 (1)③ (2)③解析 (1)y =2|log 2x |=⎩⎪⎨⎪⎧1x(0<x <1)x (x >1),所以图象画法正确的应为③.(2)由图象知f (x )为奇函数,排除④;又0,±π2,±32π为方程f (x )=0的根,故应为③.变式迁移2 ①解析 因为f (1-x )=f (-(x -1)),故y =f (1-x )的图象可以由y =f (x )的图象按照如下变换得到:先将y =f (x )的图象关于y 轴翻折,得y =f (-x )的图象,然后将y =f (-x )的图象向右平移一个单位,即得y =f (-x +1)的图象.故应为①.例3 解题导引 原方程重新整理为|x 2-4x +3|=x +a ,将两边分别设成一个函数并作出它们的图象,即求两图象至少有三个交点时a 的取值范围.方程的根的个数问题转化为函数图象交点个数问题,体现了《考纲》中函数与方程的重要思想方法.解 原方程变形为|x 2-4x +3|=x +a ,于是,设y =|x 2-4x +3|,y =x +a ,在同一坐标系下分别作出它们的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a y =-x 2+4x -3,得,x 2-3x +a +3=0, 由Δ=9-4(a +3)=0,得a =-34.由图象知当a ∈[-1,-34]时方程至少有三个根.变式迁移3 (1,54)解析 y =x 2-|x |+a =⎩⎪⎨⎪⎧(x -12)2+a -14, x ≥0,(x +12)2+a -14, x <0.当其图象如图所示时满足题意.由图知⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.课后练习区 1.y 轴解析 f (x )=2x +2-x,因为f (-x )=f (x ),所以f (x )为偶函数.所以f (x )图象关于y 轴对称. 2.(-1,0)∪(1,+∞)解析 当x ∈(0,+∞)时,f (x )=lg x ,可以画出函数f (x )在(0,+∞)上的图象.又f (x )为R 上的奇函数,其图象关于原点对称,根据对称性,画出函数在(-∞,0)上的图象.如图.由图象可知,f (x )>0的解集为(-1,0)∪(1,+∞). 3.④解析 ①、②、③中直线方程中的a 的范围与对数函数中的a 的范围矛盾. 4.0<a <1解析 由f 2(x )-af (x )=0可得f (x )=0或f (x )=a ,画出函数y =f (x )的图象如图所示,显然当f (x )=0时,只有一个实数解,所以f (x )=a 时应有三个实数解. 结合图象不难得到0<a <1. 5.-1解析 ∵b >0,∴前两个图象不是给出的二次函数图象,又后两个图象的对称轴都在y 轴右边,∴-b2a>0,∴a <0,又∵图象过原点,∴a 2-1=0,∴a =-1. 6.右 1解析 ∵y =3×(13)x =(13)x -1,∴y =(13)x 向右平移1个单位便得到y =(13)x -1.7.(0,12)解析 规范作图如下:由图知0<2a <1,所以a ∈(0,12).8.(1)A (2)D (3)B (4)C9.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.…………………………………………(3分) (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4, x ≥4,-x (x -4)=-(x -2)2+4, x <4.………………………………………………(7分) f (x )的图象如图所示.(3)由图可知,f (x )的减区间是[2,4].……………………………………………………(9分) (4)由图象可知f (x )>0的解集为{x |0<x <4或x >4}.………………………………………………………………………(12分) (5)∵f (5)=5>4,由图象知,函数在[1,5)上的值域为[0,5).……………………………………………(14分)10.解 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,由图象知显然不成立.……………………………………………………(5分)当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方, 只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log 2a ≥1.………………………………………………………………(12分) ∴1<a ≤2.………………………………………………………………………………(14分)11.解 (1)方法一 ∵x >0,∴g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),……………………………………………………………(4分) 因而只需m ≥2e ,则g (x )=m 就有根.…………………………………………………(6分)方法二 作出g (x )=x +e2x的图象如图:……………………………………………………………………………………………(4分) 可知若使g (x )=m 有根,则只需m ≥2e.………………………………………………(6分)方法三 解方程由g (x )=m ,得x 2-mx +e 2=0.此方程有大于零的根,故⎩⎪⎨⎪⎧m 2>0Δ=m 2-4e 2≥0…………………………………………(4分)等价于⎩⎪⎨⎪⎧m >0m ≥2e 或m ≤-2e ,故m ≥2e.…………………………………………………(6分)(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.其对称轴为x =e ,开口向下,最大值为m -1+e 2.……………………………………………………………………(10分)故当m -1+e 2>2e ,即m >-e 2+2e +1时, g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).………………………………………………(14分)。
2.1.1函数的概念和图象(二)一、基础过关1.若函数g(x+2)=2x+3,则g(3)的值是________.2.函数f(x)=x-2+2-x的定义域是________,值域是________.3.已知f满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=________.4.函数y=1-1x-1的图象是________(填序号).5.若函数y=f(x)的图象经过点(0,1),那么函数y=f(x+4)的图象经过点________.6.若g(x)=1-2x,f[g(x)]=1-x2x2,则f(12)的值为________.7.已知函数f(x)=6x-1-x+4:(1)求函数f(x)的定义域;(2)求f(-1),f(12)的值.8.画出下列函数的图象:(1)y=|x-1|+|x+1|;(2)y=x|2-x|.二、能力提升9.已知函数f(x),g(x)分别由下表给出,则满足f(g(x))=g(f(x))的x值为________.10.若函数f (x )=mx 4x -3(x ≠34)在定义域内恒有f [f (x )]=x ,则m =________.11.设f (x )表示-x +6和-2x 2+4x +6中较小者,则函数f (x )的最大值是________. 12.用描点法画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0)、f (1)、f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域. 三、探究与拓展 13.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.答案1.5 2.{2} {0} 3.3p +2q 4.② 5.(-4,1) 6.157.解 (1)根据题意知x -1≠0且x +4≥0, ∴x ≥-4且x ≠1,即函数f (x )的定义域为[-4,1)∪(1,+∞). (2)f (-1)=6-2--1+4=-3- 3.f (12)=612-1-12+4=611-4=-3811.8.解 (1)y =|x -1|+|x +1|={ -2x ,x ≤-1, 2,-1<x ≤1, 2x ,x >1.图象如图(1)所示.(2)y =x |2-x |={ -x 2+2x ,x ≤2, x 2-2x ,x >2.图象如图(2)所示. 9.2,4 10.3 11.612.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4]. 13.解 已知函数y =1ax +1(a <0且a 为常数), ∵1a x +1≥0,a <0,∴x ≤-a , 即函数的定义域为(-∞,-a ], ∵函数在区间(-∞,1]上有意义, ∴(-∞,1]⊆(-∞,-a ],∴-a ≥1, 即a ≤-1,∴a 的取值范围是(-∞,-1].。
2.1 函数及其表示一、填空题1.设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则=________.解析 本题主要考查分段函数问题.正确利用分段函数来进行分段求值.∵f (2)=4,∴=f ⎝ ⎛⎭⎪⎫14=1-116=1516.答案 15162. 若函数f (x )=⎩⎨⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是________.解析 当x <0时,f (x )=2x ∈(0,1),故y =f (f (x ))=-2-f (x )∈⎝⎛⎭⎪⎫-1,-12;当x >0时,f (x )=-2-x ∈(-1,0),故y =f (f (x ))=2f (x )∈⎝ ⎛⎭⎪⎫12,1,从而原函数的值域为⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫12,1.答案 ∪⎝ ⎛⎭⎪⎫12,13.设函数f (x )=⎩⎪⎨⎪⎧1-12x x ,1xx <,若f (a )=a ,则实数a 的值是________.解析 当a ≥0时,1-12a =a ,所以a =23.当a <0时,1a=a ,所以a =-1.答案23或-1 4.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的序号有________.解析 由映射的定义,要使函数在定义域上都有图象,并且一个x 对应着一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.5.下列函数中与函数y =x 相同的是_______. ①;② ;③; ④ 解析 因为所以应天②. 答案 ②6.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=________.解析 ∵f ⎝⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2, ∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 答案 117.已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.解析 当1-a <1,即a >0时,a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-32(舍去).当1-a >1,即a <0时,a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,解得a =-34.答案 -348.若f (x )=1log12x +,则f (x )的定义域为________.解析 因为log 12(2x +1)>0,所以0<2x +1<1,解得-12<x <0.答案 ⎝ ⎛⎭⎪⎫-12,09.设函数f (x )=若f (-3)=f (0),f (-1)=-2,则关于x 的方程f (x)=x 的解的个数为______.解析 由f(-3)=f(0),f(-1)=-2可得b=3,c=0,从而方程f(x)=x 等价于 或 解得到x=0或x=-2,从而得方程f(x)=x 的解的个数为3.10.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.解析 当(x 2-2)-(x -1)≤1时,-1≤x ≤2,所以f (x )=⎩⎨⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2,f (x )的图象如图所示.y =f (x )-c 的图象与x 轴恰有两个公共点,即 方程f (x )=c 恰有两个解,由图象可知当c ∈(-2, -1]∪(1,2]时满足条件. 答案 (-2,-1]∪(1,2]11.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界,若a ,b ∈R +,且a +b =1,则-12a -2b的上确界为________. 解析 因为a ,b ∈R +,a +b =1,所以12a +2b =(a +b )·⎝ ⎛⎭⎪⎫12a +2b =52+2a b +b 2a ≥52+22a b·b 2a =52+2=92,所以-12a -2b ≤-92,所以-12a -2b 的上确界为-92. 答案 -9212.设函数f (x )对于任意实数x 满足条件f (x +2)=1f x,若f (1)=-5,则f (f (5))的值为________. 解析 令x =1,f (3)=1f=-15.由f (x +2)=1f x得f (x +4)=1fx +=f (x ),所以f (5)=f (1)=-5,则f (f (5))=f (-5)=f (-1) =1f-1+=1f=-15.答案 -1513.设f (x )=lg 2+x 2-x ,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为________. 解析 f (x )=lg2+x 2-x 有意义,则2+x2-x>0,即(x +2)(x -2)<0,∴-2<x <2. 对f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 有意义,则⎩⎪⎨⎪⎧-2<x2<2,-2<2x <2⇒⎩⎨⎧-4<x <4,x <-1或x >1.∴-4<x <-1,或1<x <4. 答案 (-4,-1)∪(1,4) 二、解答题14.已知函数f (x )=log 2⎝ ⎛⎭⎪⎫x +3x -a 的定义域为A ,值域为B .(1)当a =4时,求集合A ;(2)当B =R 时,求实数a 的取值范围.解析 (1)当a =4时,由x +3x -4=x 2-4x +3x=x -x -x>0,解得0<x <1或x >3,故A ={x |0<x <1或x >3}.(2)若B =R ,只有u =x +3x-a 可取到一切正实数,则x >0及u min ≤0,∴u min =23-a ≤0. 解得a ≥2 3.实数a 的取值范围为[23,+∞). 15.已知函数f (x )=2a +1a-1a 2x,常数a >0.(1)设m ·n >0,证明:函数f (x )在[m ,n ]上单调递增;(2)设0<m <n 且f (x )的定义域和值域都是[m ,n ],求常数a 的取值范围.解析 (1)证明 任取x 1,x 2∈[m ,n ],且x 1<x 2,则 f (x 1)-f (x 2)=1a 2·x 1-x 2x 1x 2.因为x 1<x 2,x 1,x 2∈[m ,n ],所以x 1x 2>0,即f (x 1)<f (x 2),故f (x )在[m ,n ]上单调递增.(2) 因为f (x )在[m ,n ]上单调递增,f (x )的定义域、值域都是[m ,n ]⇔f (m )=m ,f (n )=n ,即m ,n 是方程2a +1a-1a 2x=x 的两个不等的正根⇔a 2x 2-(2a 2+a )x +1=0有两个不等的正根. 所以Δ=(2a 2+a )2-4a 2>0,2a 2+aa2>0⇒a >12.即常数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.16.已知函数f (x )=⎩⎪⎨⎪⎧1+1xx ,x 2+-1≤x,2x +x <-(1)求f ⎝ ⎛⎭⎪⎫1-12-1,f (f (f (-2)))的值; (2)求f (3x -1);(3)若f (a )=32,求a 的值.解析 (1)∵1-12-1=1-(2+1)=-2<-1,∴f ⎝⎛⎭⎪⎫1-12-1=f (-2)=-22+3, 又∵f (-2)=-1,f (f (-2))=f (-1)=2,∴f (f (f (-2)))=f (2)=1+12=32.(2)若3x -1>1,即x >23,则f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤23,则f (3x -1)=(3x -1)2+1=9x 2-6x +2; 若3x -1<-1,即x <0,则f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎪⎨⎪⎧3x 3x -1⎝ ⎛⎭⎪⎫x >23,9x 2-6x +2⎝⎛⎭⎪⎫0≤x ≤23,6x +x(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,有a 2+1=32,∴a =±22.∴a =2或±22. 17.已知函数f (x )=a x -24-a x -1(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)求实数a 的取值范围,使得函数f (x )满足:当定义域为[1,+∞)时,f (x )≥0恒成立.解析 (1)由4-a x ≥0,即a x ≤4,当0<a <1时,x ≥log a 4,当a >1时,x ≤log a 4, 故f (x )的定义域为:当a >1时,为(-∞,log a 4], 当0<a <1时,为[log a 4,+∞).令t =4-a x ,则t ∈[0,2),所以y =4-t 2-2t -1=4-(t +1)2. 当t ∈[0,2)时,y =4-(t +1)2是减函数, 所以函数的值域为(-5,3].(2)由(1)知,若a >1,f (x )是增函数,当x ∈[1,+∞)时,f (x )≥f (1)=a -24-a -1,由于f (x )≥0恒成立, ∴a -24-a -1≥0,解得3≤a ≤4.若0<a <1,f (x )在[1,+∞)上是减函数,f (x )max =a -1-24-a <0,即f (x )≥0不成立.综上知,当3≤a ≤4时,在[1,+∞)上f (x )≥0恒成立.18.据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (k m/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (k m).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 k m ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析 (1)由图象可知;当t =4时,v =3×4=12, 所以s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上可知s =⎩⎪⎨⎪⎧32t 2, t ∈[0,10],30t -150, t ∈,20],-t 2+70t -550, t ∈,35].(3)当t ∈[0,10]时,s max =32×102=150<650.当t ∈(10,20]时,s max =30×20-150=450<650. 当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40,0<t ≤35故t =30,所以沙尘暴发生30 h 后将侵袭到N 城.。
学案9 幂函数导学目标: 1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象,了解它们的单调性和奇偶性.自主梳理1.幂函数的概念形如________的函数叫做幂函数,其中____是自变量,____是常数. 2.幂函数的性质)0])0))(3)α>0时,幂函数的图象通过点____________,并且在区间(0,+∞)上是________,α<0时,幂函数在(0,+∞)上是减函数,图象______原点.自我检测1.如图中曲线是幂函数y =x n 在第一象限的图象.已知n 取±2,±12四个值,则相应于曲线C 1,C 2,C 3,C 4的n 值依次为________________.2.已知函数:①y =2x ;②y =log 2x ;③y =x -1;④y =x 12.则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是_____________________________________.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为________.4.与函数y =xx +1的图象形状一样的是________(填序号).①y =2x ;②y =log 2x ;③y =1x;④y =x +1.5.已知点(33,33)在幂函数f (x )的图象上,则f (x )的表达式是____________.探究点一 幂函数的定义与图象例1 已知幂函数f (x )的图象过点(2,2),幂函数g (x )的图象过点(2,14).(1)求f (x ),g (x )的解析式;(2)求当x 为何值时:①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).变式迁移1 若点(2,2)在幂函数f (x )的图象上,点(-2,14)在幂函数g (x )的图象上,定义h (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤g (x ),g (x ),f (x )>g (x ),试求函数h (x )的最大值以及单调区间.探究点二 幂函数的单调性例2 比较下列各题中值的大小. (1)30.8,30.7; (2)0.213,0.233;(3)122,131.8;(4)254.1,233.8-和35( 1.9)-.变式迁移2 (1)比较下列各组值的大小:①138--________131()9-;②0.20.5________0.40.3.(2)已知(0.71.3)m <(1.30.7)m ,则m 的取值范围为_____________________________. 探究点三 幂函数的综合应用 例3 (2010·葫芦岛模拟)已知函数f (x )=xm 2-2m -3(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.变式迁移3 已知幂函数f (x )=21()m m x -+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.1.幂函数y =x α(α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.在(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.(满分:90分)一、填空题(每小题6分,共48分)1.若函数f (x )是幂函数,且满足f (4)f (2)=3,则f (12)的值为________.2.已知n ∈{-1,0,1,2,3},若(-12)n >(-15)n ,则n =________.3.下列函数图象中,正确的序号有________.4.(2010·安徽改编)设a =253()5,b =352()5,c =252()5,则a ,b ,c 的大小关系为____________.5.下列命题中正确的是________(填序号). ①幂函数的图象都经过点(1,1)和点(0,0); ②幂函数的图象不可能在第四象限;③当n =0时,函数y =x n 的图象是一条直线; ④幂函数y =x n 当n >0时是增函数;⑤幂函数y =x n 当n <0时在第一象限内函数值随x 值的增大而减小. 6.(2011·徐州模拟)若幂函数y =222(33)m m m m x ---+的图象不经过原点,则实数m 的值为________.7.已知a =x α,b =2x α,c =1x α,x ∈(0,1),α∈(0,1),则a ,b ,c 的大小顺序是______________.8.已知函数f (x )=x α(0<α<1),对于下列命题:①若x >1,则f (x )>1;②若0<x <1,则0<f (x )<1;③当x >0时,若f (x 1)>f (x 2),则x 1>x 2;④若0<x 1<x 2,则f (x 1)x 1<f (x 2)x 2.其中正确的命题序号是______________. 二、解答题(共42分)9.(14分)设f (x )是定义在R 上以2为最小正周期的周期函数.当-1≤x <1时,y =f (x )的表达式是幂函数,且经过点(12,18).求函数在[2k -1,2k +1)(k ∈Z )上的表达式.10.(14分)已知f (x )=2123nn x -++(n =2k ,k ∈Z )的图象在[0,+∞)上单调递增,解不等式f (x 2-x )>f (x +3).11.(14分)(2011·苏州模拟)已知函数f (x )=22k k x -++(k ∈Z )满足f (2)<f (3). (1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q >0,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为[-4,178]?若存在,求出q ;若不存在,请说明理由.答案 自主梳理1.y =x α x α 2.(2)(0,+∞) 四 (3)(0,0),(1,1) 增函数 不过 自我检测1.2,12,-12,-2解析 方法一 由幂函数的图象与性质,n <0时不过原点,故C 3,C 4对应的n 值均为负,C 1,C 2对应的n 值均为正;由增(减)快慢知n (c 1)>n (c 2)>n (c 3)>n (c 4).故C 1,C 2,C 3,C 4的n 值依次为2,12,-12,-2.方法二 作直线x =2分别交C 1,C 2,C 3,C 4于点A 1,A 2,A 3,A 4,则其对应点的纵坐标显然为22,11222,2-,2-2,故n 值分别为2,12,-12,-2.2.④③①②解析 第一个图象过点(0,0),与④对应;第二个图象为反比例函数图象,表达式为y =kx,③y =x -1恰好符合,∴第二个图象对应③; 第三个图象为指数函数图象,表达式为y =a x ,且a >1,①y =2x 恰好符合,∴第三个图象对应①;第四个图象为对数函数图象,表达式为y =log a x ,且a >1,②y =log 2x 恰好符合,∴第四个图象对应②.∴四个函数图象与函数序号的对应顺序为④③①②. 3.1,3 4.③5.f (x )=x -3 课堂活动区例1 解 (1)设f (x )=x α,∵图象过点(2,2),故2=(2)α, 解得α=2,∴f (x )=x 2.设g (x )=x β,∵图象过点(2,14),∴14=2β,解得β=-2. ∴g (x )=x -2.(2)在同一坐标系下作出f (x )=x 2与g (x )=x -2的图象,如图所示.由图象可知,f (x ),g (x )的图象均过点(-1,1)和(1,1). ∴①当x >1,或x <-1时, f (x )>g (x );②当x =1,或x =-1时,f (x )=g (x ); ③当-1<x <1且x ≠0时,f (x )<g (x ).变式迁移1 解 求f (x ),g (x )解析式及作出f (x ),g (x )的图象同例1, 如例1图所示,则有:h (x )=⎩⎪⎨⎪⎧x -2,x <-1或x >1,x 2,-1≤x ≤1.根据图象可知函数h (x )的最大值为1,单调增区间为(-∞,-1)和(0,1);单调减区间为(-1,0)和(1,+∞).例2 解题导引 比较两个幂的大小关键是搞清楚是底数相同,还是指数相同,若底数相同,利用指数函数的性质;若指数相同,利用幂函数的性质;若底数、指数皆不相同,考虑用中间值法,常用0和1“搭桥”进行分组.解 (1)函数y =3x 是增函数,∴30.8>30.7. (2)函数y =x 3是增函数,∴0.213<0.233. (3)∵1113222 1.8 1.8>>, ∴11322 1.8>.(4)22554.11>=1;0<22333.81--<=1;35( 1.9)-<0,∴35( 1.9)- <22353.84.1-<.变式迁移2 (1)①< ②< (2)m >0 解析 根据幂函数y =x 1.3的图象, 当0<x <1时,0<y <1,∴0<0.71.3<1. 又根据幂函数y =x 0.7的图象, 当x >1时,y >1,∴1.30.7>1. 于是有0.71.3<1.30.7.对于幂函数y =x m ,由(0.71.3)m <(1.30.7)m 知,当x >0时,随着x 的增大,函数值也增大,∴m >0.例3 解 ∵函数f (x )在(0,+∞)上递减, ∴m 2-2m -3<0,解得-1<m <3. ∵m ∈N *,∴m =1,2.又函数的图象关于y 轴对称, ∴m 2-2m -3是偶数,而22-2×2-3=-3为奇数, 12-2×1-3=-4为偶数, ∴m =1.而y =13x-在(-∞,0),(0,+∞)上均为减函数,∴1133(1)(32)a a --+<-等价于a +1>3-2a >0, 或0>a +1>3-2a ,或a +1<0<3-2a ,解得a <-1或23<a <32.故a 的范围为{a |a <-1或23<a <32}.变式迁移3 解 (1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, ∴m (m +1)为偶数.∴函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数. (2)∵函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1.∴m 2+m =2.解得m =1或m =-2.又∵m ∈N *,∴m =1. 由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1.解得1≤a <32.∴a 的取值范围为[1,32).课后练习区 1.13解析 依题意设f (x )=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f (x )=2log 3x,于是f (12)=2log 31()2=221log log 3322-==13. 2.-1或2解析 可以逐一进行检验,也可利用幂函数的单调性求解.3.③解析 对①、②,由y =x +a 知a >1,可知①、②图象不正确;③④中由y =x +a 知0<a <1,∴y =a x 和y =log a x 应为减函数,④错,③对. 4.a >c >b解析 ∵y =25x 在x ∈(0,+∞)上单调递增,∴225532()()55>,即a >c ,∵y =(25)x 在x ∈(-∞,+∞)上单调递减,∴235522()()55>,即c >b ,∴a >c >b .5.②⑤ 6.1或2解析 由⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0解得m =1或2.经检验m =1或2都适合.7.c <a <b解析 ∵α∈(0,1),∴1α>α>α2.又∵x ∈(0,1),∴x 1α<x α<x α2,即c <a <b .8.①②③解析 作出y =x α(0<α<1)在第一象限内的图象,如图所示,可判定①②③正确, 又f (x )x表示图象上的点与原点连线的斜率, 当0<x 1<x 2时应有f (x 1)x 1>f (x 2)x 2,故④错.9.解 设在[-1,1)中,f (x )=x n ,由点(12,18)在函数图象上,求得n =3.…………………………………………………(5分)令x ∈[2k -1,2k +1),则x -2k ∈[-1,1),∴f (x -2k )=(x -2k )3.……………………………………………………………………(10分)又f (x )周期为2,∴f (x )=f (x -2k )=(x -2k )3.即f (x )=(x -2k )3(k ∈Z ).………………………………………………………………(14分)10.解 由条件知1-n 2+2n +3>0,-n 2+2n +3>0,解得-1<n <3.…………………………………………………………(4分) 又n =2k ,k ∈Z ,∴n =0,2.当n =0,2时,f (x )=x 13,∴f (x )在R 上单调递增.…………………………………………………………………(10分)∴f (x 2-x )>f (x +3)转化为x 2-x >x +3. 解得x <-1或x >3.∴原不等式的解集为(-∞,-1)∪(3,+∞).………………………………………(14分) 11.解 (1)∵f (2)<f (3), ∴f (x )在第一象限是增函数. 故-k 2+k +2>0,解得-1<k <2. 又∵k ∈Z ,∴k =0或k =1.当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.…………………………………………………………………………………(6分)(2)假设存在q >0满足题设,由(1)知 g (x )=-qx 2+(2q -1)x +1,x ∈[-1,2].∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点(2q -12q ,4q 2+14q )处取得.……………………………………………………………………………………………(8分) 而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q≥0,∴g (x )max =4q 2+14q =178,………………………………………………………………(12分)g (x )min =g (-1)=2-3q =-4.解得q =2.∴存在q =2满足题意.……………………………………………………(14分)。