数学模型方法分析简述
- 格式:docx
- 大小:71.25 KB
- 文档页数:5
数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。
具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模方法与分析
数学建模是利用数学方法解决实际问题的过程。
数学建模的一般步骤包括问题定义、建立数学模型、模型求解和结果分析等阶段。
数学建模方法可以分为多种,常见的方法包括:
1. 数据分析:通过统计分析和数据挖掘等方法,对问题中的数据进行处理和分析,找出其中的规律和趋势。
2. 最优化方法:根据问题的要求,建立相应的数学规划模型,通过求解最优化问题,得到最优解。
3. 随机模型:将问题建立为随机过程或概率模型,通过概率统计的方法进行分析和求解。
4. 系统动力学模型:将问题建立为动态系统模型,通过系统动力学的方法分析系统的行为和演化规律。
5. 图论和网络分析:将问题建立为图模型或网络模型,通过图论和网络分析的方法研究其结构和性质。
6. 分数阶模型:将问题建立为分数阶微分方程或分数阶差分方程,通过分数阶
微积分的方法进行分析和求解。
数学建模的分析阶段是对模型求解结果进行解释和评估。
分析结果可以包括对模型的可行性和有效性进行验证,对模型的优化方向进行探讨,以及对问题的解释和解决方案的提出等。
总的来说,数学建模方法与分析是数学建模过程中重要的环节,通过合理选择建模方法和深入分析模型结果,可以得到对实际问题有价值的解决方案。
品检中常用的数学模型分析在品质控制中,数学模型是评估和分析产品或过程的质量的重要工具之一。
数学模型可以帮助品质控制人员了解产品或过程中的潜在问题,并为制定改进措施提供依据。
本文将介绍品质控制中常用的数学模型分析方法,包括统计过程控制、回归分析、方差分析和贝叶斯网络分析。
统计过程控制(SPC)是品质控制中最常用的数学模型分析方法之一。
它通过收集和分析产品或过程的数据,确定其稳定性和可靠性。
SPC通常使用控制图来监控过程的变化。
控制图是一种图形化工具,可以帮助品质控制人员识别出过程中的特殊原因变异,并及时采取相应的措施进行调整。
常见的控制图包括X-Bar图、R 图和P图等。
X-Bar图用于监控过程的平均值,R图用于监控过程的变异性,而P 图则用于监控过程的不良率。
通过分析控制图上的点的分布情况,品质控制人员可以判断过程是否处于控制状态,进而采取相应的控制措施。
回归分析是一种用于研究变量之间关系的数学模型分析方法。
在品质控制中,回归分析可以帮助确定影响产品质量的因素,并建立预测模型。
通过收集产品或过程的数据并进行回归分析,可以找到与产品质量相关的变量,并建立预测模型,从而预测产品或过程的质量状况。
回归分析可以采用线性回归、非线性回归或多元回归等方法进行。
通常,品质控制人员会选择最合适的回归模型,并通过相关系数和回归系数等指标评估模型的拟合度和预测准确性。
方差分析(ANOVA)是一种用于比较多个样本均值是否相等的数学模型分析方法。
在品质控制中,方差分析可以用于确定不同因素对产品质量产生的影响,并找出最重要的因素。
方差分析基于平方和、均方和和F值等统计指标来评估样本均值的差异性。
通过进行方差分析,品质控制人员可以确定最佳因素组合,从而优化产品的质量。
方差分析还可以用于分析不同分组之间的差异,进一步确定改进策略。
贝叶斯网络是一种用于建立概率推断模型的数学模型分析方法。
在品质控制中,贝叶斯网络可以用于分析不同因素之间的依赖关系,并预测产品或过程的质量。
数学建模常用各种检验方法数学建模是利用数学方法解决实际问题的过程。
在进行数学建模时,需要对模型的合理性进行检验,以确保模型的可靠性和准确性。
本文将介绍数学建模中常用的各种检验方法。
1.残差分析方法残差(residual)是指观测值与模型预测值之间的差异。
残差分析可以通过比较残差的大小、分布和形态,来检验模型的合理性。
常用的残差分析方法包括:正态性检验、稳定性检验、独立性检验和同方差性检验。
2.敏感性分析方法敏感性分析(sensitivity analysis)用于分析参数对模型结果的影响程度。
通过改变参数的值,并观察输出结果的变化,可以评估参数对模型的敏感性。
常用的敏感性分析方法包括:单参数敏感性分析、多参数敏感性分析和全局敏感性分析。
3.假设检验方法假设检验(hypothesis testing)用于判断模型的假设是否成立。
通过对模型的假设进行检验,可以评估模型的合理性和拟合优度。
常用的假设检验方法包括:t检验、F检验和卡方检验。
4.误差分析方法误差分析(error analysis)用于评估模型的误差水平。
通过比较实际观测值与模型预测值之间的误差,可以评估模型的准确性和精度。
常用的误差分析方法包括:平均绝对误差(MAE)、均方根误差(RMSE)和平均百分比误差(MAPE)。
5.稳定性分析方法稳定性分析(stability analysis)用于评估模型的稳定性和鲁棒性。
通过对模型进行参数扰动或输入扰动,并观察输出结果的变化,可以评估模型的稳定性和可靠性。
常用的稳定性分析方法包括:参数扰动分析、输入扰动分析和鲁棒性分析。
6.验证方法验证(validation)用于评估模型的预测能力和适用范围。
通过对模型进行验证,可以判断模型在不同情况下的预测效果和适用性。
常用的验证方法包括:留一验证(leave-one-out validation)、交叉验证(cross-validation)和外部验证(external validation)。
数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。
它在现代科学研究和工程实践中扮演着重要的角色。
本文将介绍数学建模的基本方法,并通过实例来详细说明。
一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。
这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。
通过充分了解问题,我们可以更加准确地进行建模和求解。
二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。
数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。
常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。
以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。
三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。
对于不同类型的模型,可以使用不同的数学方法和工具来求解。
常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。
四、模型验证与分析求解完模型后,需要对结果进行验证和分析。
这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。
通过对模型结果的分析,可以判断模型的有效性和可靠性。
接下来,让我们通过一个实例来具体说明数学建模的过程。
实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。
假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。
数学建模各种分析方法数学建模是指将实际问题转化为数学问题,然后利用数学方法求解的过程。
在数学建模中,有各种各样的分析方法可以辅助研究人员进行问题分析和求解。
下面将介绍一些常用的数学建模分析方法。
1.计算方法:计算方法是数学建模中最基础也是最常用的方法之一、它可以包括求解方程组、数值积分、数值微分、插值与拟合、数值优化等。
通过这些计算方法,可以将实际问题转化为数学模型,然后利用计算机进行数值计算和模拟实验。
2.统计分析方法:统计分析在数学建模中也起着非常重要的作用。
它可以用来分析数据、建立概率模型、进行参数估计和假设检验等。
统计分析可以帮助研究人员从大量数据中提取有用的信息,深入分析问题的特征和规律,为问题解决提供参考。
3.线性规划模型:线性规划是一种优化模型,常用于解决资源分配、生产计划、物流运输等问题。
线性规划模型的目标是最大化或最小化一些线性函数,同时满足一系列线性等式或不等式约束。
通过线性规划模型,可以确定最优决策和最优解。
4.非线性规划模型:非线性规划是一种更一般的优化模型,用于解决非线性约束条件下的最优化问题。
非线性规划模型常用于经济管理、工程设计、生物医学等领域。
非线性规划模型的求解较复杂,需要借助数值计算和优化算法。
5.动态规划模型:动态规划是一种用来解决决策问题的数学方法,其特点是将问题分解为多个阶段,并利用最优子结构的性质进行递推求解。
动态规划模型常用于决策路径规划、资源调度、序列比对等问题。
它优化了逐步贪心法的局部最优解,能够得到全局最优解。
6.图论模型:图论是一种数学工具,用于研究图或网络结构及其属性。
图论模型在数学建模中可以用来分析网络拓扑、路径优化、最短路径、最小生成树等问题。
图论模型的特点是简洁明了,适用于复杂问题的分析和求解。
7.随机过程模型:随机过程是一种描述随机变量随时间变化的数学模型,常用于建立概率模型和分析具有随机性的系统。
随机过程模型常用于金融风险评估、天气预测、信号处理、优化设计等问题。
数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.一、数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.二、数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.可用流程图表示如下:表述根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系.如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.求解选择适当的方法,求得数学模型的解答.解释数学解答翻译回现实对象,给实际问题的解答.验证检验解答的正确性.例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题.他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.CB图1 图2人们步行七桥问题,就相当于图2的一笔画问题,即能否将图2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质.哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型.经过理想化抽象所得到的如图2所示的一笔画问题便是七桥问题的数学模型.在一笔画的模型里,只保留了桥与地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的. 数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型.从狭义上讲,只有那些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型.在现代应用数学中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题.三、函数模型的建立研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立函数模型的步骤可分为:(1) 分析问题中哪些是变量,哪些是常量,分别用字母表示;(2) 根据所给条件,运用数学或物理知识,确定等量关系;(3) 具体写出解析式)(x f y =,并指明定义域.例1 重力为P 的物体置于地平面上,设有一与水平方向成α角的拉力F ,使物体由静止 开始移动,求物体开始移动时拉力F 与角α之间的函数模型(图3). 解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力αsin F P -成正比的(设摩擦系数为μ),故有)sin (cos αμαF P F -=,即 αμαμsin cos +=P F (0°<α<90°).建立函数模型是一个比较灵活的问题,无定法可循,只有多做些练习才能逐步掌握.图3例2 在金融业务中有一种利息叫做单利.设p 是本金,r 是计息的利率,c 是计息期满应付的利息,n 是计息期数,I 是n 个计息期(即借期或存期)应付的单利,A 是本利和.求本利和A 与计息期数n 的函数模型解 本金计息期满的利息计息期的利率= ,即=r p c .由此得 pr c =,单利与计息数成正比,即n 个计息期应付的单利I 为cn I =,因为 pr c =,所以 prn I =,本利和为 I p A +=,即 prn p A +=,可得本利和与计息期数的函数关系,即单利模型)1(rn p A +=.四、数学建模方法数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.常用的数学建模方法如下:(一) 机理分析法 从基本物理定律以及系统的结构数据来推导出数学模型的方法1. 比例分析法 —— 建立变量之间函数关系的最基本、最常用的方法.2. 代数方法——求解离散问题(离散的数据、符号、图形)的主要方法.3. 逻辑方法——是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问题,在决策论,对策论等学科中得到广泛应用.4. 常微分方程——解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5. 偏微分方程——解决因变量与两个以上自变量之间的变化规律.(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法1. 回归分析法——用于对函数()f x 的一组观测值(,())(1,2,)i i x f x i n = ,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2. 时序分析法——处理的是动态的相关数据,又称为过程统计方法.(三)仿真和其他方法1. 计算机仿真(模拟)——实质上是统计估计方法,等效于抽样试验.① 离散系统仿真——有一组状态变量.② 连续系统仿真——有解析表达式或系统结构图.2. 因子试验法——在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3. 人工现实法——基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.五、名师谈数学建模竞赛1.全国人大常委会副委员长、著名数学家丁石孙建模竞赛,我认为是一个非常有意义的活动.很多人都知道,数学是非常重要的.我们教了几十年的数学,曾经花了很多力气想使得大家能够认识到数学的重要性,但是我们没有找到一个合适的方法.我觉得,建模竞赛是一个很好的方法,使得更多的学生,包括他们有关的朋友,能够认识到数学的真正用处.因为,数学对于学生的培养,不只是数学定理、数学公式,这其实是次要的,像刚才同学所说的,更重要的是培养同学一个正确的思想方法,而且依据自己所学到的知识,能够不断创新,不断地找出新的途径.这不是在课堂里死啃几个定理就能够解决的.我们用什么办法才能让更多的人,更多的学生认识到这个事情呢?我觉得,建模竞赛是一个很好的方法.2.前教育部副部长周远清数学建模竞赛的特点是题目由工程技术、管理科学中的实际问题简化加工而成,对数学知识要求不深,一般没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神.由于竞赛是由三名大学生组成一队,在三天时间内分工合作,共同完成一篇论文,因而也培养了学生的合作精神.加之竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准,因此,这项活动的开展有利于对学生知识、能力和素质的全面培养,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件.3.中国工业与应用数学学会理事长、中科院院士曾庆存同学们不要忘记,中华文化是博大精深的,很可能下个世纪是中西文化的合璧.现在已经有很多苗头,光靠西方的演绎或者是还原论的东西解决不了问题,说不定要借助于东方的文化,正像莱布尼茨借助于中国的哲学一样,还有控制论、系统论是借助于中国的思维.希望同学们看怎么样能够把中华文化的精华和西方的结合起来,我看我们大有前途.下个世纪,有人说是知识经济,是美国人提出来的,我们可以同意,也可以不同意.但有一点,知识在经济或者社会发展当中所占的比例是越来越大,甚至会起决定性的作用,而知识思维的方式,不管是定量的或是定性的描述,都离不开数学.我希望同学们加把劲,把我国实现中等发达的过程更缩短一点.4.叶其孝、姜启源教授谈大学生数学建模竞赛数学建模:不仅仅是一项竞赛.数学建模,专家给它下的定义是:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.1985年,美国率先举办了大学生数学建模竞赛.1992年中国工业与应用数学学会开始组织全国大学生数学建模竞赛.1994年起,这项竞赛由教育部高教司和中国工业与应用数学学会共同组织.姜启源教授介绍说,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算机方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实现问题,有较大的灵活性供参赛者发挥其创造性,结果的正确性和文字表述的清晰程度为主要标准.全国大学生数学建模竞赛的规模逐年扩大,参赛学生也从几百人增加到几千人.每年还有不少学生参加美国大学生的数学建模竞赛,成绩优秀,在国际上产生了很大的影响.为什么这样的单项竞赛能够产生如此的吸引力呢?开展这项竞赛并开设相关的课程,对高等院校的教学工作会起什么样的作用?对大学生全面素质的提高又有什么样的帮助?对记者的问题,叶其孝教授回答说,这种竞赛对参加者来说,是一种综合的训练,在相当程度上模拟了大学生毕业以后的工作环境.参赛者不要求预先掌握深入的专门知识,只需要学过普通高校的数学课程;更主要的是要靠参赛者自己动脑子,自己查找文献资料,同队成员讨论研究,齐心协力完成答卷.因此,它对学生的能力培养是多方面的.叶教授将之归纳为:应用数学进行分析、推理、证明和计算的能力;“双向翻译”(即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果)的能力;应用计算机及相应数学软件的能力;应变能力(即独立查找文献,消化和应用的能力);组织、协调、管理特别是及时妥协的能力;交流表达的能力;写作的能力;创造性、想像力、联想力和洞察力.它还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养正确的数学观.数学模型是联系实际问题与数学的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题和探索新真理的工具.数学模型具有解释、判断、预测等重要功能,它在各个领域的应用会越来越广泛.其主要原因是:(1)社会生活的各个方面正在日益数量化,人们对各种问题的要求愈来愈精确;(2)计算机的发展为精确化提供了条件;(3)很多无法实验或费用很大的实验问题,用数学模型进行研究是一个有效途径.很多像牛顿一样伟大的科学家都是建立和应用数学模型的大师,他们将各个不同的科学领域同数学有机地结合起来,在不同的学科中取得了巨大的成就.如力学中的牛顿定律,电磁学中的麦克斯韦方程组,化学中的门捷列夫周期表,生物学中的孟德尔遗传定律等都是经典学科中应用数学模型的光辉范例.目前在计算机的帮助下数学模型在生态、地质、航空等方面有了更加广泛和深入的应用.因此,从某种意义上讲,数学建模是培养现代化高科技人才的重要途径.数学建模课程可以培养和提高学生下列能力:(1)洞察能力.许多提出的问题往往不是数学化的,这就是需要建模工作者善于从实际工作提供的原形中抓住其数学本质;(2)数学语言翻译能力,即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众化的语言表达出来,在此基础上提出解决某一问题的方案或建议;(3)综合应用分析能力.用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力.对于不少的实际问题,看起来完全不同,但在一定的简化层次下,它们的数学模型是相同的或相似的.这正是数学应用广泛性的体现,这就是培养学生有广泛的兴趣,多思考,勤奋踏实地工作,通过熟能生巧达到触类旁通的境界;(5)各种当代科技最新成果的使用能力.目前主要是应用计算机和相应的各种软件包,这不仅能够节省时间,得到直观形象的结果,有利与用户深入讨论,而且能够养成自觉应用最新科技成果的良好习惯.由于数学建模是以解决实际问题和培养学生应用数学的能力为目的的,它的教学内容和方式是多种多样的.从教材来看,有的强调数学方法,有的强调实际问题,有的强调分析解决问题的过程;从教学方式来看,有的以讲为主,有的以练为主,有的在数学实验室中让学生探索,有的带领学生到企事业中去合作解决真正的实际问题.尽管数学建模已有了很久的历史,数学建模课程却还是很年轻的一门课程.在70 年代末和80年代初,英国著名的剑桥大学专门为研究生开设了数学建模课程,差不多同时,欧美一些发达国家开始把数学建模的内容列入研究生、大学生以至中学生的教学计划中去,并于1983年开始举行两年一度的“数学建模教学和应用国际会议”进行定期交流.数学建模教学及其各种活动发展异常迅速,成为当代数学教育改革的主要方向之一.。
分析金融工程学的数学模型与方法金融工程学是一门涉及金融、计量经济学、统计学和计算机科学等领域的交叉学科。
该学科的重点在于利用数学建立金融市场的定价模型,提供实时行情数据和计算量化投资策略。
因此,金融工程学的学生需要熟练掌握概率统计、微积分、线性代数、随机过程等数学工具,在金融领域中开展研究和实践。
其中最重要和基础的数学模型包括:随机过程模型、蒙特卡罗模拟模型、各种微积分公式等。
1. 随机过程模型金融市场的变化具有不确定性和随机性,且市场走势受到许多因素的影响,如政治、经济、自然等。
随机过程模型可以对金融市场的风险进行描述,从而提供合适的投资策略。
以布朗运动为例,它是随机过程中应用最广泛的一类,用于描述股市等金融市场中的价格变化。
布朗运动的定义是一个随机过程,其中每个时间点的随机变量服从正态分布,且变量之间相互独立。
在用布朗运动建立金融市场模型时,需要应用分析工具来研究其性质,以便开发相应的投资策略。
2. 蒙特卡罗模拟模型在金融工程学中,蒙特卡罗模拟模型是一种常用的计算手段,目的是通过随机模拟得到某些特定结果的概率分布。
例如,可以生成一系列随机数,并对每个数字分配一个权重,用于分析股票的价格走势预测。
通过这个模型,我们可以得出各种交易策略的期望收益和风险等统计量,为金融市场的实际投资决策提供依据。
3. 微积分公式金融工程学中的微积分公式包括计算某种金融衍生品的价格和风险需求的公式。
例如,Black-Scholes模型是一种用于计算期权价格的微积分公式,在金融衍生品市场中应用广泛。
这个模型基于布朗运动的随机漫步形式,并在此基础上建立一个包含股票价格、波动率、时间和利率等变量的数学模型,来计算期权价格和风险需求等风险指标。
综上所述,金融工程学是一门应用数学、计量经济学和计算机科学等学科的综合性学科。
该学科需要应用各种数学工具和模型来分析和解决金融市场中的各种问题,并根据分析结果提供量化投资策略。
在该领域中,随机过程模型、蒙特卡罗模拟模型和微积分公式是最基础的数学工具之一,它们通过不同的数学手段提供了一种有效的方法来分析金融市场的风险和收益情况。
建立数学模型的方法步骤特点及分类方法:1.归纳法:通过观察和分析问题的特点,总结规律,建立数学模型。
这种方法适用于一些具有规律性的问题。
2.拟合法:通过收集和分析实际数据,找到数据之间的关系,并用数学函数来拟合数据,建立数学模型。
这种方法常用于实际问题中的数据分析和预测。
3.分析法:通过对问题进行分析,找出问题的关键因素和数学关系,建立数学模型。
这种方法适用于复杂和抽象的问题。
步骤:1.确定问题:明确问题的背景、条件和目标。
2.收集数据:收集相关的实际数据,了解问题的现状。
3.建立假设:对问题进行分析,提出一些可能的假设。
4.建立模型:根据问题的性质和假设,选择合适的数学方法和函数,建立数学模型,将实际问题转化为数学问题。
5.求解模型:通过数学计算和推理,解决建立的数学模型,得出结论。
6.模型验证:将模型的结果与实际情况进行比较和分析,检验模型的准确性和可靠性。
7.结果解释:将模型的结果解释给决策者或用户,提供对问题的认识和决策依据。
特点:1.抽象性:数学模型对实际问题进行了抽象和简化,从而能够更好地描述和解决问题。
2.精确性:数学模型具有精确的语言和推理,能够给出准确的数值结果。
3.可行性:数学模型能够通过计算和推理得出结果,帮助解决实际问题。
4.替代性:数学模型可以替代实验或观测,节省时间和成本。
分类:1.数量模型:用数学表达式和符号来描述问题的数量关系,包括线性模型、非线性模型、离散模型、连续模型等。
2.质量模型:用数学方法描述问题的质量关系,包括概率模型、统计模型、优化模型等。
3.动态模型:描述问题随时间变化的规律和趋势,包括微分方程模型、差分方程模型、随机过程模型等。
4.静态模型:描述问题的状态和平衡点,包括线性规划模型、非线性规划模型、输入输出模型等。
总之,建立数学模型是解决实际问题的重要方法之一、根据问题的性质和要求,选择合适的建模方法和模型类型,通过建立、求解和验证数学模型,可以得出有关问题的结论和解决方案。
建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
(1)比例分析法--建立变量之间函数关系的最基本最常用的方法。
(2)代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律。
2.测试分析方法测试分析方法就是将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。
回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
时序分析法--处理的是动态的相关数据,又称为过程统计方法。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。
3.仿真和其他方法计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
离散系统仿真--有一组状态变量。
连续系统仿真--有解析表达式或系统结构图。
因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型•数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法•掌握数学模型方法是非常必要的•在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.一、数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制•数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.二、数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环•可用流程图表示如下:表述根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系•如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.求解选择适当的方法,求得数学模型的解答•解释数学解答翻译回现实对象,给实际问题的解答.验证检验解答的正确性.例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题•他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.图1图2 人们步行七桥问题,就相当于图2的一笔画问题,即能否将图 2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质. 哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型•经过理想化抽象所 得到的如图2所示的一笔画问题便是七桥问题的数学模型•在一笔画的模型里,只保留了桥与 地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表 现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地 反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之 后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的.数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各 种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型•从狭义上讲,只有那 些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型•在现代应用数学 中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题. 三、函数模型的建立研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提 高数学素养都是十分重要的.建立函数模型的步骤可分为:(1)分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学或物理知识,确定等量关系;⑶具体写出解析式y = f(x),并指明定义域. 例1重力为P 的物体置于地平面上,设有一与水平方向成 :角的拉力F ,使物体由静止 开始移动,求物体开始移动时拉力 F 与角〉之间的函数模型(图3).解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力 P-Fsin 〉成正 比的(设摩擦系数为 4),故有即 F (0 ° C <90 ° ) cos : 包 sin : 建立函数模型是一个比较灵活的问题,无定法可循,只 有多做些练习才能逐步掌握.T P图3F cos :二」(P -F sin :),例2在金融业务中有一种利息叫做单利.设p 是本金,r 是计息的利率,c 是计息期满应 付的利息,n 是计息期数,I 是n 个计息期(即借期或存期)应付的单利, 利和A 与计息期数n 的函数模型由此得单利与计息数成正比,即n 个计息期应付的单利因为 所以 本利和为即可得本利和与计息期数的函数关系,即单利模型 A = p(1 rn) •四、数学建模方法数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程 流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立 能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.常用的数学建模方法如下:(一) 机理分析法从基本物理定律以及系统的结构数据来推导出数学模型的方法1. 比例分析法 一一 建立变量之间函数关系的最基本、最常用的方法2. 代数方法一一求解离散问题(离散的数据、符号、图形)的主要方法3. 逻辑方法一一是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问 题,在决策论,对策论等学科中得到广泛应用4. 常微分方程一一解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5. 偏微分方程一一解决因变量与两个以上自变量之间的变化规律.(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法1. 回归分析法一一用于对函数 f (x )的一组观测值(x, f (xJ )(i=1,2,|Hn ),确定函数 的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2. 时序分析法一一处理的是动态的相关数据,又称为过程统计方法.(三) 仿真和其他方法1. 计算机仿真(模拟)一一实质上是统计估计方法,等效于抽样试验.① 离散系统仿真一一有一组状态变量.② 连续系统仿真一一有解析表达式或系统结构图.2. 因子试验法一一在系统上作局部试验, 再根据试验结果进行不断分析修改, 求得所需的 模型结构.3. 人工现实法一一基于对系统过去行为的了解和对未来希望达到的目标, 并考虑到系统有 关因素的可能变化,人为地组成一个系统.五、 名师谈数学建模竞赛 1.全国人大常委会副委员长、著名数学家丁石孙 建模竞赛,我认为是一个非常有意义的活动.很多人都知道,数学是非常重要的.我们教 了几十年的数学,曾经花了很多力气想使得大家能够认识到数学的重要性,但是我们没有找到 一个合适的方法.我觉得,建模竞赛是一个很好的方法,使得更多的学生,包括他们有关的朋 友,能够认识到数学的真正用处.因为,数学对于学生的培养,A 是本利和.求本 解计息期的利率计息期满的利息 本金不只是数学定理、数学公式,这其实是次要的,像刚才同学所说的,更重要的是培养同学一个正确的思想方法,而且依据自己所学到的知识,能够不断创新,不断地找出新的途径.这不是在课堂里死啃几个定理就能够解决的.我们用什么办法才能让更多的人,更多的学生认识到这个事情呢?我觉得,建模竞赛是一个很好的方法.2.前教育部副部长周远清数学建模竞赛的特点是题目由工程技术、管理科学中的实际问题简化加工而成,对数学知识要求不深,一般没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神.由于竞赛是由三名大学生组成一队,在三天时间内分工合作,共同完成一篇论文,因而也培养了学生的合作精神.加之竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准,因此,这项活动的开展有利于对学生知识、能力和素质的全面培养,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件.3.中国工业与应用数学学会理事长、中科院院士曾庆存同学们不要忘记,中华文化是博大精深的,很可能下个世纪是中西文化的合璧.现在已经有很多苗头,光靠西方的演绎或者是还原论的东西解决不了问题,说不定要借助于东方的文化,正像莱布尼茨借助于中国的哲学一样,还有控制论、系统论是借助于中国的思维.希望同学们看怎么样能够把中华文化的精华和西方的结合起来,我看我们大有前途.下个世纪,有人说是知识经济,是美国人提出来的,我们可以同意,也可以不同意.但有一点,知识在经济或者社会发展当中所占的比例是越来越大,甚至会起决定性的作用,而知识思维的方式,不管是定量的或是定性的描述,都离不开数学.我希望同学们加把劲,把我国实现中等发达的过程更缩短一点.八、、•4 .叶其孝、姜启源教授谈大学生数学建模竞赛数学建模:不仅仅是一项竞赛.数学建模,专家给它下的定义是:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律'建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.” 简而言之,就是建立数学模型来解决各种实际问题的过程.1985 年,美国率先举办了大学生数学建模竞赛.1992 年中国工业与应用数学学会开始组织全国大学生数学建模竞赛.1994年起, 这项竞赛由教育部高教司和中国工业与应用数学学会共同组织.姜启源教授介绍说,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算机方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实现问题,有较大的灵活性供参赛者发挥其创造性,结果的正确性和文字表述的清晰程度为主要标准.全国大学生数学建模竞赛的规模逐年扩大,参赛学生也从几百人增加到几千人.每年还有不少学生参加美国大学生的数学建模竞赛,成绩优秀,在国际上产生了很大的影响.为什么这样的单项竞赛能够产生如此的吸引力呢?开展这项竞赛并开设相关的课程,对高等院校的教学工作会起什么样的作用?对大学生全面素质的提高又有什么样的帮助?对记者的问题,叶其孝教授回答说,这种竞赛对参加者来说,是一种综合的训练,在相当程度上模拟了大学生毕业以后的工作环境.参赛者不要求预先掌握深入的专门知识,只需要学过普通高校的数学课程;更主要的是要靠参赛者自己动脑子,自己查找文献资料,同队成员讨论研究,齐心协力完成答卷.因此,它对学生的能力培养是多方面的.叶教授将之归纳为:应用数学进行分析、推理、证明和计算的能力;“双向翻译”(即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果)的能力;应用计算机及相应数学软件的能力;应变能力(即独立查找文献,消化和应用的能力);组织、协调、管理特别是及时妥协的能力;交流表达的能力;写作的能力;创造性、想像力、联想力和洞察力.它还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养正确的数学观.数学模型是联系实际问题与数学的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题和探索新真理的工具.数学模型具有解释、判断、预测等重要功能,它在各个领域的应用会越来越广泛.其主要原因是:(1)社会生活的各个方面正在日益数量化,人们对各种问题的要求愈来愈精确;(2)计算机的发展为精确化提供了条件;(3)很多无法实验或费用很大的实验问题,用数学模型进行研究是一个有效途径.很多像牛顿一样伟大的科学家都是建立和应用数学模型的大师,他们将各个不同的科学领域同数学有机地结合起来,在不同的学科中取得了巨大的成就.如力学中的牛顿定律,电磁学中的麦克斯韦方程组,化学中的门捷列夫周期表,生物学中的孟德尔遗传定律等都是经典学科中应用数学模型的光辉范例.目前在计算机的帮助下数学模型在生态、地质、航空等方面有了更加广泛和深入的应用.因此,从某种意义上讲,数学建模是培养现代化高科技人才的重要途径.数学建模课程可以培养和提高学生下列能力:(1)洞察能力.许多提出的问题往往不是数学化的,这就是需要建模工作者善于从实际工作提供的原形中抓住其数学本质;(2)数学语言翻译能力,即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众化的语言表达出来,在此基础上提出解决某一问题的方案或建议;(3)综合应用分析能力.用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力.对于不少的实际问题,看起来完全不同,但在一定的简化层次下,它们的数学模型是相同的或相似的.这正是数学应用广泛性的体现,这就是培养学生有广泛的兴趣,多思考,勤奋踏实地工作,通过熟能生巧达到触类旁通的境界;(5)各种当代科技最新成果的使用能力.目前主要是应用计算机和相应的各种软件包,这不仅能够节省时间,得到直观形象的结果,有利与用户深入讨论,而且能够养成自觉应用最新科技成果的良好习惯.由于数学建模是以解决实际问题和培养学生应用数学的能力为目的的,它的教学内容和方式是多种多样的.从教材来看,有的强调数学方法,有的强调实际问题,有的强调分析解决问题的过程;从教学方式来看,有的以讲为主,有的以练为主,有的在数学实验室中让学生探索,有的带领学生到企事业中去合作解决真正的实际问题.尽管数学建模已有了很久的历史,数学建模课程却还是很年轻的一门课程.在70 年代末和80 年代初,英国著名的剑桥大学专门为研究生开设了数学建模课程,差不多同时,欧美一些发达国家开始把数学建模的内容列入研究生、大学生以至中学生的教学计划中去,并于1983 年开始举行两年一度的“数学建模教学和应用国际会议”进行定期交流.数学建模教学及其各种活动发展异常迅速,成为当代数学教育改革的主要方向之一.。