全国高中数学联赛试题及答案教程文件
- 格式:doc
- 大小:2.23 MB
- 文档页数:18
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
20XX 年全国高中数学联合竞赛 试题参考答案及评分标准说 明:1.评阅试卷时,请依据本评分标准. 选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <1答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⇒ ⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1.所以x 的取值范围为x >12且x ≠1.3.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 答C .解:5x -a ≤0⇒x ≤a 5;6x -b >0⇒x >b6.要使A ∩B ∩N ={2,3,4},则⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k 以及(9-1)2006=k =0Σ2006C 2006k (-1)k 92006-k从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .填[-55,55].解:依题意,得|z |≤2⇔(a +cos θ)2+(2a -sin θ)2≤4⇔2a (cos θ-2sin θ)≤3-5a 2.⇔-25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. ⇔25|a |≤3-5a 2⇒|a |≤55,故 a 的取值范围为[-55,55]. 9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上. 当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2| ⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43.代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试试题(A )一、填空题:本大题共8小题,每小题8分,满分64分.1.若实数m >1满足98m log log =2024,则32m log log 的值为.2.设无穷等比数列{a n }的公比q 满足0<q <1.若{a n }的各项和等于{a n }各项的平方和,则a 2的取值范围是.3.设实数a ,b 满足:集合A ={x ∈R |x 2-10x +a ≤0}与B ={x ∈R |bx ≤b 3}的交集为4,9 ,则a +b 的值为.4.在三棱锥P -ABC 中,若PA ⏊底面ABC ,且棱AB ,BP ,BC ,CP 的长分别为1,2,3,4,则该三棱锥的体积为.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a ,b .若事件a +b =7发生的概率为17,则事件“a =b ”发生的概率为.6.设f (x )是定义域为R 、最小正周期为5的函数.若函数g (x )=f (2x )在区间0,5 上的零点个数为25,则g (x )在区间[1,4)上的零点个数为.7.设F 1,F 2为椭圆Ω的焦点,在Ω上取一点P (异于长轴端点),记O 为△PF 1F 2的外心,若PO ∙F 1F 2 =2PF 1 ∙PF 2 ,则Ω的离心率的最小值为.8.若三个正整数a ,b ,c 的位数之和为8,且组成a ,b ,c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(a ,b ,c )为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a <b <c 的幸运数组(a ,b ,c )的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ΔABC 中,已知cos C =sinA +cosA 2=B sin +cosB 2,求cos C 的值.10.(本题满分20分)在平面直角坐标系中,双曲线Γ:x 2-y 2=1的右顶点为A .将圆心在y 轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA的所有可能的值.11.(本题满分20分)设复数z ,w 满足z +w =2,求S =z 2-2w +w 2-2z 的最小可能值.2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试试题(A卷)一.(本题满分40分)给定正整数r,求最大的实数C,使得存在一个公比为r的实数等比数列a nn≥1,满足a n≥C对所有正整数n成立.(x 表示实数x到与它最近整数的距离.)二.(本题满分40分)如图,在凸四边形ABCD中,AC平分∠BAD,点E,F分别在边BC,CD上,满足EF||BD,分别延长FA,EA至点P,Q,使得过点A,B,P的圆ω1及过点A,D,Q的圆w2均与直线AC相切.证明:B,P,Q,D四点共圆.(答题时储将图画在答卷纸上)三.(本题满分50分)给定正整数n.在一个3×n的方格表上,由一些方格构成的集合S称为“连通的”,如果对S 中任意两个不同的小方格A,B,存在整数l≥2及S中l个方格A=C1,C2,…,C l=B,满足C i与C i+1有公共边(i=1, 2,⋯,l-1).求具有下述性质的最大整数K:若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S,使得S中的黑格个数与白格个数之差的绝对值不小于K.四.(本题满分50分)设A,B为正整数,S是一些正整数构成的一个集合,具有下述性质:(1)对任意非负整数k,有A K∈S;(2)若正整数n∈S,则n的每个正约数均属于S;(3)若m,n∈S,且m,n互素,则mn∈S;(4)若n∈S,则An+B∈S.证明:与B互素的所有正整数均属于S.。
全国高中数学联赛试题及答案第一题:设函数f(x)在区间[a, b]上连续,(a < b),且在(a, b)内可导。
证明:存在ξ∈(a,b),使得f(b) - f(a) = (b-a)f'(\xi)解答:根据拉格朗日中值定理,存在c∈(a,b),使得f'(c) = (f(b) - f(a))/(b - a)所以,我们只需证明c=ξ即可。
由于f(x)在[a, b]上连续,并且在(a, b)内可导,所以内点可导连续定理告诉我们:f(x)在[a, b]上一致连续。
依据一致连续性,对于任意ε>0,存在δ>0,使得对于所有的x',x''∈[a, b],只要 |x' - x''| < δ,就有 |f(x') - f(x'')| < ε。
考虑到c∈(a, b),且c=ξ是一个特定值,我们可以取一小段(a,b)中的点序列,使得这个点序列的左右界可以趋近c,同时满足 |x' - x''| < δ。
设这个点序列为{x_n},那么对应的有一个序列{f'(x_n)}。
根据极限的性质,我们可以得到∃ n→∞,使得x_n→c时,f'(x_n)→ f'(c)。
而由于f'(x)在(a, b)内可导,所以根据导数的定义,也就是f'(c) = lim(x→c) (f(x) - f(c))/(x - c)结合拉格朗日中值定理中的等式f'(c) = (f(b) - f(a))/(b - a)我们可以得到:f'(c) = (f(b) - f(a))/(b - a)所以,c=ξ成立,证毕。
第二题:设a, b, c为正实数,且满足 abc=1。
证明:a/(a^3 + 1) + b/(b^3 + 1) + c/(c^3 + 1) ≤ 3/2解答:根据条件abc=1,可以设 a = x/y, b = y/z, c = z/x (其中x, y, z为正实数)。
全国高中数学联赛集训试题及参考答案一、选择题(本题满分36分,每小题6分)函数f(x)=logi/2(x2-2x-3)的单调递增区间是(若实数x, y 满足(x+5)2+(y-12)2=142,则x?+y2的最小值为(直线x/4+y/3=l 与椭圆x 2/16+y 2/9=l 相交于A, B 两点,该椭圆上点P,使得APAB 面积等于3, 这样的点P 共有(6、由曲线x 2=4y,x 2=-4y,x=4,x=-4围成的图形绕y 轴旋转一周所得旋转体的体积为VI ;满足 x 2+y 2<16,x 2+(y-2)2>4,x 2+(y+2)2>4的点(x,y)组成的图形绕y 轴旋转一周所得旋转体的体积为V?,则(A) Vi= (1/2) V 2 (B)Vi= (2/3) V 2二、填空题(本题满分54分,每小题9分)7、已知复数Zi,Z2满足I Z[ | =2, | Z 2 | =3,若它们所对应向量的夹角为60。
,则I (Z 1+Z 2)/(Z 1+Z 2) 8、将二项式(Wx+1/ (2^x)) 11的展开式按x 的降'最排列,若前三项系数成等差数列,则该展开式 1、 (A) ( —co, —1)(B) (—8,1)(C) (1, + co) (D) (3, +s) 2、 (A) 2 (B) 1 (C)山 (D)也 3、 函数 f(x)=x/l-2%x/2 ( (A)是偶函数但不是奇函数 (B) 是奇函数但不是偶函数 (C)既是偶函数乂是奇函数(D)既不是偶函数也不是奇函数 (A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个5、已知两个实数集合 A= {ai,a2,...,aioo )与 B= {bib,...bo}, 若从A 到B 的映射f 使得B 中每个元素都有原象,且f(ai )<f(a 2)<.. <f(a 1O o)MS 样的映射共有( )。
2020年全国高中数学联赛江苏赛区复赛一、填空题(每题8分,满分64分,将答案填在答题纸上)2.____________ 若函数/(Λ)=(X2-1)(X2+^+⅛)对于任意XeR都满足/(X) = /(4-x),则f(x)的最小值是_____ .3•在正三棱柱ABC-A I B I C l中,D,E分别是侧棱BQ,CG上的点,EC=BC = 2BD,则截而ADE与底面ABC所成的二而角的大小是______________ ・4.若SinXSill2xsin3x+cosxcos2xcos3x = 1,则X = __________ ・5.设儿V是实数,则"+ ⑺•的最大值是2X4+4∕+9---------6.设Cl n =l + 2 + --+π,π∈∕V∖S m =q+①+…+ ©”,〃? = 123,…,则S1,52√-∙,52017中能被2整除但不能被4整除的数的个数是__________ •27.在直角平面坐标系XOy中,耳,▲分别是双曲线x2--^ = l(^>0)的左、右焦点,过点Fl作圆x2 + y2 = 1的切线,与双曲线左、右两支分别交于点A.B.若F l B = AB .则方的8.从正1680边形的顶点中任取若干个,顺次相连成多边形,英中正多边形的个数1•若数列仏}满足则吆存的值为2 3 色+2/! + 1为 _________ ・二、解答题V-10 •在平而直角坐标系XOy 中,椭圆C:-+ y 2= 1的上顶点为A ∙不经过点A 的直线/与 椭圆C 交于P,Q 两点,且AP AQ=0.(1) 直线/是否过泄点?若是,求岀左点坐标;若不是,说明理由.(2) 过P,0两点分别作椭圆的切线,两条切线交于点3,求^BPQ 而积的取值范羽. 11.设函数 Λ(AT )=1+ X+丄X 2+••• + 丄x".2! n↑ (1)求证:当 XW(O,*o),时,e x > ∕r (x):2020年全国高中数学联赛江苏赛区复赛参考答案与评分标准加试1.已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点F, CF 的延长线交圆O 于点 P 、且 AB eD = BC ED求证:OPdAE.2•设X 」是非负实数,α=低+Qe=Jr 巨+j τ巨,若""是两个不相邻的整数, 求°丄的值,9•已知x,ye∕?,且X 2+ y 2=2,∣Λ∣≠∣y∣求点+G ⅛的最小值•(2)设x>0y neN ∖若存在ywR 使得Q=九W+一:一严 RS + l)!求证: OVyV X.3.平而上2〃个点(〃>1 MWN),无三点共线,任意两点间连线段,将其中任意用+ 1条线段染成红色.求证:三边都为红色的三角形至少有”个•4•设”为正整数,I + - + -+ - +—=— >2 3 H h n其中a ll,bιι为互素的正整数,对素数”,令集合证明:对每一个素数p≥5,集合SP中至少有三个元素.1. 1试卷答案2. -163. 45°4. kπ.k∈Z3026 15盲二.解答题6. 2527 1 + √J8. 34329•解:因为X2 + y2 = 2.所以(χ + y)'+(χ-y)2 =4,所以点+FyVfc⅛+洁⅜+h+(-b) ≥1(1 + 1)2 =1.4v ,当X = λ∕2,y = O时,-__ + = 1.(兀+井(―井所以λ1x. + Z1的最小值为1.(χ+y)- (χ-γy10•解:(1)因为AP AQ = O f所以乔丄廷直线AP.AQ与X轴平行时,P或0与A重合,不合题意.设PA: y = kx+1,则QA:y = x + ∖.k将y = kx+l代入宀3b =3, w(l + 3∕r2}v2+6H = 0.所以XP =6k、— 21 + 3疋宀_] + 3疋_同理XQ=6k I6 Λ2+3°ek 2+3化简得/:〉,= -丄.4k 2直细纵截距是常数弓故直线,过定点所以P^=36(l÷^)∙ 宀 +宀 十(")•兽窖峠IL(l + 3∕)依2+3)」 (1 + 3/) ∖k 2+3f_36(1 + 疋*& + 15疋+15∕ + 1)(3^ + 10/+3)2^不妨设k>0,令f = £ +丄,贝∣J∕≥2,可化得PQ 2=k 即P-嘤乎.3r +4设B(X (P y o ),则切点弦PQ 的方程是X O X + 3y°y = 3 ,k _] 1又EQ 在l:y = —-—x--上,所以y 0 = -2 ,4k 2(2)由 (1)6∣Zr∣√l+P 1 + 3X同理, AQ = 6y ∣∖ +k 2k 2+336∕%2+ 12) (3r+4)2从而⅞ =3(2-1)2k因此的而积gxdxP 皆卜爲f x 寧晋9t i2(3/$+4)所以B 到P0的距离〃=3尸 2√r 2+1 9令“=一,则 O —,化得 S= 一~r ------ ・t2 2(4M 3+3W )当O VHS 丄时,4M 3+3M 递增,2O1所以OV4∕+3"S2,即S≥-,当且仅当U=-,即∕ = 2,k = 1时,等号成立,42故ABPQ 的而积S 的取值范困是冷11.解:(1)用数学归纳法证明如下:(i )当” =1 时,令/(X ) = ^-∕1(Λ) = ^-X -1,则/'(x) = e'-l>0,xe(0,p)恒成 立, 所以/(Λ)在区间(O,-KO)为增函数, 又因为 /(0)=0,所以/(Λ)>0,即e t> ∕1(x).(ii)假设H = k 时,命题成立,即当X ∈ (O,-KX))时,e x >f k (x),( 1 1 1则n = k + ∖时,令g(x)=e'—£+|(X)=,一 1 + X +-X 2+∙-∙ + -ΛΛ+-__ √+,6 7 用 72! k ∖ (k + ∖).函数,又因为 g(θ) = θ,所以 g(x)>0,x∈(θ,+oo)恒成立,即 e x> ./^+1(x),x∈(θ,+∞), 所以n = k +1时,命题成立.由(i )(ii )及归纳假设可知,V H ∈7V ∖当X ∈ (θ,+oo)时,£“〉£(x)・(2)由(1)可知 b>∕n Jx),即 A(A-)+-i-χn+1^v > A(Λ-)+-i-χn+1,所以R>l,即y>0,下证:yvx.下面先用数学归纳法证明:当Λ∙>O0 vl + x +丄F+…+厂丄^兀心+丄#ZsW AT 2! (-I)!n ∖(i )当 〃 =1 时,令 F(X)= ∖ + xe x -e x ,则 F ,(x) = Xe X > O,x ∈ (θ,+≪)),则 √(x)=e x-f l÷x÷l√÷-÷lχ 2! k ∖ = ^V-A(X)>0,所以g(x)在区间(0,+8)为增所以F(X)在区间(0,*o)单调增, 又F(O)=O,故F(X)>0,即e x<l + xe ∖(ii)假设H = k 时,命题成立,即当 X ∈(0,-HO)时,e x< l + x + -X 2 + …+ — XZ +-L√>∖ ' 72! (—1)! k ∖所以G(X)在区间(O,P)上为增函数,又G(O)=O,故G(X)>0,即由(i ) (ii )及归纳假设,可知当 XW(O,+8)时,e x< l + x + 丄 W +••■ + 丄 0 + ―― X n^e x.对舁 成立,2!n ∖ (" + 1)!所以't = 1+x+⅛χ2 +'+⅛χπ +(⅛χπ+v < 1+x+⅛χ2+"+^χn+0⅛x "v从而Rve"即yvx,证毕.复赛加试答案1.证明:连接PA PE.因为五边形ABCDE 内接于圆O , 所以 ZBA F = ZDEF, ZABF= ZEDF, 所以ZBF 〜随DF 、令 G(Λ) = 1 +X + A疋+ (1)k'・GtV)=I÷x÷l√÷.∙∙÷lχ^÷1所以箸FB FB 同理,PE PFBC" BF<l + x +丄/+・・・ +丄《?+2! k ∖DC DF因为ABSrCS 所以器耸" 所以PE=P4・即点P 是弧AE 的中点, 所以OP 丄AE2•解:因为αb 是不相邻的整数,所以 25b —a = JX+2 + J y+2 — (yfx + ^y)=(Jx+2 -Vxj+ (Jy+2 — y∣~y )2 I 2 √Λ∙ + 2 + √X Jy+ 2+77由于b-a 是整数,所以b-a = 2.设 a = 〃 - 1,Z?=H ÷ I,/? ∈ Z 9 即 y[x + y∣~y = U -19 JX +2 + Jy + 2 =Il+ 1, λj√^-√y IX-y I =n _ 1, _ ------- = /2 +1 ♦JX+ 2 — Jy+ 2则頁-V7=.χ-y ∖y [^2-^2=χ-y . n -1 /2 + 1于是 2 Vx = n -1 + -~~- ,2JX+ 2 = n +1 + -~~-n -1 /7 + 1从而2(n-i)y∣x = (n -Iy + (X- y\2(n + I)VX+ 2 = (/? +1)2+(x-y), 故(∕2-l)Vx + 2n = (/7 + l)Jx + 2 ・ 又因为(√Γ巨j-(√^j=2.①令t =長,得代入①得/2 + 12nt 2 -2〃(H-I ”-什 -2〃-I)= 0 ,2∏(H -1)± ^4H 2(∕7-1) +8/7(7?2-2/7-1) _ 77(/7-1)±(7? + 1 )J"(n- 2)4π2n“=”亠頁=也Zl 土壘mIn因此,/7 > 2,并且ZI(M-I)≥ S + UHQl -2), 即∕ι2-2w-l≤0,解之得l-√2≤n≤l +√2,由①X ②X ③得ABPE DC于是y[x = t =从而2 ≤ 7? < 1 + \/2 ,且n w Z ,故n = 2・所以a = ∖,b = 3.3.证明:首先证明一泄存在红色三角形(三边均为红色的三角形为红色三角形,下同)•设从顶点A出发的红色线段最多,由A引出的红色线段为AB I.AB2i- -,AB k ,则k≥n + ↑.若B1,B2∙∙∙,伤中存在两点,不妨设为B l,禺使线段B1B2为红色线段,则AAdB2为红色三角形,若B v B2,相互之间没有红色线段相连,则从B,(i = 12…,k)出发的红色线段最多有2n-k条,所以这2〃个点红色线段最多有丄W + k(2n-k)+ (In一1 一k)] = «(2" —R)≤ "十 ^^"~— = n~ < n~ +1.2与题设矛盾,所以存在以A为顶点的红色三角形,下面用数学归纳法证明,(1)当∏ = 2时,平而上有四个点A,5C,D中两两连线共有6条,其中有5条为红色,只有一条非红色,设为AB,则ΔACZλ与BCD均为红色三角形,命题成立,(2)假设n = k时,命题成立,即至少存在R个红色三角形,当〃 = R + 1时,有2k+2个点,且有(Ar+ I)2+ 1条红色线段,一泄存在一个红色三角形,设为MBe考察从A,B,C引出的红色线段分别记为d(A),d(B∖ J(C)条,不妨设J(A)≤√(B)≤ J(C) 若d(A)+ d(B)< 2k + 2,则除去点A, B余下的Ik个点之间至少有(k + l)2+l-(2 上+ I)?=疋+1,由归纳假设可知存在至少R 个红色三角形,再加上MBC 至少有£ + 1个红色三角形, 若d(A )+ d (B )≥2k + 3,贝IJd (A )+ d (β)+d (C )≥3k + 5,故从A.B.C 岀发向其它2«-1个点引出红色线段至少有3«-1条, 因为(3£_1)_(2£_1)=化 这(3/:-1)线段至少有R 对线段有公共点(不包括A^C )故至少存在k 个红色三角形,再加上MBC,则至少有R+ 1个红色三角形, 所以n = k + ∖时命题也成立,由(1) (2)可知,当n>∖j ιeN 时,2“点之间的朴2 + 1条红色线段至少可组成”个红色 三角形・其中为互素的正整数,那么〃*・ 引理的证明:因为素数P≥5,由FemIat d×⅛理•以及I A+2' +--- + (/?-Iy ≡ θ(rnod “),其中 ∖≤k ≤ P _2 ,有((切 +1X ® + 2)…(切 + P -1))Z A三一芬∙2I 三一壬严三0(mθd"/-1r-I所以((切+1X 切+2)…(切+ 〃_1))EA = PM(M WAr)4.证明:引理:设p 25为素数,R 为非负整数f P-I11 /T w7⅛ = =2∑L+ ' (2£ + 1)〃 ∖kp+i kp+ p-i 丿2 若l(kp+iXkp+p-i)' "-I 令A =工r-11 ______=Σ/=1((切+ IX 切+ 2)…(妙+ 〃 一 1)厂(kp+i ∖kp+p-i)kp+∖ kp+2精品文档在线編辑 更女好内容为您奉上即殳=(2k + MMSk 2((切 + IXkp+ 2).(切 + ” -1))"T 因为(几 2((切 + IX 切+2)…(Rp+ P - I))I )=1, 所以p 2∖t k ,引理证毕,由引理得,P 2a p-i ,所以Pa P-I , 从而 P(P_I)ESP ,P 2->1 1 P-> 1 PTPT 1 =∑7=-∑7÷∑∑1-/=1 l P /=1 1 妇 O /=! KP 十 I 因为P 2 a p ^p 2∖t k .所以M 宀 从而 p 2-l≡S p . 因为p-l<p(p-l)<p 2-l,所以集合SP 中元素至少有3个. 丄 P +Σ十 λ∙=C S k。
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
2009年全国高中数学联赛试题及答案
全国高中数学联赛
全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括4道大题,其中一道平面几何题.
一 试
一、填空(每小题7分,共56分)
1. 若函数(
)f x =
()()()n n
f x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()
()991f = .
2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L
上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横
坐标范围为 .
3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪
⎨⎪-⎩
≥≤≤,N 是随t 变化的区
域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .
4. 使不等式
1111
200712
213
a n n n +++
<-+++对一切正整数n 都成立的最小正整数a 的值为 .
5. 椭圆22
221x y a b
+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积
OP OQ ⋅的最小值为 .
6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩
上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)
8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时
一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 二、解答题
1. (14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆22
11612
x y +=交于
不同两点A ,B ,与双曲线22
1412
x y -=交于不同两点C ,D ,问是否存在直线l ,
使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明
理由.
2. (15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,
,
(Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14
q =,求{}n a 的前n 项和.
3. (15分)求函数y
加试
一、填空(共4小题,每小题50分,共200分)
9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .
⑴求证:MP MT NP NT ⋅=⋅;
⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,
B
求证:Q ,1I ,2I ,T 四点共圆.
10.
求证不等式:
2111ln 12n k k n k =⎛⎫
-<- ⎪+⎝⎭
∑≤,1n =,2,…
11.
设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,
使得C k m 与l 互素.
\。