第章习题解答
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
第一章 流体流动习题解答1.解:(1) 1atm=101325 Pa=760 mmHg真空度=大气压力—绝对压力,表压=绝对压力—大气压力 所以出口压差为p =461097.8)10082.0(10132576.00⨯=⨯--⨯N/m 2(2)由真空度、表压、大气压、绝对压之间的关系可知,进出口压差与当地大气压无关,所以出口压力仍为41097.8⨯Pa 2.解: T=470+273=703K ,p=2200kPa混合气体的摩尔质量Mm=28×0.77+32×0.065+28×0.038+44×0.071+18×0.056=28.84 g/mol混合气体在该条件下的密度为:ρm=ρm0×T0T×pp0=28.8422.4×273703×2200101.3=10.858 kg/m33.解:由题意,设高度为H 处的大气压为p ,根据流体静力学基本方程,得 dp=-ρgdH大气的密度根据气体状态方程,得 ρ=pMRT根据题意得,温度随海拔的变化关系为 T=293.15+4.81000H代入上式得ρ=pMR (293.15-4.8×10-3H )=-dpgdh移项整理得dpp=-MgdHR293.15-4.8×10-3H对以上等式两边积分,101325pdpp=-0HMgdHR293.15-4.8×10-3H所以大气压与海拔高度的关系式为 lnp101325=7.13×ln293.15-4.8×10-3H293.15即:lnp=7.13×ln1-1.637×10-5H+11.526(2)已知地平面处的压力为101325 Pa ,则高山顶处的压力为 p 山顶=101325×330763=45431 Pa将p 山顶代入上式ln 45431=7.13×ln1-1.637×10-5H+11.526 解得H =6500 m ,所以此山海拔为6500 m 。
习题解答 第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用。
答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。
应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。
(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。
说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。
2.已知真空中的光速c 3×108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:v=c/n(1) 光在水中的速度:v=3×108/1.333=2.25×108 m/s (2) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (3) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (4) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (5) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。
那时候的玻璃极不均匀,多泡沫。
除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。
3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。
解:706050=+l l l =300mm4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。
习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
第 5 章 热力学第二定律5.5 三个刚性物体 A、B、C 组成的封闭绝热系统,其温度分别为 TA=200K、TB=400K、TC=600K,其热容 量(mc)分别为(mc)A=10J/K、(mc)B=4J/K、(mc)C=6J/K。
试求:①三个物体直接接触传热达到热平衡时的温 度 Tx,并求此过程封闭绝热系统相应的总熵变;②三个物体经可逆热机而达到热平衡时的温度 Tm,及此 过程所完成的总功量 Wnet。
解: ①能量平衡方程: (mc)A(Tx-TA)+ (mc)B(Tx-TB)+ (mc)C(Tx-TC)=0 由题设:(mc)A=10J/K、(mc)B=4J/K、(mc)C=6J/K,则易得: Tx=(10TA+ 4TB+ 6TC)/20=(10×20+ 4×400+ 6×600)/20=360K∆S = (mc) A ln = 10 × ln Tx T T + (mc) B ln x + (mc)C ln x TA TA TA360 360 360 + 4 × ln + 6 × ln = 2.4J /(kg ⋅ K) 200 400 600②对于三个刚性物体 A、B、C 组成的封闭绝热系统,有: A 的总熵变: ∆S = (mc) ln Tm ;B 的总熵变: ∆S = (mc) ln Tm ;C 的总熵变: ∆S = (mc) ln Tm A A B B B CTA TB TC由于 ∆Siso = ∆SA + ∆SB + ∆SC + ∆S可逆机 ,且 ∆Siso = 0 , ∆S可 逆 机 =0 ,则:∆SA + ∆SB + ∆SC = 0 ⇒ (mc) A lnTm T T +(mc) B ln m +(mc)C ln m =0 TA TB TC⇒10 × ln⇒ TmTm T T + 4 × ln m + 6 × ln m = 0 TA TB TC(Tm 10 Tm 4 Tm 6 ) ⋅( ) ⋅( ) =1 TA TB TC= 20 TA10TB 4TC 6 = 20 20010 × 400 4 × 6006 = 319.4 K由热力学第一定律可知:Q=∆U+Wnet,其中 Q=0,则: Wnet=-∆U =-(∆UA+∆UB+∆UC) =-[(mc)A(Tm-TA)+ (mc)B(Tm-TB)+ (mc)C(Tm-TC)] =-[10×(319.4-200)+4×(319.4-400)+6×(319.4-600)] =812J 5.7 进入蒸汽轮机的过热蒸汽的参数为:p1=30bar,t1=450℃。
习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
习 题 一1.解:(1)31542的逆序数=2+0+2+1+0=5(2)264315的逆序数=1+4+2+1+0+0=8 (3)54321的逆序数=4+3+2+1=10(4))12)(32(135)2)(22(246---n n n n =1+2+3+…(2n -1)=2)1(+n n 2.解:四阶行列式中含有31a 的项可表示为42142143121)1()1(j j j j j j a a a a τ-,其中421,,j j j 为2,3,4的全排列。
故带有负号的项有:43312412a a a a -,44312213a a a a -,42312314a a a a -3.解:xx x x x x 347165423112展开式中含有4x 的项必须每行都取含x 的项相乘,即41863x x x x x =⋅⋅⋅=,含有3x 的项为x x x x x x ⋅⋅⋅-+⋅⋅⋅-2)1(763)1()1324()4231(ττ3128x -=4.证明:(反证法)假设该行列式不为零,则不为零的元素的个数≥n ,从而为零的元素的个数≤n n -2,与已知行列式中有n n -2个以上元素为零矛盾。
所以该行列式为零。
5.解:(1)2456323652-=⨯-⨯=+ (2)))(())((22222222b ab a b a b ab a b a ba b a b ab a b ab a ++--+-+=+-+++-33b a +=3332)(b b a =--(3)022=bababa (4)45500251190221242513122113-=-----r r r r (5)3711107403112311740532224332453213312213=-----↔-----r r r r r r r r(6)))((0))((0111121212222c b a a c a c c b a a b a b bca ar r r r abc c acb bbca a ++--++-------- 0)(10)(101))(()()(232=++++-----c b a c b a bca aa c ab ac r a b r 提取提取(7)43123524323556485437r r r r --23214123524031102115437r r r r r r -+--3524010002111400---24100011302410000111000524343231-按第一行展开--++-r r r r r r22411=-按第三列展开 (8)132141873754169521321r r r r r ---1226400622069521321r r ---2312226400622043101321r r r r ----346400240043101321r r -----16400240043101321=---(9)4321c c c c xa b c a x c b b c x a c b a x +++----xa b x c b a a x c x c b a bc x x c b a cb a xc b a --++--++--++-++131214 )(r r r r r r x c b a ----++ 提取cx b a a b c a b x a c cb bc a x c b a x c b a -------------++0001)(4223c c c c ++c x b c a x ca c ab x cb c b a x b c a x ca b c a x c b a --+----+----+---+---++-++000001)( 432c c c --cx b c a x c a c a b x cx a b ca b c a x c b a --+----+---++-++-++00000001)( 按第一列展开cx b c a x ca c ab xc x a b x c b a --+-------++--++0|00)())()()(()1()321(x a c b c b a x b c a x x c b a +-++---+----++-=τ ))()()((x c b a x b a c x c a b x c b a ----------++=6.解:(1) 证明:cb a a cb c b a cba cb a ++++++222并提取公因式321c c c ++c b a a b c b a ba++++++21211c)b 2(ac b a c b a bac b a c c c c ++++++--00001)(213123)(2c b a ++=(2)bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++5行列式性质bz ay by ax az by ax bx az ay bx az bz ay ax +++++++bz ay by ax bx by ax bx az bz bxaz bz ay by ++++++ 提取公因式bz ay by ax z by ax bx az y bxaz bz ay xa +++++++bzay by ax xby ax bx az z bx az bz ay yb ++++++5行列式性质ay by ax zax bx az y az bz ay x a ++++bz by ax zby bx az ybx bz ay x a ++++bz ay ax xby ax az zbxaz ay y b ++++bz ay by x by ax bx z bxaz bz y b +++y by ax z x bx az y zbzay x a +++2+++00bz ay y xby ax x zbxaz z yb +++25行列式性质y ax z x azy z ay x a 2+y by z x bx y zbzx a 2+ayy x ax x zazz yb 2+bz y x by x zbxz y b 2yxzx z y zy x a 3+++00zy x y xzx z yb 3 1223,c c c c ↔↔第二个行列式y xzx z y z y xb a )(33+ (3)用数学归纳法①当1=n 时,1)11(22x x x D n +===,命题成立;②设k n ≤时命题成立,即k k x k D )1(+=,则1+=k n 时,)1()1(22222100020000002100002100002+⨯+=k k n x x x x x x x x x D=kk x x x x x x x x x x⨯210002000000210000210000222222kk x x x x x x x ⨯-210020000020000122221212)1(22--⋅-+⋅=-=k k k k kx x x k x D x xD 11)2()22(+++=-+k k x k x k k n x n )1(+=综合①、②可得对一切自然数n ,都有n n x n D )1(+=. 7.解:(1)1444414444144441 =n D),,3,2(1n i r r i =+14444144441434343434 ----n n n n)34()34(--n n 提取1444414444141111 )34(,3,2 4 1-=-n ni r r i 300030000301111---)34()3(1--=-n n(2)121212555333321321321321---=n n n n n n n n Dni i c i ,3,2=提取2222224442223213213211111!---n n n n n n n∏≤<≤-nj i j i n 122)(! 式行列利用范德蒙(3)递推法nn n n a a a a a a a a D -------=-+11000010000001100001100001132211112r r +nn n a a a a a a a ------11000100000011000010000113221D n展开按第一列nn n a a a a a a a ------11001000000110000100001143321a -11-a 1Dnn 2=(4)nnn n n n nnn d c d c d c b a b a b a D 111111112----=行取第一行和第拉普拉斯定理n 2nn nnd c b a .11111111----n n n n d c d c b a b a22)( --n n n n n D c b d a 421111))((-------n n n n n n n n n D c b d a c b d a 可得类似111133331111)())((d c b a c b d a c b d a c b d a n n n n n n n n -------∏=-ni i i i i c b d a 1)((5)na xxxx a x xx x a x x x x a3211,2,1 1-=-+n i c c i inn n a a x x x a x x a a x x x a a x x x a -------- 000000 00 00 001332212,1, 1 -=--n n i r r i ixa a a x x a x a a a x x a a a x xx a n n n n -------------1132321212 000 000002000 020 00∏∏=-+=---+-ni i i n n i i a a x x x a n 2111)2()1()( 展开列按第 ∏∏=-=-++-ni i i ni i x a a x x a 211)2()(8.解:(1)计算系数行列式232142234321212r r r r D --=51050321430-=----5321032143031-+--r r 210321200=-101312173237323211r r r r D --=01240310211=----2321242274331212r r r r D --=311050331450r r -----31105033160r r ----302321342734321112r r r r D --==----5503215303131103215305r r +---101103212005=-- 所以方程组有唯一解011==D D x , 322==D Dx , 133-==DD x (2)计算系数行列式4352323211431121----=D 101110740064112132141312------++r r r r r r 10111010402021104424123------++-r r r r r r6114022111=---展开按c 43513232114711231----=D 24232143r r r r r r +-+01212901919114700610--- 324241212919190610)1(r r c +----+展开按60121290121006101413122224312322211731131r r r r r r D --+----=1421505440001041131c c -------11501440001040131-----390144000104013134---+r r 3900104131)1(434---+展开按c3131r r +303900104001)1(43-=--+41523232174313213--=D 141312223r r r r r r ---2510541042201321-------2423225105410211013212)2(r r r r r -+--------提取06003300211013212----- 0603302112C 1----展开按36=- 13522232714331214--=D 141312223r r r r r r ---5110441024203121-------2423251104410121031212)2(r r r r r -+--------提取61003200121031212----- 613201212C 1----展开按18= 所以方程组有唯一解1011==D D x , 522-==D D x , 633-==D D x , 344==DDx (3)计算系数行列式5733856155334231=D 343214131222716043307160423133r r r r r r r r r r ++--------17004330150042312004330150001013124---r r r r 64310)1(20204331502331=-⨯+展开按展开按r C3412125738856855364233r r r r D --=24232123230856831304233r r r r r r -++----0100270831301303--13123442320833013)1(r r r r r -+---+展开按600203913-=--57838581556342312=D 022435713022043507130423131131224---------展开按c r r r r r r11420720253232313---+r r r r r 提取12-58338861563343313=D 020453736020045307360433131131224---------展开按c r r r r r r 6=87338561653332314=D 220533316220053303160323131131224---------展开按c r r r r r r122275)1(3220533750212121=-⨯++展开按c r r所以方程组有唯一解111-==D D x , 222-==D D x , 133==D D x , 244==DDx9.解:(1)λλλλ--=3111211D 1232rr c c --λλλλλ----3321022132122332021---+---λλλλλλλ展开按r )2)(2()22)(2()3)(2(2---=--+--=λλλλλλλλ)1()2(2+--=λλ当0=D 时,即时=-或12λλ=,齐次方程组有非零解. (2)324124122-+--=λλλD 32423601221212---+-----λλλλλr r c cλλλλλλλ--+--+-----2460)1(3223621展开按r [])6)(4)(1()23)(2()6(32-+---++--=λλλλλλ)4)(2)(3(241423-++-=+-=λλλλλλ+-当0=D 时,即时=或-或423λλλ=-=,齐次方程组有非零解.习 题 二1. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=+776491056532B AB (2)⎪⎪⎪⎭⎫ ⎝⎛------=-4332412332E AB T2.解:(1)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--000046696432 (2)⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛834231413121342(3)()⎪⎪⎪⎭⎫ ⎝⎛----=-⎪⎪⎪⎭⎫ ⎝⎛-339226113113321 (4)()2321113-=⎪⎪⎪⎭⎫⎝⎛--(5)⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------777468505642531432321234643755467 (6)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113332222112331221111x x x x a x a x a x a x a x a x a x a x a)()()(233332233113233222222112133112212111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++=3.解:⎪⎪⎪⎭⎫ ⎝⎛---=210143321TA , ⎪⎪⎭⎫ ⎝⎛=234112T B(1)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=112143213142210143321B A T(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛=124113213142031234112A B T(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛==1165511210143321234112)(TT T A B AB4.解:从321321,,,,x x x y y y 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321y y y A x x x ,其中⎪⎪⎪⎭⎫ ⎝⎛---=352143231A ;从321321,,,,y y y z z z 到的线性变换可表示为:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z B y y y ,其中⎪⎪⎪⎭⎫ ⎝⎛=231341652B ,所以从321321,,,,x x x z z z 到的线性变换可表示为:=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛321321z z z AB x x x ⎪⎪⎪⎭⎫ ⎝⎛---352143231⎪⎪⎪⎭⎫ ⎝⎛231341652=⎪⎪⎪⎭⎫ ⎝⎛321z z z ⎪⎪⎪⎭⎫ ⎝⎛--312823111⎪⎪⎪⎭⎫ ⎝⎛321z z z 所以,从321321,,,,x x x z z z 到的线性变换为: ⎪⎩⎪⎨⎧+-=++=+-=32823 321332123211z z z x z z z x z z z x5.解:(1)E A A A f 43)(2+-=⎪⎪⎭⎫ ⎝⎛--=2321⎪⎪⎭⎫ ⎝⎛--2321-3⎪⎪⎭⎫ ⎝⎛--2321E 4+=⎪⎪⎭⎫⎝⎛8008 (2) 2201310111)(2--=--=x x x x x x f=--=E A A A f 22)(2⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛0211⎪⎪⎭⎫ ⎝⎛-02112E 2-⎪⎪⎭⎫⎝⎛---=01216.(1)∵222))(()(B BA AB A B A B A B A +++=++=+ ∴要使2222)(B AB A B A ++=+,则必须AB BA = (2) ∵22))((B BA AB A B A B A -+-=-+∴要使22))((B A B A B A -=-+,则必须0=+-BA AB ,即AB BA = (3) 当AB BA =时,用数学归纳法证明kk k B A AB =)(①1=k 时,显然kk k B A AB =)(2=k 时,222)()()()(B A B AB A B AB A ABAB AB AB k =====,所以kk k B A AB =)(②设n k =时,有kk k B A AB =)(,则1+=n k 时B BA B A B A B A AB B A AB AB AB AB n n n n n n n n K)()()()()()(1!-+=====B AB B A n n )(1-=21)(B A B A n n -=11)(++===n n n n B A B AB A可见,1+=n k 时,也有k k k B A AB =)(所以,当AB BA =时,对一切正整数k 都有 k k k B A AB =)(7.解:(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛----111122221111n n n n n(2) ∵⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--100123122∴⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--为奇数为偶数n n n 2312 10012312 (3) ∵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100112,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1002101211001100113⎪⎪⎪⎭⎫⎝⎛100110011⎪⎪⎪⎭⎫⎝⎛=100310331 =⎪⎪⎪⎭⎫ ⎝⎛41001100113100110011⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100110011⎪⎪⎪⎭⎫ ⎝⎛=100310331⎪⎪⎪⎭⎫⎝⎛100110011 ⎪⎪⎪⎭⎫ ⎝⎛=100410641 ∴⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛100102)1(1100110011n n n n n8.证明:∵A 、B 为对称矩阵,∴=T A A ,=TB B(1) ∵ AC C C A C AC C T T T T T T T ==)()(∴ AC C T是对称矩阵(2) ∵ ABABA A B A B A ABABA TT T T T T ==)(∴ ABABA 是对称矩阵(3) ∵E E AA TT ==-)(1,=T A A∴==--T T T A A AA )()(11A A E A A T 11)(--== ∴ 11)(--=A A T ∴ 1-A 是对称矩阵9.解:(1) ∵027342≠=∴⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-23477342173421⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-23472173421(2) ∵01cos sin sin cos cos sin 22≠=+=-θθθθθθ∴ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--θθθθθθθθsin cos cos sin 11sin cos cos sin 1⎪⎪⎭⎫⎝⎛-=θθθθsin cos cos sin (3) ∵232132643321532r r r r --01320321110≠-=---- ∴⎪⎪⎪⎭⎫⎝⎛643321532可逆 又∵0643211==A , 3633112=-=A , 2432113-==A 2645321=-=A , 3635222-==A , 1433223=-=A 1325331-==A , 1315232-=-=A , 1213233==A ∴⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-1121331206433215323323133222123121111A A A A A A A A A(4) ⎪⎪⎪⎭⎫⎝⎛-------=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛-----11133131121212113123233323133222123121111A A A A A A A A A(5) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----1212335123240634332311(6) 把⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1000210032104321D 分块为⎪⎪⎭⎫ ⎝⎛B C A 0, 其中⎪⎪⎭⎫ ⎝⎛=1021A ,⎪⎪⎭⎫ ⎝⎛=1021B ,⎪⎪⎭⎫⎝⎛=3243C , 则01≠==B A D ,∴矩阵D 可逆。
《机械制造技术基础》部分习题参考解答第一章绪论1-1 什么是生产过程、工艺过程和工艺规程?答:生产过程——从原材料(或半成品)进厂,一直到把成品制造出来的各有关劳动过程的总称为该工厂的过程。
工艺过程——在生产过程中,凡属直接改变生产对象的尺寸、形状、物理化学性能以及相对位置关系的过程。
工艺规程——记录在给定条件下最合理的工艺过程的相关内容、并用来指导生产的文件。
1-2 什么是工序、工位、工步和走刀?试举例说明。
答:工序——一个工人或一组工人,在一个工作地对同一工件或同时对几个工件所连续完成的那一部分工艺过程。
工位——在工件的一次安装中,工件相对于机床(或刀具)每占据一个确切位置中所完成的那一部分工艺过程。
工步——在加工表面、切削刀具和切削用量(仅指机床主轴转速和进给量)都不变的情况下所完成的那一部分工艺过程。
走刀——在一个工步中,如果要切掉的金属层很厚,可分几次切,每切削一次,就称为一次走刀。
比如车削一阶梯轴,在车床上完成的车外圆、端面等为一个工序,其中,n, f, a p不变的为一工步,切削小直径外圆表面因余量较大要分为几次走刀。
1-3 什么是安装?什么是装夹?它们有什么区别?答:安装——工件经一次装夹后所完成的那一部分工艺过程。
装夹——特指工件在机床夹具上的定位和夹紧的过程。
安装包括一次装夹和装夹之后所完成的切削加工的工艺过程;装夹仅指定位和夹紧。
1-4 单件生产、成批生产、大量生产各有哪些工艺特征?答:单件生产零件互换性较差、毛坯制造精度低、加工余量大;采用通用机床、通用夹具和刀具,找正装夹,对工人技术水平要求较高;生产效率低。
大量生产零件互换性好、毛坯精度高、加工余量小;采用高效专用机床、专用夹具和刀具,夹具定位装夹,操作工人技术水平要求不高,生产效率高。
成批生产的毛坯精度、互换性、所以夹具和刀具等介于上述两者之间,机床采用通用机床或者数控机床,生产效率介于两者之间。
1-5 试为某车床厂丝杠生产线确定生产类型,生产条件如下:加工零件:卧式车床丝杠(长为1617mm ,直径为40mm ,丝杠精度等级为8级,材料为Y40Mn );年产量:5000台车床;备品率:5%;废品率:0.5%。
《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
第1章习题解答
一、填空
1.计算机由硬件系统和软件系统两个部分组成,它们构成了一个完整的计算机系统。
2.按功能划分,软件可分为系统软件和应用软件两种。
3.操作系统是在裸机上加载的第一层软件,是对计算机硬件系统功能的首次扩充。
4.操作系统的基本功能是处理机(包含作业)管理、存储管理、设备管理和文件管理。
5.在分时和批处理系统结合的操作系统中引入“前台”和“后台”作业的概念,其目的是改善系统功能,提高处理能力。
6.分时系统的主要特征为多路性、交互性、独立性和及时性。
7.实时系统与分时以及批处理系统的主要区别是高及时性和高可靠性。
8.若一个操作系统具有很强的交互性,可同时供多个用户使用,则是分时操作系统。
9.如果一个操作系统在用户提交作业后,不提供交互能力,只追求计算机资源的利用率、大吞吐量和作业流程的自动化,则属于批处理操作系统。
10.采用多道程序设计技术,能充分发挥CPU 和外部设备并行工作的能力。
二、选择
1.操作系统是一种B 。
A.通用软件B.系统软件C.应用软件D.软件包2.操作系统是对C 进行管理的软件。
A系统软件B.系统硬件C.计算机资源D.应用程序3.操作系统中采用多道程序设计技术,以提高CPU和外部设备的A 。
A.利用率B.可靠性C.稳定性D.兼容性4.计算机系统中配置操作系统的目的是提高计算机的B 和方便用户使用。
A.速度B.利用率C.灵活性D.兼容性5.C 操作系统允许多个用户在其终端上同时交互地使用计算机。
A.批处理B.实时C.分时D.多道批处理6.如果分时系统的时间片一定,那么D ,响应时间越长。
A.用户数越少B.内存越少C.内存越多D.用户数越多
三、问答
1.什么是“多道程序设计”技术?它对操作系统的形成起到什么作用?
答:所谓“多道程序设计”技术,即是通过软件的手段,允许在计算机内存中同时存放几道相互独立的作业程序,让它们对系统中的资源进行“共享”和“竞争”,以使系统中的各种资源尽可能地满负荷工作,从而提高整个计算机系统的使用效率。
基于这种考虑,计算机科学家开始把CPU、存储器、外部设备以及各种软件都视为计算机系统的“资源”,并逐步设计出一种软件来管理这些资源,不仅使它们能够得到合理地使用,而且还要高效地使用。
具有这种功能的软件就是“操作系统”。
所以,“多道程序设计”的出现,加快了操作系统的诞生。
2.怎样理解“虚拟机”的概念?
答:拿操作系统来说,它是在裸机上加载的第一层软件,是对计算机硬件系统功能的首次扩充。
从用户的角度看,计算机配置了操作系统后,由于操作系统隐蔽了硬件的复杂细节,
用户会感到机器使用起来更方便、容易了。
这样,通过操作系统的作用使展现在用户面前的是一台功能经过扩展了的机器。
这台“机器”不是硬件搭建成的,现实生活中并不存在具有这种功能的真实机器,它只是用户的一种感觉而已。
所以,就把这样的机器称为“虚拟机”。
3.对于分时系统,怎样理解“从宏观上看,多个用户同时工作,共享系统的资源;从微观上看,各终端程序是轮流运行一个时间片”?
答:在分时系统中,系统把CPU时间划分成许多时间片,每个终端用户可以使用由一个时间片规定的CPU时间,多个用户终端就轮流地使用CPU。
这样的效果是每个终端都开始了自己的工作,得到了及时的响应。
也就是说,“从宏观上看,多个用户同时工作,共享系统的资源”。
但实际上,CPU在每一时刻只为一个终端服务,即“从微观上看,各终端程序是轮流运行一个时间片”。
[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。