26间接平差--测边网观测方程组成
- 格式:ppt
- 大小:1.63 MB
- 文档页数:7
第六章间接平差第一节间接平差原理第二节误差方程第三节精度评定第四节平差示例一、数学模型V L L+=ˆ第一节间接平差原理l x B V −=ˆLLLL Q D 2σ=AB Ch 4h 3h 1h 5h 2hh h第一节间接平差原理二、基础方程和它的解l xB V −=ˆ最小=PV V T按函数极值的求法,极值函数:min )ˆ()ˆ(=−−=l x B P l x B PV TT 02=PB V T-----法方程=PV B T基础方程0ˆ)(=−Pl B xPB B TT解即得:PlB PB B TT 1)−l x B −ˆVL L +=ˆ-----法方程0ˆ)(=−Pl B xPB B TT bbN二、间接平差法平差步骤1、选择第二节误差方程一、确定待定参数的个数二、参数的选取高程控制网:待定点的高程A B Ch 4h 3h 1h 5h 2三、误差方程的组成1、水准路线的误差方程ijX iX j2、方向的误差方程N零方向kljkL jlLjY k X jZ 设j 、k 的坐标为未知参数:jkLˆˆˆ对上式在初始近似值处进行Taylor级数展开:0000)(jZXXYY arctg x Y f x Xf yY f xXf zVLjkj k k kkkjj jjjjkjk−−−+∂∂+∂∂+∂∂+∂∂+−=+kk k z Z Z +=0ˆjj j x X X +=0ˆjj j y Y Y +=0ˆkk k x X X +=0ˆkk k y Y Y +=0ˆ22)(1)()1)((jk j k j k j k jX X Y Y X X Y Y Xf −−+−−−−=∂∂22)()()(j k j k j k Y Y X X Y Y −+−−=jkjk jkjk S SY αsin 2=Δ=22)(1)()(jk j k j k j k kX X Y Y X X Y Y X f −−+−−−=∂∂22)()()(j k j k j k Y Y X X Y Y −+−−−=jkjk jkjk S SY αsin 2−=Δ−=2)(1)(1jk j k j k j X X Y Y X X Y f −−+−−=∂∂22)()()(j k j k j k Y Y X X X X −+−−−=jkjkjk jk S S X αcos 2−=Δ−=)(j k X X −=0000(00000XXY Y arctg x Y f x Xf yYf xXfz VLj k k YX kY X jY X jjjj jkjk−−+∂∂+∂∂+∂∂+∂∂+−=+0000(cos sin jkjkY Y arctg x x ySxSz Vj k j jkjjkjjk jk−++−+−=+αα0000(cos sin jkjkY Y arctg Lx x ySxSzj k jkjjkjjkjjk−+−+−+−=αα当j 点已知时:000000)(cos sin jjkjkZXXY Y arctg Lx S x SzVjkj k jkkjk k jk jjk−−−+−+−−=ααN零方向kljkL jlLjjY k X jZ 0000000000000)(cos sin cos sin jjkjkjkjkZXXY Y arctg Lx Sx SySxSzVj kj k jkk jkk jkjjkjjkjjk−−−+−+−+−=αααα000)(ZY Y S xS jk jk j jk−−−当k 点已知时:21)ˆˆˆˆ()ˆˆˆˆ(ˆˆF F X X Y Y arctg X X Y Y arctg v L jh jh j k j k jh jk i i −=−−−−−=−=+αα2、角度的误差方程khX Y h X hY jhααjj j x X X +=0ˆjj j y Y Y +=0ˆkk k x X X +=0ˆkk k y Y Y +=0ˆ:)ˆ,ˆ,ˆ,ˆ(11kk j j Y X Y X F F =L +∂∂+∂∂+∂∂+∂∂+=k k k k j jj j yY F x X F y Y F x X F F F ˆˆˆˆˆˆˆˆ1111011L +∂∂+∂∂+∂∂+∂∂+=h hh h j jj j yY F x X F y Y F x X F F F ˆˆˆˆˆˆˆˆ2222022j h hh h j j j j k k k k j j j j j L F F y Y F x X F y Y F x X F y Y F x X F y Y F x X F v −−+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+∂∂=020*******11ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ⎟⎟⎠⎞⎜⎜⎝⎛−−−−−−=−−=)()()(000000000jhj h jk j k i jhjki i X X Y Y arctg X X Y Y arctg L L l αα()()()()()()()()i h jh jhh jh jh k jk jk k jkjk j jh jh jkjk j jh jh jk jk i l y S X x S Y y S X x S Y y S X S X x S Y S Y v −Δ′′−Δ′′+Δ′′+Δ′′−⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ′′−⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ′′=ˆˆˆˆˆˆ200200200200200200220200ρρρρρρ()()()()()()()()i h jhjh h jh jh j jh jh j jh jh k jkjk k jkjk j jkjk j jkjk i l y S X x S Y y S X x S Y yS XxS YyS XxS Yv −⎟⎟⎠⎞⎜⎜⎝⎛Δ′′+Δ′′−Δ′′−Δ′′−Δ′′+Δ′′−Δ′′−Δ′′=ˆˆˆˆˆˆˆˆ200200200220200200200200ρρρρρρρρ3、距离的误差方程jkS 设j 、k 的坐标为未知参数:jk 的距离为:22)ˆˆ()ˆˆ(j k j kY Y X X−+−对上式在初始近似值处进行Taylor级数展开:j j x X X +=0~jj y Y Y +=0~k k x X X +=0~kk y Y Y +=0~设:200200)()(jkjkkkkjjj jjkY Y X XY x XyY xX −+−∂+∂+∂+∂=22)ˆˆ()ˆˆ(ˆj k j kjkY Y X XS−+−=jkjk j k j k j k j SX Y Y X X X X X fαcos )()(2)(222−=Δ−=−+−−−=∂∂jkjk j k j k j k j S Y Y Y X X Y Y Y fαsin )()(2)(222−=Δ−=−+−−−=∂∂jkjk j k j k j k k S X Y Y X X X X X fαcos )()(2)(222=Δ=−+−−=∂∂jkjk j k j k j k k S Y Y Y X X Y Y Y fαsin )()(2)(222=Δ=−+−−=∂∂200200)()(0jk j kk YXkkYX kjYX jjYX jjkjkY Y XXx Y f x Xf yY f xXf VS−+−+∂∂+∂∂+∂∂+∂∂+=+2200)()(j k j k Y Y X X −+−jkjkYY XX−+−200200)()(当j 点已知时:当k 点已知时:jk jk Y Y X X −+−202)()(j k j kY Y X X −+−2020)()(3、拟合模型误差方程(1) 圆曲线拟合:圆曲线参数方程:iii i r Y Yr X X ααˆsin ˆˆˆˆcos ˆˆˆ00+=+=)、(i i Y X 圆心坐标ii iiyii y xi ix l r r y v l r r x v −−+=−−+=ρδααδαρδααδα0000000cos sin ˆsin cos ˆ(2) 高程拟合:25423210ˆii i i i i i y b y x b x b y b x b b Z +++++=ii i i i i i Z Z b y b y x b x b y b x b v i −+++++=52432210ˆˆˆˆˆˆ5、坐标转换模型误差方程x Oyα()00y x O 、′xx ′y ′坐标变换方程:ααααsin cos sin cos 00m x m y y y m y m x x x i i i i i i ′+′+=′−′+=⎥⎥⎥⎥⎥⎥⎥⎥⎤⎢⎢⎢⎢⎢⎢⎢⎢⎡−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎤⎢⎢⎢⎢⎢⎢⎢⎢⎡′−′′′′−′′′′−′=⎥⎥⎥⎥⎥⎥⎥⎥⎤⎢⎢⎢⎢⎢⎢⎢⎢⎡n n n x y x y x x y x y x d c b ay x x y y x x y y x v v v v v n M M M M 2211222211112ˆˆˆˆ0110011001211第三节精度评定rPVV T二、协因数阵一、计算单位权中误差d X B L+=ˆˆl xB V −=ˆ基本向量间的关系:111)()()(−−−==∧∧PB B PB B PQPB B PB B Q T TTTxx TBBVV VL LV L L BBNQ Q Q Q Q 1ˆˆ−=+++=QQ Q ll LL ==三、参数函数的中误差()tX X X ˆ,,ˆ,ˆˆ21L Φ=ϕX d F d Tˆˆ=ϕFN F F Q F Q bbTX X T 1ˆˆˆˆ−==ϕϕ[]t Tf f f F L21=测角网间接平差算例:C123456789121110131415161718P2P1坐标(m)边长方位角点名X(m)Y(m)A9684.2843836.82B10649.5531996.5011879.60274°39’38.4" C19063.6637818.8610232.1634°40’56.3" D17814.6349923.1912168.6095°53’29.1" A10156.11216°49’06.5"解:n=18, t=2*6-4-4=4, r=18-4=14设P1、据前方交会可以求出00000cos sin cos sin ()(ji jkjjijk jik y x x x S SxS S jijijkjk−++−−−=αααα⎢⎢⎢⎢⎢⎢⎢⎡⎥⎥⎥⎥⎥⎥⎥⎤⎢⎢⎢⎢⎢⎢⎢⎡54321V V V V V xl定权,P ⎢⎢⎢⎢⎡−−+45.1111.2261.94停止返回精度评定:1428.220±==ΛrPVV Tσ0121.00161.00117.00169.016.014.022+17.014.022+例:如图,定点。
平差知识点总结(总10页) -CAL-FENGHAI.-(YICAI)-CompanY One 1-CAL-本页仅作为文档封面,使甬请直接删除测量平差知识点观测误差包括:粗差、系统误差、偶然误差。
粗差:即粗大误差,或者说是一种大量级的误观测差,是由观测过程中的差错造成的。
发现粗差的方法:进行必要的重复测量或多余观测,采用必要而又严格的检核、验算等,发现后舍弃或重测。
系统误差:在相同条件下进行一系列观测,如果误差在大小、符号表现出一致性,或者在观测过程中按一定的规律变化,或者为一常数,这种误差称为系统误差。
消除或削弱的方法:采取合理的操作程序(正、倒镜,中间法,对向观测等);用公式改正,即加改正裁(如钢尺量距时的尺长误差等)。
偶然误差:在相同条件下进行一系列观测,如果误差在大小、符号上表现出偶然性,即就单个误差而言,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差,或者随机误差。
采臥措施:处理带仔偶然误差的观测值,就是木课程的内容,也叫做测量平差。
偶然谋差又称随机误差,有以I、•四个特性:1)一定观测条件下,误差绝对值有一泄限值(有限性);2)绝对•值较小的课差比绝对值较人的课差出现概率人(渐降性):3)绝对值相等的正负误差出现概率相同(对称性);4)偶然谋差的数学期望为零(抵偿性)。
衡量精度的指标有五个,分别眉中矗、平均矗、或然i灵差、极限i灵差以及相对中谋差。
其中中矗和极限误差以及相对中保差是工程測量中常用的指标。
5、相对谋差颠差、屮促差、极限促差等指标,对于菜些观测结果,有时还•侮全表达观测结果的好坏,例如,分别丈1000m及500⑴的两段距离,它们的中课差均为±2cn】,虽然两者■的中误差相同,但就M位长度而言,两者精度并彳、相同。
显然询耆的郴对蒂度比后者耍高。
一般:而言,一些与长度有关的观测俺或其函数值,单纯用中误苣还不能区分出蒂度的高低,所以常用相对课差。
《控制测量学》试题参考答案一,名词解释:1, 子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈.2, 卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈.3椭园偏心率:第一偏心率第二偏心率4, 大地坐标系:以大地经度,大地纬度和大地高来表示点的位置的坐标系.P3 5,空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X 轴正交的方向为丫轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ. P46, 法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈.P97, 相对法截线:设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线.P158, 大地线:椭球面上两点之间的最短线.9, 垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正.P1810, 标高差改正:由于照准点高度而引起的方向偏差改正.P19 11,截面差改正:将法截弧方向化为大地线方向所加的改正.P2012, 起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角.P2213, 勒让德尔定理:如果平面三角形和球面三角形对应边相等,则平面角等于对应球面角减去三分之一球面角超.P2714, 大地元素:椭球面上点的大地经度,大地纬度,两点之间的大地线长度及其正,反大地方位角.P2815, 大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算.P2816, 大地主题正算:已知P1点的大地坐标,P1至P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角.17, 大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角.18, 地图投影:将椭球面上各个元素(包括坐标,方向和长度)按一定的数学法则投影到平面上.P3819, 高斯投影:横轴椭圆柱等角投影(假象有一个椭圆柱横套在地球椭球体外,并与某一条子午线相切,椭球柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定范围内的地区投影到椭圆柱上,再将此柱面展开成投影面).P3920, 平面子午线收敛角:直角坐标纵轴及横轴分别与子午线和平行圈投影间的夹角. 21, 方向改化:将大地线的投影曲线改化成其弦线所加的改正.22, 长度比:椭球面上某点的一微分元素与其投影面上的相应微分元素的比值.P70 23, 参心坐标系:依据参考椭球所建立的坐标系(以参心为原点).24地心坐标系:依据总参考椭球所建立的坐标系(以质心为原点).25,站心坐标系:以测站为原点,测站上的法线(垂线)为Z轴(指向天顶为正),子午线方向为x轴(向北为正),y轴与x,z轴垂直构成左手系.二,填空题:1, 旋转椭球的形状和大小是由子午椭园的5个基本几何参数来决定的,它们分别是长半轴,短半轴,扁率,第一偏心率,第二偏心率. 2,决定旋转椭球的形状和大小,只需知道 5 个参数中的 2 个参数就够了,但其中至少有一个长度元素.3, 传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954 年北京坐标系应用是克拉索夫斯基椭球,1980 年国家大地坐标系应用的是75 国际椭球(1975 年国际大地测量协会推荐)椭球,而全球定位系统(GPS)应用的是WGS-84(17 届国际大地测量与地球物理联合会推荐)椭球. 4,两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指M 和N .5, 椭球面上任意一点的平均曲率半径R 等于该点子午曲率半径M 和卯酉曲率半径N 的几何平均值.6, 椭球面上子午线弧长计算公式推导中,从赤道开始到任意纬度B 的平行圈之间的弧长表示为:X=.7, 平行圈弧公式表示为:r= x=NcosB=.8, 克莱洛定理(克莱洛方程)表达式为lnsinA+lnr=lnC(r*inA=C) 9,某一大地线常数等于椭球半径与该大地线穿越赤道时的大地方位角的正弦乘积或者等于该点大地线上具有最大纬度的那一点的平行圈半径. 10,拉普拉斯方程的表达式为.11, 若球面三角形的各角减去球面角超的三分之一,即可得到一个对应边相等的平面三角形.12, 投影变形一般分为角度变形, 长度变形和面积变形.13, 地图投影中有等角投影, 等距投影和等面积投影等.14, 高斯投影是横轴椭圆柱等角投影,保证了投影的角度的不变性,图形的相似形性,以及在某点各方向上的长度比的同一性.15, 采用分带投影,既限制了长度变形,又保证了在不同投影带中采用相同的简便公式进行由于变形引起的各项改正数的计算.16, 椭球面到平面的正形投影的一般公式表达为:,.17, 由平面到椭球面正形投影一般条件表达式为:,.18, 由于高斯投影是按带投影的,在各投影带内经差l 不大, l/p 是一微小量.故可将函数,展开为经差l 的幂级数.19, 由于高斯投影区域不大,其中y 值和椭球半径相比也很小,因此可将展开为y 的幂级数.20, 高斯投影正算公式是在中央子午线点展开l 的幂级数,高斯投影反算公式是在中央子午线点展开y 的幂级数. 21,一个三角形的三内角的角度改正值之和应等于该三角形的球面角超的负值. 22,长度比只与点的位置有关,而与点的方向无关.23, 高斯一克吕格投影类中,当m0=1时,称为高斯-克吕格投影,当m0=0.9996时, 称为横轴墨卡托投影(UTM 投影) .24, 写出工程测量中几种可能采用的直角坐标系名称(写出其中三种):国家 3 度带高斯正形投影平面直角坐标系, 抵偿投影面的3 度带高斯正形投影平面直角坐标系, 任意带高斯正形投影平面直角坐标系.25, 所谓建立大地坐标系,就是指确定椭球的形状与大小, 椭球中心以及椭球坐标轴的方向(定向) .26, 椭球定位可分为局部定位和地心定位.27, 参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与地球的相关位置确定下来.28, 参考椭球的定位和定向, 应选择六个独立参数, 即表示参考椭球定位的三个平移参数和表示参考椭球定向的三个绕坐标轴的旋转参数.29, 参考椭球定位与定向的方法可分为两种,即一点定位和多点定位. 30,参心大地坐标建立的标志是参考椭球参数和大地原点上的其算数据的确立. 31,不同大地坐标系的换算,包含9 个参数,它们分别是三个平移参数, 三个旋转参数, 一个尺度参数和两个地球椭球元素变化参数.32,三角网中的条件方程式,一类是与起算数据无关的,称为独立网条件,包括图形条件, 水平条件和极条件.33,三角网中的条件方程式,一类是与起算数据有关的,称为起算数据条件或强制符合条件条件,包括方位角(固定角) , 基线(固定边)及纵横坐标条件. 34,写出条件平差时三角形中角度改正数与边长改正数的关系式:VA"=.35, 写出间接平差时三角网中方向误差方程式的一般形式:Vki=,.36, 间接平差时,一测站所有方向误差方程式中的常数项之代数和为0 .37, 写出间接平差时边长误差方程式的一般形式:VSkj= .38, 大地经度为120° 0的点,位于6°带的第21带,其中央子午线经度为123 .39, 大地经度为132° 2的点位于6°带的第23带其中央子午线经度为135 .40, 大地线方向归算到弦线方向时,顺时针为正,逆时针为负.41, 坐标平差中,史赖伯约化前三角网方向误差方程式的一般形式为Vki=.42, 地面上所有水平方向的观测值均以垂线为依据,而在椭球上则要求以该点的法线为依据.43, 高斯平面子午线收敛角由子午线投影曲线量至纵坐标线,顺时针为正,逆时针为负.44, 天文方位角是以测站的垂线为依据的.三,选择与判断题:1, 包含椭球面一点的法线,可以作2 法截面,不同方向的法截弧的曲率半径4 . ①唯一一个② 多个③相同④不同2, 子午法截弧是2 方向,其方位角为4 .①东西②南北③任意④00或1800⑤900或2700⑥任意角度3, 卯西法截弧是1 方向,其方位角为5 .①东西②南北③任意④00或1800⑤900或2700⑥任意角度4任意法截弧的曲半径RA不仅与点的纬度B有关,而且还与过该点的法截弧的3 有关.①经度②坐标③方位角A5, 主曲率半径M是任意法截弧曲率半径RA的2 .①极大值②极小值③平均值6, 主曲率半径N是任意法截弧曲率半径RA的1 .①极大值②极小值③平均值7, M,R, N 三个曲率半径间的关系可表示为1 .①N >R >M ② R >M >N ③ M >R >N ④R >N >M8, 单位纬差的子午线弧长随纬度升高而2 ,单位经差的平行圈弧长则随纬度升高而1 .①缩小②增长③相等④不变9, 某点纬度愈高,其法线与椭球短轴的交点愈2 ,即法截线偏3 .①高②低③上④下10,垂线偏差改正的数值主要与 1 和 3 有关. ①测站点的垂线偏差②照准点的高程③观测方向天顶距④测站点到照准点距离11,标高差改正的数值主要与 2 有关. ①测站点的垂线偏差②照准点的高程③观测方向天顶距④测站点到照准点距离12,截面差改正数值主要与 4 有关. ①测站点的垂线偏差②照准点的高程③观测方向天顶距④测站点到照准点距离13,方向改正中,三等和四等三角测量 4 . 不加截面差改正,应加入垂线偏差改正和标高差改正; 不加垂线偏差改正和截面差改正,应加入标高差改正; 应加入三差改正; ④不加三差改正; 14,方向改正中,一等三角测量 3 .不加截面差改正,应加入垂线偏差改正和标高差改正; 不加垂线偏差改正和截面差改正,应加入标高差改正; 应加入三差改正; ④不加三差改正;15,地图投影问题也就是1 . ①建立椭球面元素与投影面相对应元素间的解析关系式②建立大地水准面与参考椭球面相应元素的解析关系式③建立大地坐标与空间坐标间的转换关系16,方向改化2 .只适用于一,二等三角测量加入在一,二,三,四等三角测量中均加入③只在三,四等三角测量中加入17, 设两点间大地线长度为,在高斯平面上投影长度为s,平面上两点间直线长度为D,则1 .①SD②sD③sS④Ss18, 长度比只与点的2 有关,而与点的1 无关.①方向②位置③长度变形④距离19, 测边网中3 .①不存在图形条件②不存在方位角条件③不存在基线(固定边)条件④不存在固定角条件20,我国采用的 1 954年北京坐标系应用的是 2 .① 1 975年国际椭球参数②克拉索夫斯基椭球参数③ WGS-84 椭球参数④贝塞尔椭球参数21, 我国采用的1980 图家大地坐标系应用的是1 .①1975 年国际椭球参数②克拉索夫斯基椭球参数③WGS-84椭球参数④贝塞尔椭球参数22, 子午圈曲率半径M 等于3 .①②③④23, 椭球面上任意一点的平均曲率半径R等于4 .①②③④24, 子午圈是大地线(对).25, 不同大地坐标系间的变换包含7个参数(错).26, 平行圈是大地线(错).27, 定向角就是测站上起始方向的方位角(对).28, 条件平差中,虽然大地四边形有个别角度未观测,但仍可以列出极条件方程式(对).29, 高斯投影中的3 度带中央子午线一定是6 度带中央子午线,而6 度带中央子午线不一定是 3 度带中央子午线(错).30, 高斯投影中的6 度带中央子午线一定是3 度带中央子午线,而3 度带中央子午线不一定是 6 度带中央子午线(对).31, 控制测量外业的基准面是4 .①大地水准面②参考椭球面③法截面④水准面32, 控制测量计算的基准面是2 .①大地水准面②参考椭球面③法截面④高斯投影面33, 同一点曲率半径最长的是( 2 ).①子午线曲率半径②卯酉圈曲率半径③平均曲率半径④方位角为450 的法截线曲率半径34, 我国采用的高程系是( 3 ).①正高高程系②近似正高高程系③正常高高程系④动高高程系四,问答题:大地坐标系是大地测量的基本坐标系,其优点表现在什么方面要点:以旋转椭球体建立的大地坐标系,由于旋转椭球体是一个规则的数学曲面可以进行严密的数学计算,而且所推算的元素(长度,角度)同大地水准面上的相应元素非常接近.什么是大地线简述大地线的性质.要点:椭球面上两点间的最短程曲线叫做大地线.大地线是一条空间曲面曲线;大地线是两点间唯一最短线,而且位于相对法截线之间,并靠近正法截线,与正法截线间的夹角为;大地线与法截线长度之差只有百万分之一毫米,所以在实际计算中,这样的差异可以忽略不计;在椭球面上进行量测计算时,应当以两点间的大地线为依据.在地面上测得的距离,方向等,应当归化到相应的大地线的方向和距离.P16 何为大地线微分方程写出其表达形式.所谓大地线微分方程,是指表达dL,dB,dA各与dS的关系式.简述三角测量中,各等级三角测量应如何加入三差改正要点:在一般情况下,一等三角测量应加入三差改正,二等三角测量应加垂线偏差改正和标高改正,而不加截面差改正;三等三角测量可不加三差改正,但当时或时, 则应加垂线偏差改正和标高改正,这就是说,在特殊情况下,应该根据测区的实际情况作具体分析,然后再作出加还是不加入改正的规定. 简述大地主题解算直接解法的基本思想.要点:直接解算极三角形P1NP2.比如正算问题时,已知数据是边长S,P1N及角A12,有三角形解算可得到另外的元素I,及P2N,进而求得未知量常用的直接解法是白塞尔解法.简述大地主题解算间接解法的基本思想.要点:根据大地线微分方程,解出经度差dl,纬度差dB及方位角之差dA 再求出未知量常用的间接解法有高斯平均引数公式.P29 简述高斯平均引数公式的优点.要点:基本思想是首先把勒让德尔级数在P1 点展开改在大地线长度中点M 展开,以使级数公式项数减少,收敛快,精度高;其次考虑到求解中点M 的复杂性,将M 点用大地线两端点平均方位角相对应的m点来代替,并借助迭代计算,便可顺利地实现大地主题正算. P31 试述控制测量对地图投影的基本要求.要点:首先应当采用等角投影;其次,在所采用的正形投影中,还要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数.最后,要求投影能够方便的按照分带进行,并能按高精度的,简单的,同样的计算公式和用表把各带连成整体.什么是高斯投影为何采用分带投影要点:高斯投影又称横轴椭圆柱等角投影.它是想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭圆柱体中心,然后用一定投影方式,将中央子午线两侧各一定经度范围内的地区投影到椭球柱面上,再将此柱面展开即成为投影面.由于采用了同样法则的分带投影,这既限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行由于变形引起的各项改正的计算,并且带与带间的互相换算也能采用相同的公式和方法进行. P40 简述正形投影区别于其它投影的特殊性质.要点:在正形投影中,长度比与方向无关,这就成为推倒正形投影一般条件的基本出发点.叙述高斯投影正算公式中应满足的三个条件.要点:中央子午线投影后为直线;中央子午线投影后长度不变;投影具有正形性质, 即正形投影条件.叙述高斯投影反算公式中应满足的三个条件.要点:x 坐标轴投影成中央子午线,是投影的对称轴;x 轴上的长度投影保持不变;正形投影条件,即高斯面上的角度投影到椭球面上后角度没有变形,仍然相等.试述高斯投影正,反算间接换带的基本思路.要点:这种方法的实质是把椭球面上的大地坐标作为过度坐标.首先把某投影带内有关点的平面坐标(x,y)1 利用高斯投影反算公式换算成椭球面上的大地坐标(B,l), 进而得到L=L0+l, 然后再由大地坐标(B,l), 利用投影正算公式换算成相邻带的平面坐标(x,y)2在计算时,要根据第2带的中央子午线来计算经差I,亦即此时匸L-LO. 试述工程测量中投影面和投影带选择的基本出发点. 要点:1)在满足工程测量精度要求的前提下,为使得测量结果得一测多用,这时应采用国家统一 3 度带高斯平面直角坐标系,将观测结果归算至参考椭球面上. 2)当边长的两次归算投影改正不能满足要求时,为保证工程测量结果的直接利用和计算的方便,可以采用任意带的独立高斯投影平面直角坐标系,归算结果可以自己选定.可以采用抵偿投影面的高斯正形投影;任意带高斯正形投影;具有高程抵偿面的任意带高斯正形投影. P89 控制测量概算的主要目的是什么要点:1)系统地检查外业成果质量,把好质量关2)将地面上观测成果归算到高斯平面上,为平差计算作好数据准备工作;3)计算各控制点的资用坐标,为其它急需提供未经平差的控制测量基础数据.简述椭球定向的平行条件和目的.要点:平行条件:椭球短轴平行于地球自转轴;大地起始子午面平行于天文起始子午面.目的在于简化大地坐标,大地方位角同天文坐标,天文方位角之间的换算. P113 列条件方程式时,选择及构成图形方式应注意哪些方面要点:1)图形条件基本上按三角形列出,在个别情况下,凡是实线边构成的多边形也可以构成图形条件;2)水平闭合条件只是按角度平差时才产生; 3)极条件只是在大地四边形,中点多边形及公共点的扇形中产生,且每种图形只列一个极条件;4)由多余起算数据产生起算数据条件,多余起算数据的个数即为该点条件式个数,但对于由固定边围成的闭合形式的三角形,由于他们同属于一个固定点组成,故不产生坐标条件.5)对于环形三角锁,虽然只有一套起算数据,但也产生起算数据条件. P134 五,论述与计算题: 举例说明依据控制网几何条件,查寻闭合差超限的测站.要点: 确定控制网按角度和边长条件平差时的条件式数目和各条件类型,并列出由点B到点 C 的坐标条件.3, 某控制网,若按方向坐标平差,试确定史赖伯约化前后未知数和误差方程式的个数.4, 说明大地纬度,归化纬度,等量纬度,底点纬度的含义,它们各有什么用途.5, 为缩小实地距离与高斯平面上相应距离之差异,应如何根据不同情况选择城市控制网相应的计算之基准面以及高斯平面直角坐标系.6, 高斯投影应满足哪些条件椭球面上的观测值化算为高斯平面上的观测值需经过哪些改正写出计算公式.7, 正投影的本质特征是什么试推导高斯投影长度比的计算公式,并依据该公式说明高斯投影变形的特性.高斯投影公式为:8, 试简述将地面测量控制网归化到高斯投影面上的主要工作内容9, 简述控制测量的发展趋势.10, 简述大地测量仪器的发展动态。