十八章 连续系统的频域分析
- 格式:ppt
- 大小:619.00 KB
- 文档页数:15
信号与系统连续周期信号的频域分析频域分析是信号与系统中一种重要的分析方法,用于研究信号的频谱特性。
连续周期信号是一种在时间域上具有周期性的信号,其频域分析包括傅里叶级数展开和频谱图表示。
傅里叶级数展开是一种将连续周期信号分解为若干个频率成分的方法。
对于周期为T的连续周期信号x(t),其傅里叶级数展开可以表示为:x(t) = ∑[Cn * exp( j *2πn/T * t )]其中,Cn为信号中频率为n/T的分量的振幅,j为虚数单位。
通过计算信号的傅里叶系数Cn,可以得到信号的频率成分和其对应的振幅。
在频域分析中,经常使用的一个重要工具是频谱图。
频谱图是一种将信号在频域上进行可视化展示的方法,通过绘制信号的频谱,可以直观地观察到信号的频率信息。
频谱图中的横轴表示频率,纵轴表示振幅。
对于连续周期信号,其频谱图是离散的,只有在频率为基频及其倍数的位置上有分量值。
基频是连续周期信号的最低频率成分,其他频率成分都是基频的整数倍。
频谱图中的峰值代表了信号在不同频率上的能量分布情况,而峰值的高度代表了对应频率上的振幅大小。
通过分析频谱图,可以获得信号中各个频率成分的相对强度,从而对信号进行进一步的特征提取和处理。
在实际应用中,频域分析经常用于信号处理、系统建模和通信等领域。
例如,在音频处理中,通过频域分析可以实现音频信号的降噪、音乐特征提取和音频编码等任务。
在通信系统中,频域分析可用于频率选择性衰落信道的估计和均衡、多载波调制技术等。
总结起来,频域分析是信号与系统中对连续周期信号进行分析的重要方法。
通过傅里叶级数展开和频谱图表示,可以揭示信号的频率成分及其振幅特性,为信号处理和系统设计提供依据。
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
第三章傅立叶变换时域分析:f(t) y f(t)=h(t)*f(t)↓分解↑基本信号δ(t)→LTI →h(t)频域分析: f(t) ye jωt =h(t)* H(jω)Fe jωt↓分解↑基本信号 sinωt→LTI →H(jω)e jωte jωtH(jω):系统的频域响应函数,是信号角频率ω的函数,与t无关.主要内容:一、信号的分解为正交函数。
二、周期信号的频域分析−付里叶级数(求和),频谱的特点。
信号三、非周期信号的频域分析−付里叶变换(积分),性质。
分析四、LTI系统的频域分析:频域响应H(jω);y(jω)= H(jω)·F(jω). (系统分析)五、抽样定理:连续信号→离散信号.§3.1 信号分解为正交函数一、正交:两个函数满足φ1(t)φ2(t)dt=0,称φi(t),φj(t)在区间(t1 ,t2)正交。
二、正交函数集:几个函数φi(t)φi(t)dt= 0 当i≠j;K i 当i=j.三、完备正交函数集:在{φ1(t)…φn(t)}之外,不存在ψ(t)满足ψ (t)φi(t)dt= 0 (i=1,2,…n).例、三角函数集:{1,cosΩt,cos2Ωt,… ,cosmΩt,…,sinΩt,sin2Ωt,…sin(nΩt),…}区间:(t0,t0+T),t=2π/Ω为周期.满足: cosmΩtcosnΩtdt= 0 m≠nT/2 m=n≠0T m=n=0sin(mΩt)sin(nΩt)dt= 0 m≠nT/2 m=n≠0sin(mΩt)cos(nΩt)dt= 0. 所有的m和n.结论:三角函数集是完备正交集。
推导: cosmΩtcosnΩtdt=(1/2) [cos(m+n) Ωt+cos(m-n) Ωt]dt=(1/2)sin(m+n)Ωt +(1/2)sin(m-n)Ωt=(1/2)[sin(m+n) Ω(t0+T)-sin(m+n)Ωt0]+(1/2)[sin(m-n) Ω(t0+T)-sin(m-n)Ωt0]=0 当m≠n时.m=n≠0,原式=(1/2) [ cos(m+n)Ωt+1]dt=(1/2)·t =T/2 m=n=0 , 原式=(1/2) [1+1]dt=T.4、复函数的正交函数集:几个复函数集{φi(t)},φi(t)φi*(t)dt= 0 i≠jk i i=j例:复函数集{ e jnΩt}(n=0,±1,±2…)区间(t0,t0+T),T=2π/Ω为周期。
第六章系统的频域分析1、内容提要在连续时间系统频域分析中,首先介绍了连续系统的频率响应的概念,系统零状态响应的频域求解方法。
然后介绍了两类典型系统——无失真传输系统和理想滤波器。
2、学习目标通过本章的学习,应达到以下要求:(1)掌握连续系统特性的频域表示。
(2)掌握连续系统响应的频域分析,重点掌握正弦稳态响应的特点。
(3)掌握无失真系统与理想低通滤波器的特性。
(4)熟练掌握和灵活应用抽样定理。
(5)能够利用MATLAB进行连续系统的频域分析。
3、重点难点1、无失真传输系统的概念,求解无失真传输系统的频域响应。
2、理想滤波器以及低通、高通、带通和带阻滤波器的概念,冲激信号和阶跃信号通过理想滤波器的频域响应。
3、抽样定理及其应用。
4、应用非周期信号频域分析的MATLAB实现5、教案内容1. 连续时间系统的频响特性从上面的分析可见,虚指数信号()jwt e t -∞<<∞作用与LTI 系统时,系统的零状态响应仍为同频率的虚指数信号,虚指数信号幅度和相位由系统的频率响应()()()()j H j H j e h t ϕωωω=()H j ω确定,所以()H j ω反映了连续LTI 系统对不同频率信号的响应特性。
在一般情况下,系统的频率响应()H j ω是复值函数,可用幅度和相位表示为()H j ω称为系统的幅度响应,()ϕω称为系统的相位响应,当()h t 是实函数时,()H j ω是ω的偶函数,()ϕω是ω的奇函数。
2. 连续时间系统响应的频域分析由虚指数信号()jwt e t -∞<<∞作用于LTI 系统响应的特点,可以推出正弦信号作用在系统的稳态响应和任意信号作用在系统上的响应。
正弦信号作用在系统上的稳态响应为任意信号()f t作用在系统上的零状态响应()f t ()y t 为显然,系统响应()y t 的频域表示式为即信号()f t 作用于系统的零状态响应的频谱等于激励信号的频谱乘以系统的频率响应,上式也可以利用Fourier 变换的时域卷积定理直接得出。
连续系统的复频域分析1、信号f(t)=sin(t)u(t)拉普拉斯变换的曲面图:程序为:曲面图为:ft=sym('sin(t)*Heaviside(t)');Ft=laplace(ft)x=-0.35:0.03:0.35;y=-2:0.03:2;[x,y]=meshgrid(x,y);s=x+j*y;s2=s.*s;c=ones(size(x));Fs=abs(1./(s2+c));mesh(s,y,Fs)surf(x,y,Fs)colormap(hsv)axis([-0.35,0.35,-2,2,0,45])xlabel('σ'),ylabel('jw'),zlabel('F(s)')title('f(t)的曲面图')2、求[(1- e-at)]/t拉普拉斯变换:程序为:ft=sym('(1-exp(-a*t))/t');Fs=laplace(ft)结果为:Fs = -log(s)+log(s+a)3、求F(s)= -log(s)+log(s+a)的拉普拉斯逆变换:程序为:Fs=sym('-log(s)+log(s+a)');ft=ilaplace(Fs)结果为: ft = (1-exp(-a*t))/t4、系统函数H(s)=(s2+3s+2)/(8s4 +2 s3 +3 s2 +5)的零极点分布图:程序为:b=[1 3 2];a=[8 2 3 0 5];zs=roots(b)ps=roots(a)plot(real(zs),imag(zs),'o',real(ps),imag(ps),'kx','markersize',12);axis([-2 2 -2 2]);grid on;legend('零点','极点');xlabel('s'),ylabel('f(s)'),title('零极点分布图')结果为:zs = -2-1ps =-0.6175 + 0.7099i-0.6175 - 0.7099i0.4925 + 0.6808i0.4925 - 0.6808i图形为:5、信号H(s)=(s+1)/(s2+s+1)的阶跃响应、冲激响应、频率响应的图形:程序为:num=[1 1];den=[1 1 1]; 图形为sys=tf(num,den);t=0:0.01:10;h=impulse(sys,t);g=step(sys,t);subplot(3,1,1),plot(t,h);gridaxis([0 10 -0.25 1]);title('冲击响应');xlabel('时间(t)'),ylabel('h(s)')subplot(3,1,2),plot(t,g);gridaxis([0 10 0 1.5]);title('阶跃响应');xlabel('时间(t)'),ylabel('g(s)')[H,w]=freqs(num,den);subplot(3,1,3),plot(w,abs(H));gridaxis([0 10 0 1.5]);title('频率响应');xlabel('jw0'),ylabel('H(jw)')。
实验二连续时间系统的频域分析一、实验目的1.学习用系统函数确定频率特性的方法;2.理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,学习用Matlab编程画出相应的幅频、相频响应曲线。
3.学习用Matlab画出系统的零极点图,并分析系统的稳定性。
二、实验原理和方法1.连续系统的频域分析和频率响应设线性时不变(LTI)系统的冲击响应为,该系统的输入(激励)信号为,则此系统的零状态输出(响应)可以写成卷积的形式:。
设,和的傅里叶变换分别为,和,则它们之间存在关系:,反映了系统的输入和输出在频域上的关系。
这种利用频域函数分析系统问题的方法常称为系统的频域分析法。
函数反映了系统的频域特性,称为系统的频率响应函数(有时也称为系统函数)可定义为系统响应(零状态响应)的傅里叶变换与激励的傅里叶变换之比,即:它是频率(角频率)的复函数,可写为:,其中,可见是角频率为的输出与输入信号幅度之比,称为幅频特性(或幅频响应);是输出与输入信号的相位差,称为相频特性(或相频响应)。
Matlab工具箱中提供的freqs函数可直接计算系统的频率响应,其调用形式为:H=freqs(b,a,w)。
其中b为系统频率响应函数有理多项式中分子多项式的系数向量;a为分母多项式的系数向量;w为需计算的系统频率响应的频率抽样点向量(w中至少需包含2个频率点,w的单位为rad/s)。
如果没有输出参数,直接调用freqs(b,a,w),则MATLAB会在当前绘图窗口中自动画出幅频和相频响应曲线图性。
值得注意的是,这种方法的前提条件是系统函数的极点全部在复平面的左半开平面,因此必须先对系统函数的零极点进行分析和判断,只有满足了条件才可以如此求解。
另一种调用形式为:[H,w]= freqs(b,a,N)它表示由MATLAB 自动选择一组N 个频率点来计算其频率响应。
N 的缺省值为200。
另外,MATLAB 提供的abs ,angle ,real ,imag 等基本函数可用来计算幅度、相位角、实部、虚部。