高二数学导数微积分1
- 格式:doc
- 大小:267.29 KB
- 文档页数:4
精心整理
高二数学必修一导数的定义知识点
导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx 时,函数输出值的增量Δy 与自变量增量Δx 的比值在Δx 趋于0时的极限a 如果存在,a 即为在x0处的导数,记作 f(x)极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。
求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
精心整理
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数记为f'(x0),也记作y'│x=x0或dy/dx│x=x0,即。
高中数学教案:导数与微积分的引入导数与微积分的引入一、引言在高中数学课程中,导数与微积分是重要的内容之一。
它们不仅是进一步学习数学的基础,更是应用领域中解决问题的关键。
本教案旨在通过引入导数与微积分的概念和运算方法,帮助学生理解其背后的原理和意义。
二、导数的引入1. 导数的定义为了引入导数的概念,我们可以从平均速度和瞬时速度开始讲解。
考虑一个物体在某段时间内移动了若干距离,我们可以计算出平均速度。
然而,在特定时刻物体移动的速度可能会有所变化,这就需要引入瞬时速度的概念。
进一步地,如果我们将时间间隔缩小到无穷小,那么就得到了物体在某一时刻瞬时速度的定义。
这个过程可以表示为:\[v=\lim_{\Delta t\to 0}\frac{\Delta s}{\Delta t}\]其中,\(v\)代表瞬时速度,\(\Delta s\)代表位移变化量,\(\Delta t\)代表时间变化量。
2. 导函数接下来我们介绍导函数(或称斜率函数)的概念。
考虑一个函数\(y=f(x)\),其中\(x\)是自变量,\(y\)是因变量。
在这个函数上取两点\((x_1, f(x_1))\)和\((x_2,f(x_2))\),可以计算出直线的斜率:\[k=\frac{f(x_2)-f(x_1)}{x_2-x_1}\]当我们将这两点逐渐靠近时,可以发现斜率会越来越接近某个固定的值,这个值就是函数在该处的导数。
换句话说,导函数是函数曲线上每一点处切线的斜率。
三、微积分的引入1. 积分的定义积分的引入可以从面积问题开始。
考虑一个曲线下方与\(x\)轴之间形成的面积,我们想要求解这个面积。
为了实现目标,我们将整个区域分割成无限多个狭窄的矩形条,并计算每条矩形条代表的面积之和。
当矩形条宽度无限接近于零时(即微小),得到了曲线下方区域的精确面积。
2. 定积分与不定积分通过对面积问题的类似思路,我们可以定义定积分和不定积分。
- 定积分:给定一个函数\(y=f(x)\),我们可以求解从\(a\)到\(b\)的定积分,表示为:\[\int_{a}^{b} f(x)dx\]它代表了函数曲线与\(x\)轴之间从\(a\)到\(b\)区域的面积。
《微积分一》导数的基本公式与运算法则微积分是数学的一个分支,主要研究函数的导数和积分,其中导数是微积分的基本概念之一、导数是用来描述一个函数在其中一点上的变化率,它可以用来解决很多实际问题,比如求曲线的切线、函数在其中一点的极值等。
本文将详细介绍导数的基本公式与运算法则。
一、导数的定义首先,我们来看导数的定义。
设函数 y=f(x) 是定义在区间 I 上的一个函数,如果对于 I 上的任意一个实数 x0,当自变量 x 的变化量Δx 趋近于0时,对应的函数值的变化量Δy/f(Δy) 也趋近于一个确定的常数 k,那么这个常数 k 称为函数 f(x) 在点 x0 处的导数,记为f'(x0) 或 dy/dx,<sub>x=x0</sub>。
导数的定义给出了导数的几何意义:函数y=f(x)在点(x0,f(x0))的导数f'(x0)等于曲线在该点处的切线的斜率。
也就是说,导数描述了函数在其中一点上的变化趋势和速率。
二、导数的基本公式在实际计算导数时,我们可以利用一些基本公式来简化计算。
下面介绍导数的一些基本公式:1.常数函数的导数如果函数f(x)是一个常数函数,即f(x)=C(C为常数),那么f'(x)=0。
这是因为常数函数的图像是一条水平直线,斜率为0。
2.幂函数的导数如果函数 f(x) 是一个幂函数,即 f(x)=x<sup>n</sup> (n 为常数),那么 f'(x)=n * x^(n-1)。
这个公式可以通过导数的定义及幂函数的性质进行推导。
3.指数函数的导数指数函数是以常数 e 为底的指数幂函数,即 f(x)=e<sup>x</sup>。
根据指数函数的性质,可以得到 f(x) 的导数等于自身,即f'(x)=e<sup>x</sup>。
4.对数函数的导数对数函数是指以一些正实数 a(a>0,且a≠1)为底的对数函数,即f(x)=log<sub>a</sub>x。
高中数学中的导数与微积分知识点一、导数的概念与性质1.1 导数的定义导数是函数在某一点处的瞬时变化率,表示函数在某一点的局部性质。
设函数f(x)在点x=a处的导数为f’(a),则有:f′(a)=limΔx→0f(a+Δx)−f(a)Δx当Δx趋近于0时,上式表示函数f(x)在点x=a处斜率的变化。
1.2 导数的性质(1)导数具有局部性,即在某一点的导数仅与函数在该点附近的性质有关,与函数在其他地方的取值无关。
(2)导数具有连续性,即在连续函数上的导数存在且连续。
(3)导数具有单调性,即单调递增或单调递减函数的导数非零。
(4)导数与函数的极值密切相关,极值点处的导数为0。
二、基本求导公式与导数的应用2.1 基本求导公式(1)幂函数求导:(x n)′=nx n−1(2)指数函数求导:(a x)′=a x lna(3)对数函数求导:(lnx)′=1x(4)三角函数求导:(5)反函数求导:若y=f(x),则x=g(y)的导数为g′(y)=1f′(x)2.2 导数的应用(1)求函数的极值:设函数f(x)在点x=a处导数为0,且在a附近单调性发生改变,则f(a)为函数的极值。
(2)求函数的单调区间:当导数大于0时,函数单调递增;当导数小于0时,函数单调递减。
(3)求曲线的切线方程:设切点为(x0, y0),切线斜率为k ,则切线方程为y −y0=k(x −x0)。
(4)求曲线的弧长:设曲线参数方程为{x =x(t)y =y(t),则曲线弧长为L =∫√1+[y′(t)]2b a dt 。
(5)求曲面的面积:设曲面参数方程为{x =x(s,t)y =y(s,t)z =z(s,t),则曲面面积为S =∫∫√1+[ðz ðs ]2+[ðz ðt ]2d c b a dsdt 。
三、微积分的基本定理与应用3.1 微积分的基本定理微积分的基本定理指出,一个函数在一个区间上的定积分等于该函数在这个区间上的一个原函数的值。
高中数学导数与微分知识点总结在高中数学学习中,导数与微分是一个重要的知识点。
导数是微积分的一个基本概念,它研究了函数的变化率。
微分是导数的一种运算方法,它可以帮助我们求得函数的近似值、判别函数的极值以及解决相关实际问题。
本文将对高中数学导数与微分的相关知识点进行总结。
1. 导数的定义与计算方法导数的定义是函数在某一点处的变化率,记作f'(x)或dy/dx。
计算导数有多种方法,常见的有几何定义法、利用基本导数公式求导法、利用导数的性质求导法等。
2. 导数的基本公式高中数学中常用的导数公式有:- 常数函数的导数:若y=c,其中c为常数,则y'=0。
- 幂函数的导数:若y=x^n,其中n为常数,则y'=nx^(n-1)。
- 指数函数的导数:若y=a^x,其中a为常数且a>0且a≠1,则y'=a^x * ln(a)。
- 对数函数的导数:若y=log_a(x),其中a为常数且a>0且a≠1,则y'=1/(x * ln(a))。
- 三角函数的导数:sin(x)'=cos(x),cos(x)'=-sin(x),tan(x)'=sec^2(x),cot(x)'=-csc^2(x)。
3. 导数的运算法则导数具有一些运算法则,这些法则可以简化导数的计算过程。
常见的导数运算法则有:- 常数倍法则:若f(x)可导,则k * f(x)的导数为k * f'(x),其中k为常数。
- 和差法则:若f(x)和g(x)都可导,则(f(x) ± g(x))' = f'(x) ± g'(x)。
- 乘积法则:若f(x)和g(x)都可导,则(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。
- 商法则:若f(x)和g(x)都可导且g(x)≠0,则(f(x) / g(x))' = (f'(x) *g(x) - f(x) * g'(x)) / g(x)^2。
高二数学《导数与微分》知识点概述导数与微分是高二数学学科中的重要内容,对于学生来说,掌握这些知识点不仅能够帮助他们理解数学的基本概念,还能够为后续学习奠定坚实的基础。
第一部分:导数的概念及性质导数作为微积分的重要概念之一,其本质是函数在某点处的变化率。
导数的定义是通过极限的方法得到的,即函数在一点处的导数等于函数在该点附近变化最快的直线的斜率。
导数的性质主要有如下几个方面:1. 导数的存在性和唯一性:对于任意一个函数,只要它在某一点上可导,那么它在该点上的导数就是唯一确定的。
2. 导数的几何意义:导数可以理解为函数曲线在某一点处的切线斜率,因此导数的大小与斜率的大小成正比。
3. 导数与函数的关系:如果一个函数在某点处可导,则该函数在该点的导数可以作为函数的局部性质的判断标准,如函数的增减性、极值点等。
第二部分:导数的计算方法为了更好地应用导数的概念解决实际问题,在计算导数时,我们可以根据导数的定义以及一些基本的导数性质来进行计算。
下面是一些常见的导数计算方法:1. 常数函数的导数:常数函数的导数为0,即导数与自变量无关。
2. 幂函数的导数:对于幂函数$x^n$,它的导数为$nx^{n-1}$。
3. 反比例函数的导数:反比例函数$y=\frac{1}{x}$的导数为$y'=-\frac{1}{x^2}$。
4. 指数函数的导数:自然对数函数$y=e^x$的导数为$y'=e^x$。
5. 对数函数的导数:自然对数函数的逆函数$y=\ln x$的导数为$y'=\frac{1}{x}$。
第三部分:微分的概念及应用微分是导数的一个重要应用,它包含了更多的几何和物理背景。
微分的概念是函数在某点局部的线性近似,同时也可以理解为函数值的微小变化量。
微分的性质和计算方法与导数类似。
微分的应用广泛,尤其在物理学和工程学中有着重要的地位。
比如在速度和加速度的分析中,微分可以帮助我们计算物体在某一瞬间的速度和加速度。
高考数学中的导数与微积分知识点高中数学中微积分是相对于初中数学而言的一块难度较大的章节。
微积分作为一门基础而重要的学科,贯穿于数学的各个方面,也是后来物理学、工程学、经济学等学科中必不可少的工具。
微积分研究对象是连续函数和曲线的极限、函数的导数、不定积分及其应用等内容,是从静态的变为动态的、从离散的变为连续的、从局部的变为全局的数学思想方法。
下面我们就从高考数学中的导数与微积分知识点入手,来深入了解微积分这一科目。
一、导数的基本概念导数是微积分的基础,一是为了让函数更加灵敏地反映自变量变化的规律,二是为求出函数在某些点的变化率及曲线的切线斜率提供了数学工具。
导数不仅是微积分的基础概念,而且是数理化、力学、电学和经济学等很多学科的基础。
导数的定义:函数$f(x)$在点$x_0$处可导,当且仅当$f(x)$在点$x_0$处的左、右导数存在,且两个导数相等。
定一函数$f(x)$在$x_0$处的导数为:$$f'(x_0)=\lim_{\Delta x\to 0} \frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中$\Delta x$是自变量$x$的增量,$\Delta y$是因变量$y$的增量。
而$\Delta x$趋于$0$的过程,也就是点$x_0$周围越来越小的邻域内,自变量$x$的变化量趋近于$0$时,$f(x)$在点$x_0$处的左、右导数相等、存在时,就称该函数在点$x_0$处可导,其导数为左右导数的公共值。
如果左、右导数存在且相等,则称$f(x)$在 $x_0$处导数存在。
二、导数的基本性质为了更好地理解导数的概念,我们可以从以下几个角度入手,了解导数的基本性质:1. 如果函数$f(x)$在点$x_0$处可导,则$f(x)$在点$x_0$处连续。
2. $f(x)$在其定义域内是连续函数,则$f(x)$在该定义域内必然可导。
高中数学的归纳微积分的基本概念与计算总结在高中数学学习中,微积分是一个重要的学科,它包含着许多基本概念和计算方式。
归纳微积分是微积分的基础,我们需要掌握其中的基本概念,并学会运用这些概念进行计算。
本文将对高中数学中归纳微积分的基本概念与计算方法进行总结。
一、导数与导数的计算导数是微积分的核心概念之一。
在高中数学中,我们学习了导数的定义与性质,并通过一些基本公式进行导数的计算。
常见的导数计算包括:1. 常数的导数计算:对于常数c,其导数为0。
2. 一次函数的导数计算:对于一次函数y=ax+b,其导数为斜率a。
3. 幂函数的导数计算:对于幂函数y=x^n,其导数为y'=nx^(n-1)。
4. 指数函数和对数函数的导数计算:对于指数函数y=a^x,以及对数函数y=log_a(x),它们的导数分别为y'=a^x ln(a),以及y'=(1/x) ln(a)。
通过掌握这些基本公式,我们可以计算出各种函数的导数,为解决实际问题提供了重要的工具。
二、不定积分与基本积分的计算不定积分,也称为原函数,是导数的逆运算。
高中数学中,我们学习了一些基本函数的不定积分公式,通过这些公式,可以简化积分的计算。
常见的基本积分计算包括:1. 常数的不定积分计算:对于常数c,其积分为Cx,其中C为常数。
2. 一次函数的不定积分计算:对于一次函数y=ax+b,其积分为(1/2)ax^2+bx。
3. 幂函数的不定积分计算:对于幂函数y=x^n,其中n不等于-1,其积分为(1/(n+1))x^(n+1)。
4. 指数函数和对数函数的不定积分计算:对于指数函数y=a^x,以及对数函数y=log_a(x),它们的不定积分分别为(1/ln(a))a^x,以及x(log_a(x)-1)。
通过掌握这些基本积分公式,我们可以对各类函数进行积分,求解曲线下的面积等问题。
三、微分方程的求解微分方程是微积分中的另一个重要内容。
我们常见的微分方程包括一阶和二阶微分方程。
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
班 高二 年级 数学 科辅导讲义(第 讲)
学生姓名 授课教师:
1.斜率最小的切线方程是上移动,则过点在曲线点P x x y P 3
3+-= .
2.面积为的图象所围成的图形的与函数232x y x y -== .
3.=-⎰
dx x 10
2
1 .=+⎰dx x x
1
021 .=⎰dx x 211 .1⎰= .=⎰-0sin π
xdx . 4.所围成的图形的面积为与曲线22x y x y == . 5.为轴所围成的图形的面积及,曲线x x y x y 24=-= . 6.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则 ( )
A .1,1a b ==
B .1,1a b =-=
C .1,1a b ==-
D .1,1a b =-=-
7. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于( )
A. B.
D.1
8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是
A. 在1t 时刻,甲车在乙车前面
B. 1t 时刻后,甲车在乙车后面
C. 在0t 时刻,两车的位置相同
D. 0t 时刻后,乙车在甲车前面
9.已知函数2()2ln f x x x a x =++(0,1)在区间上是单调函数,求实数a 的取值范围;
10.已知x
x
x g e x x ax x f ln )(],,0(,ln )(=
∈-=,其中e 是自然常数,.a R ∈ (1)讨论1=a 时, ()f x 的单调性、极值;
(2)求证:在(1)的条件下,1
()()2
f x
g x >+;
(3)是否存在实数a ,使()f x 的最小值是3,若存在,求出a 的值;若不存在,说明理由.
11. 运货车以每小时x 千米的速度匀速行使180千米,按交通法规限制50≤x ≤100(单位:千米/
时).假设汽油的价格是每升2元,而汽车每小时耗油)360
2(2
x +升,司机的工资是每小时6元.问汽车应以怎样的速度行使才能使这次行车的总费用最低?( 精确到0.1,41.12≈)
12.在平面直角坐标系xoy 中,已知圆心在第二象限、半径为的圆C 与直线y x =相切于
坐标原点O .椭圆22
219
x y a +
=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.
13.设函数()y f x =在(,)a b 上的导函数为()f x ',()f x '在(,)a b 上的导函数为()f x '',若在(,)a b 上,()0f x ''<恒成立,则称函数()f x 在(,)a b 上为“凸函数”.已知432
113()1262
f x x mx x =--. (Ⅰ)若()f x 为区间(1,3)-上的“凸函数”,试确定实数m 的值;
(Ⅱ)若当实数m 满足||2m ≤时,函数()f x 在(,)a b 上总为“凸函数”,求b a -的最大值.
课后练习
1.曲线33y x x =-+在点(1,3)处的切线方程为
2.已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1,求()g x 的解析式.
解:依题可设2()(1)1g x a x =++(0≠a ),则a ax x a x g 22)1(2)('+=+=;又()g x '的图像与直线2y x =平行 22a ∴= ∴1a = 2()22
g x x x ∴=++ 3.在平面直角坐标系xoy 中,已知椭圆22
122:1(0)x y C a b a b +=>>的左焦点1(10)F -,,且在
(01)P ,在1C 上.
(1)求1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程
解:(1)由题意得:1,11b c a b c ==⇔===
故椭圆1C 的方程为:2
212
x y +=
(2)①设直线:l x m =,直线l 与椭圆1C 相切m ⇔= 直线与抛物线22:4C y x =相切0m ⇔=,得:m 不存在 ②设直线:l y kx m =+
直线l 与椭圆1C 相切222(12)4220k x kmx m ⇔+++-=两根相等 221021m k ⇔∆=⇔=+
直线与抛物线22:4C y x =相切2222(2)0k x km x m ⇔+-+=两根相等
201km ⇔∆=⇔=
解得:,2k m ==或:2)22
k m l y x =-==±+。