去年激光测距仪硬件设计v4(定)
- 格式:doc
- 大小:114.50 KB
- 文档页数:8
激光测距仪项目实施方案一、项目背景二、项目目标1.开发一种最大测量距离为100米、精度小于1毫米的激光测距仪;2.实现便携式设计,方便携带和操作;3.开发用户友好的界面,方便用户进行测量并显示测量结果。
三、项目计划1.需求调研:对市场需求和竞争对手进行调研,了解用户对激光测距仪的需求以及市场上已有的产品特点。
2.技术研究:对激光测距原理进行深入研究,了解各项技术指标和关键技术,制定技术实现方案。
3.设计与开发:根据技术实现方案,进行激光测距仪的设计和开发,包括硬件设计、软件开发和界面设计等。
4.样机制作:制作激光测距仪的样机进行测试和验证,对原型进行调试和改进,确保其达到设计要求。
5.批量生产:根据样机的测试结果,进行生产工艺优化,并进行试生产,确保产品质量和生产效率。
6.市场推广:制定市场推广计划,将产品推广到目标用户群体中,提高产品知名度和销售量。
四、项目组织与人员分工1.项目经理:负责整个项目的组织和协调工作,对项目进度和质量进行监控和控制。
2.技术研究人员:负责对激光测距原理进行研究,制定技术实现方案。
3.硬件设计师:负责激光测距仪的硬件设计和样机制作。
4.软件工程师:负责激光测距仪的软件开发和界面设计。
5.测试与质量控制人员:负责对激光测距仪的样机进行测试和验证,确保产品达到设计要求。
6.市场推广人员:负责市场调研和产品推广,提高产品知名度和销售量。
五、项目风险分析与应对措施1.技术风险:可能由于技术原因导致测距仪的精度不达标。
为减小技术风险,项目组应加强技术研究,引入专家指导,并进行多次实验和测试,确保产品的精度满足要求。
2.供应链风险:可能由于供应商延迟交货或质量不合格导致项目进度延误。
为减小供应链风险,项目组应提前与供应商建立合作关系,并进行供应商的评估和监控。
3.市场风险:可能由于市场需求波动或竞争对手的竞争导致销售不达预期。
为减小市场风险,项目组应进行市场调研,确保产品的竞争力,并采取适当的市场推广策略,提高产品的知名度和销售量。
《相位法激光测距仪设计》摘要:I.引言- 激光测距仪背景和应用- 相位法激光测距仪的优势II.相位法激光测距仪原理- 相位法基本原理- 激光测距仪系统构成III.相位法激光测距仪设计- 系统硬件设计- 激光发射器- 激光接收器- 数字鉴相器- 系统软件设计- 相位差计算- 距离计算IV.相位法激光测距仪应用- 军事领域- 民用领域V.结论- 相位法激光测距仪的优势- 发展前景正文:激光测距仪是一种利用激光技术测量物体距离的仪器,广泛应用于军事、民用等领域。
相位法激光测距仪作为其中一种类型,具有高精度、高效率等优势,成为近年来研究的热点。
相位法激光测距仪基于相位法原理,通过检测发射光和反射光之间的相位差来检测距离。
其系统构成主要包括激光发射器、激光接收器、数字鉴相器等部分。
其中,激光发射器负责发射激光束,激光接收器负责接收反射光,而数字鉴相器则负责计算相位差。
在设计相位法激光测距仪时,需要考虑系统硬件和软件的设计。
在硬件方面,激光发射器和接收器需要具有较高的稳定性和精度,以保证测量结果的准确性。
此外,数字鉴相器的设计也非常重要,其性能直接影响到相位差计算的准确性。
在软件方面,相位差计算和距离计算的算法需要优化,以提高计算速度和精度。
相位法激光测距仪在军事和民用领域具有广泛的应用前景。
在军事领域,相位法激光测距仪可以应用于侦查、定位、导航等方面,提高作战效率和精度。
在民用领域,相位法激光测距仪可以应用于土地测量、建筑测量、无人机导航等领域,为生产生活提供便捷。
总之,相位法激光测距仪具有显著的优势,其设计和应用值得进一步研究和探讨。
激光测距方案引言激光测距技术是一种利用激光器产生的激光束,通过测量激光束从发射到接收的时间,并结合光速的知识,精确地计算出距离目标物体的远近。
激光测距广泛应用于工业、建筑、军事等领域,并且在自动驾驶、智能家居等领域也有重要的应用。
本文将介绍一种基于激光测距的方案,包括硬件设备和软件算法的设计与实现。
设备在这个方案中,我们需要使用以下设备来实现激光测距:1.激光器:激光器是激光测距方案的核心设备,它能够产生一束高能的激光束。
2.接收器:接收器用于接收激光束,并将激光的信息转换成电信号。
3.控制电路:控制电路用于控制激光器的开关和接收器的工作状态。
4.距离计算器:距离计算器是激光测距方案的核心部分,它能够根据激光的时间信息和光速,精确地计算出目标物体的距离。
实现步骤下面是基于激光测距方案的实现步骤:1.准备硬件设备:连接激光器、接收器和控制电路,并进行相应的供电。
2.发射激光束:控制电路开启激光器,使其产生一束激光束并发射出去。
3.接收激光束:接收器接收激光束,并将其转化成电信号。
4.记录时间信息:通过记录激光束从发射到接收经过的时间,得到激光的时间信息。
5.计算距离:使用距离计算器根据激光的时间信息和光速,计算出距离目标物体的准确数值。
6.输出结果:将测得的距离结果通过显示屏、串口或者其他方式进行输出。
算法激光测距的算法是根据激光的时间信息和光速来计算出距离的。
下面是一种常见的激光测距算法:1.获得激光的时间信息。
2.根据激光时间信息计算激光的飞行时间。
3.使用光速与激光的飞行时间进行计算,得到目标物体的距离。
需要注意的是,为了获得更加精确的距离测量结果,还可以考虑以下因素:•温度校准:温度对声速和光速都有一定的影响,因此可以通过温度传感器对测量结果进行校准。
•多次测量:进行多次测量可以提高测量精度,可以取多次测量结果的平均值作为最终的距离结果。
总结激光测距方案是一种利用激光器产生激光束,并通过测量激光的飞行时间和光速来计算距离的技术。
目录摘要 (1)关键词 (1)1 前言 (3)1.1激光测距研究及发展现状 (3)1.2课题的研究目的和意义 (4)1.3课题研究的内容 (7)2 相位式激光测距技术研究 (7)2.1相位式激光测距技术原理 (7)2.2相位式激光测距多测尺原理 (9)2.3差频测相原理 (11)2.4自动增益控制原理 (12)2.5光电探测器 (13)3 相位式激光测距仪控制电路的设计 (18)3.1相位式激光测距仪的整体设计 (18)3.2光电检测器的选择 (19)3.3APD高压偏置电路的设计 (20)3.4温度补偿电路 (23)3.5自动增益控制电路AGC (27)3.6混频电路 (32)4 相位式激光测距仪软件系统设计 (34)5 仿真结果及分析 (35)5.1APD高压偏置电路的仿真结果及分析 (35)5.2自动增益控制电路的仿真结果及分析 (39)6 结论 (42)参考文献 (43)致谢 (43)附录 (48)手持式激光测距仪的设计摘要:本文首先介绍了相位式激光测距仪的研究背景、意义,总结和概括了激光测距的有关理论基础,并且介绍了相位式激光测距仪的测距原理,提出了测距系统的实现框图;接着围绕接收系统的性能开展深入研究,主要研究探测器件的选择,偏压电路、混频电路、自动增益控制电路的设计等问题;利用Proteus技术对APD偏压电路和自动增益控制电路进行仿真,通过仿真结果不断完善设计,并对这一设计进行研究、发展和创新,使得测距系统的测量精度得到了很好的保证及提高,降低了硬件成本,简化了控制电路。
关键词: 激光测距;雪崩二极管;相位;混频;自动增益控制Design of Hand-held Type Laser RangefinderAbstract:This paper started from the background, the purposes, meanings of phase-shift laser ranging, then summarized the related theoretical basis of it. The principle of phase laser ranging and a practical ranging system is discussed. This paper concentrate on the researh of improving the porperty of receiving system. Lots of research have done on choosing detection element,design of the bias circuit and automatic gain control circuit. Then,the proteus is used for simulation of them. With the help of the simulation, the design was improved,and with the research, development and innovation of the technology, we have ensured and developed the measurement accuracy of the ranging system, reduced the cost of the hardware and simplified the control circuit.Key Words:laser ranging; avalanche diode; phase; mixer circuit; automatic gain control1 前言在各个应用领域中,随着我国科学技术的日益发展,对距离量的测量要求愈来愈高。
激光测距方案开发思路概述激光测距是一种常用的测量技术,广泛应用于工业生产、医学、机器人以及航天等领域。
本文将介绍激光测距方案的开发思路,包括硬件选型、算法设计和实施流程。
硬件选型在选择激光测距方案的硬件时,需要考虑以下几个因素:1.激光器:选择合适的激光器是激光测距方案的基础。
常见的激光器包括半导体激光器、二极管激光器和固体激光器等。
根据应用需求,选择合适的激光器波长和功率。
2.接收器:接收器的选择需要考虑激光信号的输入、信号处理和输出等功能。
常见的接收器包括光电二极管、光敏电阻和光电探测器等。
3.光路设计:光路设计是激光测距方案中重要的一环。
需要设计合适的光路布局,并考虑光路的折射、反射和衍射等因素。
算法设计激光测距方案的算法设计是实现测距功能的核心部分。
以下是常用的激光测距算法:1.直接测量法:通过测量激光信号的来回传播时间来计算距离。
该方法简单、快速,但受到测量误差和信号衰减的影响。
2.相位测量法:通过测量激光信号的相位差来计算距离。
该方法精度较高,但对硬件和算法的要求也较高。
3.强度测量法:通过测量激光信号的能量衰减来计算距离。
该方法精度一般,但适用于较长距离的测量。
根据应用需求,选择合适的算法设计。
实施流程激光测距方案的实施流程如下:1.设计硬件原型:根据硬件选型和激光测距算法,设计硬件原型。
包括激光器、接收器、光路和信号处理等部分。
2.搭建测量平台:将硬件原型搭建在测量平台上,保证光路的稳定和准确性。
3.调试和优化:通过调试和优化硬件和算法,改进测量精度和速度。
4.数据处理和展示:使用合适的数据处理和展示工具,对测量结果进行分析和展示。
注意事项在开发激光测距方案时,需要注意以下几个事项:1.安全性:激光器是一种高能光源,需要避免对人眼造成伤害。
在使用激光器时,需要遵循相关的安全操作规范。
2.环境因素:激光测距方案的性能会受到环境因素的影响,如温度、湿度和气压等。
在设计和使用过程中,需要考虑这些因素对测量结果的影响。
本科生毕业设计(论文)学院(系):专业:学生:指导教师:完成日期 2010 年 5 月超声波测距系统的硬件设计The Hardware Design of Ultrasonic Ranging Systerm学院(系):专业:学生姓名:学号:指导教师(职称):评阅教师:完成日期:2010.05.10超声波测距系统的硬件设计测控技术与仪器[摘要]超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。
在本次设计中,设计的超声波测距系统的测量精度为1cm,能够清晰稳定地显示测量结果。
在整个超声波测距硬件电路模块中主要的电路设计有超声波发射电路、超声波接收电路、显示电路、温度补偿电路以及声光报警电路构成。
其中接收电路主要采用的是CX20106A;发射电路采用的是反相器74HC04及超声波发射换能器组成;另外,为了提高测量的精度在电路中又加入了温度补偿装置,DS18B20就是用来测量当前温度从而来实现这一功能。
通过实物验证这一设计方案是可行的。
[关键词]STC89C52;超声波测距;74HC04;CX20106A;温度补偿The Hardware Design of Ultrasonic Ranging Systerm Tracking Control Technology and EquipmentAbstract:Ultrasonic range finder, can be applied to the car into reverse, the construction sites and industrial the position to monitor and may be used as the old, dark, the length of such occasions. In the design of system design, precision measurement range of ultrasonic, the stability of 1cm clear that measurement.In the whole range of ultrasonic hardware circuit that the main circuit design has an ultrasonic the circuit, an ultrasound the circuit, show circuit, temperature compensate circuit and the audible and visible police made a circuit.One of the main circuits are CX20106A ;The circuit is the use of ultrasonic 74HC04 and in the launch of the change to another in order to improve ;The precision measurement in the circuit joined the compensation arrangement, DS18B20 is used to measure the temperature and to fulfil this function. In the design by the scheme is feasible.Keywords:STC89C52;Silent WaveMeasureDistance;74HC04;CX20106A;Temperature Compensation目录1 序言 (1)1.1 课题研究的背景及意义 (1)2 超声波测距的设计思路 (2)2.1 超声波传感器及其测距原理 (2)2.2 方案论证 (3)3 总体方案设计 (3)3.1 单片机测距原理 (4)3.2 单片机系统及其基本电路 (4).1 STC89C52的功能介绍 (5).2 单片机的基本连接电路 (6)3.3 超声波发射部分电路 (7)3.4 超声波接收部分电路 (8)3.5 温度补偿电路 (10).1 温度传感器工作原理 (10).2 温度补偿电路 (11)3.6 数码显示电路 (12)3. 数码管基本知识 (12)3.7 键盘电路 (14)3.7 报警电路 (15)4 软硬件调试 (16)参考文献 (16)附录 (16)结束语 (19)致谢 (20)1 序言课题研究的背景及意义在我国,超声学的研究开始于二十世纪五十年代,1959年至1964年间我国建立了分子声学实验室,对驰豫吸收、悬浮体的声吸收等问题进行了深入的研究,设计生产了固体中超声衰减的测量设备,对粘弹性和可压缩流体的声速和衰减的研究取得了令人兴奋的成果。
本科毕业设计(论文)开题报告
图1脉冲法激光测距测量时序图
通过观察时序图可知, t2L的精度问题最终转化为时标脉冲周期特性若时标脉冲的周期越短,即时标脉冲频率越高,则所测得的时间间隔精度越高。
使用传统的脉冲法激光测距时,若要求测量精度为
则要求采用频率为300 MHz的计数器,而传统的计数器制造工艺很难达到这样的要求。
而TDC - GP1 的应用可以在这个问题上提供很好的保障
图2 工作模式2波形图
相位式激光测距仪原理[10,11]
激光测距仪的测距原理是由激光器对被测目标发射一个光信号后接受目标反射回来的光信号, 通过测量光信号往返经过的时间出目标的距离。
设目标的距离为L, 光信号往返所走过的距离即为2L,。
相位式激光测距仪激光接收部分设计激光测距仪是一种测量目标物体距离的工具,其原理是利用激光束在空气中传播的特性,通过测量激光束的往返时间来计算出目标物体与测距仪的距离。
激光接收部分是激光测距仪的核心组成部分之一,其设计的好坏直接影响到测量结果的准确性和稳定性。
在设计激光接收部分时,需要考虑以下几个关键因素:1.激光接收器的选择:激光接收器是接收激光信号的关键部件,其性能直接影响到激光测距仪的灵敏度和测距范围。
常见的激光接收器有光电二极管(PD)和光电效应晶体管(APD)。
PD具有较高的响应速度和较低的噪声,适用于近距离测距场景;APD具有较高的增益和较低的噪声,适用于远距离测距场景。
2.光学系统的设计:光学系统包括透镜、滤波器等光学元件,其作用是将入射的激光束聚焦到激光接收器上。
在设计光学系统时需要考虑激光束的聚焦效果、散斑噪声等因素,以提高测距仪的测量精度和信噪比。
3.信号放大和滤波电路的设计:激光接收器输出的信号很弱,需要经过放大和滤波才能得到可信的测距信号。
放大电路可以采用运算放大器等电路实现,滤波电路可以采用RC滤波器或数字滤波器等实现。
通过合理设计放大和滤波电路,可以提高信号的噪声抑制和动态范围。
4.时间测量电路的设计:激光测距仪是通过测量激光束的往返时间来计算距离的,因此需要设计一个高精度的时间测量电路。
常用的时间测量电路有计数器、时钟等,可以通过采样和比较测量激光脉冲信号的上升沿和下降沿来计算出往返时间。
在设计激光接收部分时,还需考虑以下一些技术细节:5.温度补偿:激光测距仪的测量精度受到温度的影响,尤其是光学元件和电子元件的温度变化。
因此,需要设计温度补偿电路,通过测量环境温度并补偿光学和电子元件的参考值,提高测量精度。
6.光路对齐:激光测距仪的激光发射和接收部分需要在一条直线上对准,才能确保测量结果的准确性。
因此,需要设计一个精密的光路对齐机构,确保激光束的传输方向稳定。
7.防干扰设计:激光测距仪易受到外界光源干扰,导致测量结果偏差。
激光测距仪的工作原理一、激光测距仪简介激光测距仪是一种利用激光束进行测量的仪器,它能够高精度地测量物体的距离。
激光测距仪在工业、建筑、测绘等领域广泛应用,它的工作原理基于激光束的发射、接收和测量时间的原理。
二、激光发射原理激光测距仪通过激光器发射激光束,激光器是将电能转换为激光光束的装置。
激光器通常采用半导体激光器,其工作原理是利用半导体材料的正向电流和外界光的作用下,通过自发辐射实现光放大,进而形成激光束。
三、激光束的特性激光束具有高集中度、高单色性、高相干性和高直线度等特性。
这些特性使得激光束在传输过程中能够保持较小的发散度,从而实现高精度的测量。
四、激光的传播和反射1.激光的传播激光发射后呈直线传播,其传播路径遵循光的直线传播规律。
激光测距仪通过测量激光束的时延,可以计算出被测物体与激光测距仪的距离。
2.激光的反射当激光束照射到物体上时,一部分光线被物体吸收,另一部分光线被物体反射。
激光测距仪通过接收到的反射光信号来计算被测物体的距离。
五、激光测距原理激光测距仪的测量原理是基于激光束发射和接收的时间差来计算距离的。
具体步骤如下:1.发射激光束激光测距仪发射激光束,激光束照射到被测物体上。
2.接收反射光信号被测物体上的激光束被反射后,激光测距仪接收到反射光信号。
3.计算时间差激光测距仪通过计算激光发射和接收的时间差来确定物体的距离。
这是因为激光在空气中传播的速度是已知的,通过测量时间差,可以根据速度和时间的关系计算出距离。
4.输出测量结果激光测距仪将计算得到的距离结果输出给用户。
六、激光测距仪的应用激光测距仪在工业、建筑和测绘等领域有着广泛的应用。
1.工业领域在工业领域,激光测距仪常用于测量物体的尺寸、距离和位置。
例如,在生产线上使用激光测距仪可以高精度地测量产品的尺寸,从而保证产品的质量。
2.建筑领域在建筑领域,激光测距仪可以用于测量建筑物的高度、长度和角度。
它可以帮助工程师和建筑师进行精确的测量,从而提高建筑物的设计和施工质量。