实 一 一对应
唯一确定
角
正 弦
数
一对多 值
定义:任意给定的一个实数x,有唯一确定的值sinx与 之对应。由这个法则所确定的函数 y=sinx叫做正弦
函数,y=cosx叫做余弦函数,二者定义域为R。
第3页,共28页。
二、正弦函数 y =sinx(x∈R)的图象
1.几何法作图:
问题:如何作出正弦函数的图象?
(3) 连线(用光滑的曲线顺次连结五个点)
1-
-
-
-1
o
6
2
3
2 3
5
7
6
6
4 3
3 5 23
-1 -
第26页,共28页。
图象的最高点
(0,1) (2 ,1)
与x轴的交点
11 6
2
x
(
2
,0)
(
3 2
,0)
图象的最低点 ( ,1)
课堂小结
1.正、余弦函数的图象每相隔2π个单位重复出现,因此, 只要记住它们在[0,2π]内的图象形态,就可以画出正弦 曲线和余弦曲线.
正弦函数、余弦函数的图象
第1页,共28页。
1.正弦线、余弦线的概念
设任意角α的终 边与单位圆交于点P. 过点P做x轴的垂线, 垂足为M.
则有向线段MP叫做角α的正弦线. 有向线段OM叫做角α的余弦线.
2. 三角函数值的符号判断
y α 的终边
P(x,y)
oMx
第2页,共28页。
一、正弦函数的定义:
有何联系?
第17页,共28页。
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图