(新高考专用)专题 导数(含详细解析)
- 格式:doc
- 大小:1.45 MB
- 文档页数:13
新高考导数知识点导数是高中数学中的重要概念,它在数学和科学中有广泛的应用。
导数的概念和方法是新高考数学中需要掌握的知识点之一。
本文将介绍导数的概念、性质以及一些常用的求导法则。
一、导数的概念导数是函数在某一点处的变化率,也可以理解为函数图像上某一点的切线斜率。
设函数y=f(x),则函数在某点x=a的导数记作f'(a),其定义为:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h其中,h为自变量x的增量。
这一定义可以解释为函数图像上某一点处的切线斜率。
二、导数的性质1. 导数的存在性:如果函数在某一点处可导,则导数存在;反之,如果导数存在,则函数在该点可导。
2. 导数的代数运算:导数具有线性性质,具体表现为:(1) (cf(x))' = cf'(x),其中c为常数;(2) (f(x)+g(x))' = f'(x)+g'(x);(3) (f(x)g(x))' = f'(x)g(x)+f(x)g'(x);(4) (f(x)/g(x))' = (f'(x)g(x)-f(x)g'(x))/[g(x)]^2,其中g(x)≠0。
3. 导数的乘法法则:设函数u(x)和v(x)都在点x处可导,则(uv)' = u'v+uv'。
4. 导数的链式法则:设函数y=f(u)和u=g(x)都在某一点x处可导,则复合函数y=f(g(x))在该点可导,且其导数为:(f(g(x)))' = f'(g(x))g'(x)。
三、常用的求导法则在求解导数时,有一些常用的求导法则是非常有用的。
下面介绍几种常见的求导法则:1. 幂函数求导法则:设常数a和自然数n,函数y = xⁿ,则有y' = nxⁿ⁻¹。
2. 指数函数求导法则:设常数a,函数y = aˣ,则有y' = aˣlna。
2020年高考数学(理)函数与导数12 导数及其应用 导数的概念及运算一、具体目标:1.导数概念及其几何意义:(1)了解导数概念的实际背景;(2)理解导数的几何意义.2.导数的运算:(1)根据导数定义,求函数y c y x ==,,2y x =,1y x=的导数; (2)能利用下面给出的基本初等函数公式和导数的四则运算法则求简单函数的导数. 【考点透析】 【备考重点】(1) 熟练掌握基本初等函数的导数公式及导数的四则运算法则; (2) 熟练掌握直线的倾斜角、斜率及直线方程的点斜式. 二、知识概述: 1.由0()()'()limx f x x f x f x x∆→+∆-=∆可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限.2.基本初等函数的导数公式及导数的运算法则原函数导函数 f (x )=c (c 为常数)f ′(x )=0()()Q n x x f n ∈= ()1-='n nx x f()x x f sin = ()x x f cos =' ()x x f cos =()x x f sin -=' ()x a x f =()a a x f x ln ='()x e x f = ()x e x f ='()x x f a log =()ax x f ln 1=' 【考点讲解】1)基本初等函数的导数公式2)导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(和或差的导数是导数的和与差)(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(积的导数是,前导后不导加上后导前不导) (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0).(商的导数是上导下不导减去上不导下导与分母平方的商)(4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.函数()y f x =在0x x =处的导数几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).【温馨提示】1.求函数()f x 图象上点00(,())P x f x 处的切线方程的关键在于确定该点切线处的斜率k ,由导数的几何意义知0'()k f x =,故当0'()f x 存在时,切线方程为000()'()()y f x f x x x -=-.()x x f ln =()xx f 1='2.可以利用导数求曲线的切线方程,由于函数()y f x =在0x x =处的导数表示曲线在点00(,())P x f x 处切线的斜率,因此,曲线()y f x =在点00(,())P x f x 处的切线方程,可按如下方式求得:第一,求出函数()y f x =在0x x =处的导数,即曲线()y f x =在点00(,())P x f x 处切线的斜率; 第二,在已知切点坐标和切线斜率的条件下,求得切线方程000'()()y y f x x x =+-;如果曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(此时导数不存在)时,由切线的定义可知,切线的方程为0x x =. 【提示】解导数的几何意义问题时一定要抓住切点的三重作用:①切点在曲线上;②切点在切线上;③切点处的导数值等于切线的斜率.1. 【2019年高考全国Ⅲ卷】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【解析】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D . 【答案】D2.【2019年高考全国Ⅱ卷】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【解析】本题要注意已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.【真题分析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【答案】C3.【2018年高考全国Ⅰ卷】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D. 【答案】D4.【2017年高考浙江】函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )【解析】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.原函数先减再增,再减再增,且0x =位于增区间内,因此选D . 【答案】D5.【2019年高考全国Ⅰ卷】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【解析】223(21)e 3()e 3(31)e ,x x xy x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【答案】30x y -=6.【变式】【2018年理数全国卷II 】曲线()1ln 2+=x y在点()00,处的切线方程为__________. 【解析】本题主要考查导数的计算和导数的几何意义,先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.由题中条件可得:12+='x y ,所以切线的斜率为2102=+=k ,切线方程为()020-=-x y ,即x y 2=.【答案】x y 2=7.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【解析】∵1sin 2y x '=--,∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=. 【答案】220x y +-=8.【2018年高考天津文数】已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 【解析】由函数的解析式可得,则.即的值为e.【答案】e9.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y , 则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =, 考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+, 当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1. 【答案】(e, 1)10.【2018年全国卷Ⅲ理】曲线()()x e ax x f 1+=在点()10,处的切线的斜率为2-,则=a ________.【解析】本题主要考查导数的计算和导数的几何意义,并利用导数的几何意义求参数的值.由题意可知:()()x x e ax ae x f 1++=',则()210-=+='a f ,所以3-=a ,故答案为-3.【答案】3-【变式】已知函数错误!未找到引用源。
高考数学最新真题专题解析—导数及其应用(新高考卷)【母题来源】2022年新高考I 卷【母题题文】已知函数f(x)=x 3−x +1,则( ) A. f(x)有两个极值点 B. f(x)有三个零点C. 点(0,1)是曲线y =f(x)的对称中心D. 直线y =2x 是曲线y =f(x)的切线 【答案】AC 【分析】本题考查利用导数研究函数的极值与零点以及曲线上一点的切线问题,函数的对称性,考查了运算能力以及数形结合思想,属于中档题. 【解答】解: f(x)=x 3−x +1⇒f′(x)=3x 2−1 ,令 f′(x)=0 得: x =±√33,f′(x)>0⇒x <−√33 或 x >√33 ; f′(x)<0⇒−√33<x <√33,所以 f(x) 在 (−∞,−√33) 上单调递增,在 (−√33,√33) 上单调递减,在 (√33,+∞)上单调递增,所以 f(x) 有两个极值点 (x =−√33 为极大值点, x =√33为极小值点 ) ,故 A正确 ;又 f(−√33)=−√39−(−√33)+1=1+2√39>0 , f(√33)=√39−√33+1=1−2√39>0 ,所以 f(x) 仅有 1 个零点 ( 如图所示 ) ,故 B 错 ;又 f(−x)=−x 3+x +1⇒f(−x)+f(x)=2 ,所以 f(x) 关于 (0,1) 对称,故 C 正确 ;对于 D 选项,设切点 P(x 0,y 0) ,在 P 处的切线为 y −(x 03−x 0+1)=(3x 02−1)(x −x 0) ,即 y =(3x 02−1)x −2x 03+1 ,若 y =2x 是其切线,则 {3x 02−1=2−2x 03+1=0,方程组无解,所以 D 错. 【母题来源】2022年新高考II 卷【母题题文】曲线y =ln|x|经过坐标原点的两条切线方程分别为 , . 【答案】y =x e y =−xe 【分析】本题考查函数切线问题,设切点坐标,表示出切线方程,带入坐标原点,求出切点的横坐标,即可求出切线方程,为一般题. 【解答】解:当 x >0 时,点 (x 1,lnx 1)(x 1>0) 上的切线为 y −lnx 1=1x 1(x −x 1).若该切线经过原点,则 lnx 1−1=0 ,解得 x =e , 此的切线方程为 y =xe .当 x <0 时,点 (x 2,ln(−x 2))(x 2<0) 上的切线为 y −ln (−x 2)=1x 2(x −x 2) .若该切线经过原点,则 ln(−x 2)−1=0 ,解得 x =−e , 此时切线方程为 y =−xe . 【命题意图】考察导数的概念,考察导数的几何意义,考察导数求导法则求导公式,导数的应用,考察数学运算和逻辑推导素养,考察分类讨论思想,函数和方程思想,化归与转化的数学思想,分析问题与解决问题的能力。
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
新高考导数知识点归纳导数是数学中的一个重要概念,主要用于描述函数的变化率。
在新高考中,导数是数学考试中的一个重要知识点。
本文将对新高考导数知识点进行归纳和总结。
一、导数的定义导数的定义是函数的变化率的极限,表示函数在某一点处的切线斜率。
对于函数y=f(x),其导数可以表示为f'(x)或者dy/dx。
导数的定义公式为:f'(x) = lim(h→0) [f(x+h)-f(x)] / h二、导数的求法1. 基本函数的导数求法①常数函数的导数为0;②幂函数的导数为其指数乘以底数的幂函数;③对数函数的导数为其自变量在底数的导数乘以1/x;④指数函数的导数为其底数的自然对数乘以指数函数本身。
2. 基本运算的导数求法①和差的导数等于各项的导数之和;②积的导数等于各项的导数分别乘积再求和;③商的导数等于分子的导数乘以分母减去分子的导数乘以分母的导数再除以分母的平方。
3. 复合函数的导数求法复合函数的导数求法可以使用链式法则。
设有函数y=f(g(x)),则其导数可以表示为:dy/dx = dy/du * du/dx4. 反函数的导数求法反函数的导数可以通过反函数与原函数的斜率互为倒数来求得。
5. 隐函数的导数求法隐函数的导数可以通过对函数方程两边同时求导,并将未知函数的导数视作隐函数的导数来求得。
三、导数的应用导数在各个学科都有广泛的应用。
以下列举几个常见的应用:1. 切线和法线导数可以用来求函数在一点处的切线和法线。
切线的斜率等于函数在该点的导数值,法线的斜率等于切线斜率的相反数。
2. 函数的极值点函数的导数可以用来求函数的极值点。
当导数在某一点处为0时,该点可能为函数的极值点。
通过求导数的一阶和二阶导数判断极值类型。
3. 函数的增减性和凸凹性函数的导数可以用来判断函数的增减性和凸凹性。
当导数大于0时,函数单调递增;当导数小于0时,函数单调递减;当导数的符号变化时,函数可能存在极值点;当导数的二阶导数大于0时,函数凸;当导数的二阶导数小于0时,函数凹。
第2讲 函数图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =5.函数2||()1xln x f x x =+的图象大致为( )A .B .C .D .6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .28913.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .28914.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是()A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D.0a>,0b>,0c<16.函数32()f x ax bx cx d=+++的图象如图所示,则下列结论成立的是()A.0a>,0b<,0c>,0d>B.0a>,0b<,0c<,0d> C.0a<,0b<,0c>,0d>D.0a>,0b>,0c>,0d<17.函数22||(2)sinxxy x ex=-在[2-,2]的图象大致为()A.B.C.D.18.函数2||=-+在区间[2-,2]上的图象大致为()y x e2xA.B.C.D .19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =- 21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()xln x f x e = B .()||x f x e ln x = C .||()ln x f x x=D .()(1)||f x x ln x =-24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin2x f x ex π= B .1||()cos2x f x ex π= C .()||sin 2f x ln x x π=D .()||cos2f xln xxπ=第2讲函数图象1.已知函数32=++,其导数()()f x ax bx cf x的极大值是()f x'的图象如图所示,则函数()A.a b ca b+D.ca b c++C.32++B.84【解析】解:由导函数的图象知,f x在(1,2)递增;在(2,)+∞上递减()所以当2x=时取得极大值,极大值为:f(2)84=++a b c则函数()f x的极大值是84++a b c故选:B.2.设函数()y f x=的图象如图所示,则导函数()='可能为() y f xy f x=可导,()A.B.C.D.【解析】解:根据()x x≠,y f x=的图象可知其定义域为{|0}故其导函数的定义域也为{|0}x x≠,又从原函数()=的单调性是:y f xy f x=的图象可知,函数()函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正,根据选项中的函数()f x 的单调性知选D .故选:D .3.函数sin 21cos x y x=-的部分图象大致为( ) A .B .C .D .【解析】解:函数sin 21cos x y x =-, 可知函数是奇函数,排除选项B , 当3x π=时,2()1312f π==-A , x π=时,()0f π=,排除D .故选:C .4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||x f x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x = 【解析】解:函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||x f x ln x =无意义,排除A , 故选:D .5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D . 【解析】解:因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D , 因为f (1)0=,01x <<时,()0f x <,所以排除B .故选:A .6.函数22,01()(),01xlnx x x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( ) A . B .C .D .【解析】解:若0x >,则0x -<, 则2()()1xlnx f x f x x --==-+, 若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+, 综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选:A .7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D . 【解析】解:|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选:B .8.函数1()()cos (f x x x x x ππ=--且0)x ≠的图象可能为( )A .B .C .D . 【解析】解:11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C ,故选:D .9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .【解析】解:由2211()sin()cos 424f x x x x x π=++=+, 1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<, 故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C . 故选:A . 10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】解:根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选:B .11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】解:由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>,当(1,1)x ∈-时,()0f x '<. 由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩② 解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞, 故选:D .12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】解:32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=, 0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-. 则2221212124416()2939x x x x x x +=+-=+=, 故选:C .13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109C .89D .289【解析】解:32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=, 8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=, 故选:A .14.函数2()()ax b f x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】解:依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <, 当0x =时,()0f x <,所以20b c<,所以0b <, 根据函数图象,当x →∞时,0ax b +>,故0a >,故选:B .15.函数2()()ax b f x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c < 【解析】解:函数2()()ax b f x x c +=+, x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ; 当0x =时,(0)f b =,结合函数图象得0b >,排除C . 故选:A .16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d < 【解析】解:由图可知,(0)0f d =>, 32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++, 从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba ->,△2(2)430b ac =->,(0)0f '>,0a ∴>,0b <,0c >.故选:A .17.函数22||(2)sin x x y x e x =-在[2-,2]的图象大致为() A .B .C .D .【解析】解:根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D , f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选:A .18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】解:根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选:B .19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】解:函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A . 故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =- 【解析】解:由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可, 且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x =,当x ∈时,()0f x '>,()f x 单调递增;当x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x =<,符合题意; 同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选:A .21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】解:选项A ,f (1)1=-与图象矛盾,故A 错误; 选项C ,1()10f e e=-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误. 故选:B .22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】解:由图象可知,函数的定义域为R ,故排除C ; 由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ; 故选:B .23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e = B .()||x f x e ln x = C .||()ln x f x x=D .()(1)||f x x ln x =-【解析】解:由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞ 对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足, 对于C :当x →-∞时,()||0x f x e ln x =→,不满足, 对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足, 故选:A .24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】解:由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立.0x =,函数没有意义,所以选项C 的函数不成立; 1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选:B .25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+【解析】解:由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C . 故选:D .26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin2x f x ex π= B .1||()cos2x f x ex π= C .()||sin2f x ln x x π= D .()||cos2f x ln x x π=【解析】解:由图可知,函数()f x 为偶函数,可排除选项A 和C ; 对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos02x f x e x π=>,与函数图象不符;()||cos02f x ln x x π=<,与函数图象符合,所以选项B 错误. 故选:D .。
【新高考数学】导数的概念及计算【套路秘籍】一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx = 0lim x ∆→ ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ∆→ΔyΔx =0limx ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 二.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函3.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′. 数f ′(x )=0lim x ∆→ f (x +Δx )-f (x )Δx 称为函数y =f (x )在开区间内的导函数. 【套路修炼】考向一 导数的概念【例1】设)(x f 是可导函数,且3)2()(lim 000=∆∆+-∆-→∆xx x f x x f x ,则=')(0x f 。
考向14导数的概念及应用【2022·全国·高考真题】曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1ey x =;1e y x =-【2022·全国·高考真题】若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元2.利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.3.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.4.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.一、导数的概念和几何性质1.概念函数()f x 在0x x =处瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.诠释:①增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;②当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.二、导数的运算 1.求导的基本公式 基本初等函数 导函数 ()f x c =(c 为常数) ()0f x '= ()a f x x =()a Q ∈1()a f x ax -'=()x f x a =(01)a a >≠, ()ln x f x a a '=()log (01)a f x x a a =>≠, 1()ln f x x a'=()x f x e =()x f x e '=()ln f x x = 1()f x x'=()sin f x x = ()cos f x x '= ()cos f x x =()sin f x x '=-2.导数的四则运算法则(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为x u x y y u '''=:1.(2022·青海·海东市第一中学模拟预测(理))曲线2e x y x -=在2x =处的切线方程为( ) A .34y x =+ B .43y x =+ C .34y x =- D .43y x =-【答案】C【解析】()21e x y x -'=+,2|3x y ='=,曲线2x y xe -=在点(2,2)处的切线方程为()232y x -=-,即34y x =-.故选:C.2.(2022·湖南·长沙县第一中学模拟预测)函数()2ln 1sin y x x =++的图象在0x =处的切线对应的倾斜角为α,则sin2α=( ) A .310 B .±310C .35D .±35【答案】C【解析】因为()2ln 1sin y x x =++ 所以2cos 1y x x '=++ 当0x =时,3y ,此时tan 3α=,∴2222sin cos 2tan 63sin 22sin cos sin cos tan 1915ααααααααα⋅=⋅====+++.故选:C.3.(2022·湖南·模拟预测)已知P 是曲线)2:ln 3C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)3,0⎡⎣ B .)22,0⎡⎣C .(,23-∞D .(,22-∞【答案】D【解析】因为)2ln 3y x x a x =++,所以123y x a x'=++, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan33y ≥'0x >恒成立,即1233x a x++-≥对任意0x >恒成立, 即12a x x≤+,又1222x x +≥,当且仅当12x x =,即22x =时,等号成立,故22a ≤, 所以a 的取值范围是(,22⎤-∞⎦. 故选:D .4.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( )A .1-B .23-C .12D .1【答案】A【解析】由切点()1,b 在曲线上,得23ab +=①; 由切点()1,b 在切线上,得60k b -+=②; 对曲线求导得()242ay x -'=+,∴2143x ay k ='-==,即49a k -=③, 联立①②③236049a b k b a k+⎧=⎪⎪-+=⎨⎪-=⎪⎩,解之得1351a b k =⎧⎪=⎨⎪=-⎩故选:A.1.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由“连续不一定可导”知,“()f x 在0x x =处连续”不能推出“()f x 在0x x =处可导”, 比如函数()f x x =在0x =处连续,但是()f x x =在0x =处不可导;由“可导一定连续”知,“()f x 在0x x =处可导”可以推出“()f x 在0x x =处连续”. 因此()f x 在0x x =处连续是()f x 在0x x =处可导的必要不充分条件 答案选:B2.(2022·湖北·模拟预测)若过点()(),0m n m <可作曲线3y x =-三条切线,则( ) A .30n m <<- B .3n m >- C .0n < D .30n m <=-【答案】A【解析】设切点为()3,t t -,由323y x y x '=-⇒=-,故切线方程为()323y t t x t +=--,因为()(),0m n m <在切线上,所以代入切线方程得32230t mt n --=, 则关于t 的方程有三个不同的实数根,令()3223g t t mt n =--,则()2660g t t mt t m '=-=⇒=或0=t ,所以当(),t m ∈-∞,()0,∞+时,()0g t '>,()g t 为增函数, 当(),0t m ∈-时,()0g t '<,()g t 为减函数, 且t →-∞时,()g t →-∞,t →+∞时,()g t →+∞,所以只需()()()()300g t g m m n g t g n ⎧==-->⎪⎨==-<⎪⎩极大值极小值,解得30n m <<-故选:A3.(2022·全国·模拟预测(理))过点()0,P b 作曲线e x y x =的切线,当240e b -<<时,切线的条数是( ) A .0 B .1 C .2 D .3【答案】D【解析】设切点为(),e mm m ,()1e x y x '=+,∴切线斜率()1e m k m =+, ∴切线方程为:()()e 1e m m y m m x m -=+-;又切线过()0,P b ,()2e 1e e m m mb m m m m ∴=-+=-;设()2e m f m m =-,则()()2e mf m m m '=-+,∴当()(),20,m ∈-∞-+∞时,()0f m '<;当()2,0m ∈-时,()0f m '>;()f m ∴在(),2-∞-,()0,∞+上单调递减,在()2,0-上单调递增,又()242e f -=-,()00f =,()0f m ≤恒成立,可得()f m 图象如下图所示,则当240e b -<<时,y b =与()f m 有三个不同的交点, 即当240eb -<<时,方程2e m b m =-有三个不同的解,∴切线的条数为3条. 故选:D.4.(2022·湖北·黄冈中学模拟预测)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则14a b+的最小值为( ) A .8B .9C .10D .13【解析】设切点为00(,)x y ,ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,令0011,1x b x b ==-+,则0ln(1)0y b b =-+= ,故切点为(1,0)b -, 代入y x a =-,得1a b +=, a 、b 为正实数,则141444()()5529b a b a a b a b a b a b a b+=++=++≥+⋅, 当且仅当13a =,23b =时,14a b +取得最小值9,故选:B5.(2022·四川省内江市第六中学模拟预测(理))若函数()21f x x =+与()2ln 1g x a x =+的图象存在公共切线,则实数a 的最大值为( ) A .e 2B .eC eD .2e【答案】B【解析】()2f x x '=,()2a g x x'=,设公切线与()21f x x =+的图象切于点()211,1x x +,与曲线:()2ln 1C g x a x =+切于点()22,2ln 1x a x +,∴()()2221211221212ln 1122ln 2a x x a a x x x x x x x x +-+-===--,故12a x x =,所以212211212ln 2x x x x x x x -=-,∴122222ln x x x x =-⋅,∵12a x x =,故2222222ln a x x x =-,设22()22ln (0)h x x x x x =-⋅>,则()2(12ln )h x x x '=-,∴()h x 在e)上递增,在(e,)+∞上递减,∴max ()(e)e h x h ==, ∴实数a 的最大值为e 故选:B.6.(2022·云南师大附中模拟预测(理))若函数()y f x =的图象上存在两个不同的点A ,B ,使得曲线()y f x =在这两点处的切线重合,则称函数()y f x =为“自重合”函数.下列函数中既是奇函数又是“自重合”函数的是A .ln y x x =+B .3y x =C .cos y x x =-D .sin y x x =+【答案】D【解析】对于A ,C ,函数都不是奇函数,故排除. 若曲线()y f x =在这两点处的切线重合,则首先要保证两点处导数相同;对于B ,23y x '=,若斜率相同,则切点300()A x x ,,300()B x x --,,代入解得切线方程分别为230032y x x x =-,230032y x x x =+;若切线重合,则00x =,此时两切点A ,B 为同一点,不符合题意,故B 错误;对于D ,1cos y x '=+,令1cos 1y x '=+=,得π()2k x k =∈Z ,则取ππ5π5π112222A B ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,,,,切线均为1y x =+,即存在不同的两点A ,B 使得切线重合,故D 正确. 故选:D .7.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e em -<< B .250e m -<< C .10em -<<D .e m <【答案】B【解析】由()e xf x x =,()()1e x f x x '=+,故当1x <-时,()0f x '<,()f x 单调递减,且()0f x <;当1x >-时,()0f x '>,()f x 单调递增,结合图象易得,过点()()1,P m m ∈R 至多有3条直线与函数()xf x xe =的图像相切,故3n =.此时,设切点坐标为()00,x y ,则切线斜率()001e x k x =+⋅,所以切线方程为()()00000e e 1x xy x x x x -=+⋅-,将()1,P m 代入得()0201e x m x x =-++⋅,存在三条切线即函数()21e x m x x =-++⋅有三个不同的根,又()()()1e 2x g x x x '=--+⋅,易得在()2,1-上,()0g x '>,()g x 单调递增;在(),2-∞-和()1,+∞上,()0g x '<,()g x 单调递减,画出图象可得当()20g m -<<,即250e m -<<时符合题意故选:B8.(多选题)(2022·辽宁·渤海大学附属高级中学模拟预测)已知0a >,0b >,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .219ab+≥ B .19ab ≤C 225a b +D 22a b ≤【答案】ACD【解析】设切点为()00,x y ,因为1e x y -'=,所以0010010e 12e 1x x y x a y b --⎧=⎪=+⎨⎪=-+⎩,解得01x =, 122a b +=-,即21a b +=,对于A ,2121(2)a b a b a b ⎛⎫+=++ ⎪⎝⎭2255249b a a b=++≥+=,当且仅当13a b ==时,等号成立,故A 正确; 对于B ,122a b ab =+≥18ab ≤,当且仅当14a =,12b =时,等号成立,故B 不正确;对于C 2222(12)a b a a ++-2541a a -+2215555a ⎛⎫=-+ ⎪⎝⎭,当且仅当25a =,15b =时,等号成立,故C 正确;对于D ,由2222a b a b ++≥⎝⎭22a b ⇒≤D 正确. 故选:ACD9.(多选题)(2022·山东潍坊·模拟预测)过平面内一点P 作曲线|ln |y x =两条互相垂直的切线12,l l ,切点为P 1、P 2(P 1、P 2不重合),设直线12,l l 分别与y 轴交于点A ,B ,则下列结论正确的是( ) A .P 1、P 2两点的横坐标之积为定值 B .直线P 1P 2的斜率为定值 C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(0,1] 【答案】ABC【解析】因为ln ,01ln ln ,1x x y x x x -<<⎧==⎨≥⎩,所以,当01x <<时,1y x '=-;当1≥x 时,1y x'=, 不妨设点1P ,2P 的横坐标分别为12,x x ,且12x x <, 若1201x x <<≤时,直线1l ,2l 的斜率分别为111k x =-,221k x =-,此时121210k k x x =>,不合题意; 若211x x >≥时,则直线1l ,2l 的斜率分别为111k x =,221k x =,此时121210k k x x =>,不合题意. 所以1201x x <≤<或1201x x <<≤,则111k x =-,221k x =,由题意可得121211k k x x =-=-,可得121=x x , 若11x =,则21x =;若21x =,则11x =,不合题意,所以1201x x <<<,选项A 对; 对于选项B ,易知点()111,ln P x x -,()222,ln P x x ,所以,直线12PP 的斜率为()1212212121ln ln ln 0P P x x x x k x x x x +===--,选项B 对;对于选项C ,直线1l 的方程为()1111ln y x x x x +=--,令0x =可得11ln y x =-,即点10,1ln A x , 直线2l 的方程为()2221ln y x x x x -=-,令0x =可得21ln 1ln 1y x x =-=--,即点()10,ln 1B x --, 所以,()()111ln 1ln 2AB x x =----=,选项C 对;对于选项D ,联立112211ln {1ln 1y x x x y x x x =-+-=+-可得1212121221P x x xx x x x ==++, 令()221xf x x =+,其中()0,1∈x ,则()()()2222101x f x x -'=>+,所以,函数()f x 在0,1上单调递增,则当()0,1∈x 时,()()0,1f x ∈, 所以,()121210,121ABP P x S AB x x =⋅=∈+△,选项D 错. 故选:ABC.10.(多选题)(2022·江苏·模拟预测)设函数()()()2e R xf x x ax a a -=++∈的导函数()f x '存在两个零点1x 、()212x x x >,当a 变化时,记点()()11,x f x 构成的曲线为1C ,点()()22,x f x 构成的曲线为2C ,则( )A .曲线1C 恒在x 轴上方B .曲线1C 与2C 有唯一公共点C .对于任意的实数t ,直线y t =与曲线1C 有且仅有一个公共点D .存在实数m ,使得曲线1C 、2C 分布在直线y x m =-+两侧 【答案】AD【解析】对于A 选项,因为()()()2e R x f x x ax a a -=++∈,则()()22e x f x a x x -'⎡⎤=--⎣⎦,令()0f x '=可得0x =或2x a =-,因为函数()f x '存在两个零点1x 、()212x x x >,则20a -≠,即2a ≠. 当20a -<时,即当2a >时,10x =,则()12f x a =>,当20a ->时,即当2a <时,12x a =-,则()()()()121124e 2e x a f x f a a x --=-=-=+,则曲线1C 为函数()()()2e0xg x x x -=+>的图象以及射线()02x y =>,且当0x >时,()()2e 0xg x x -=+>,所以,曲线1C 在x 轴上方,A 对;对于B 选项,当20a -<时,即当2a >时,22x a =-,则()()()()222224e 2e x a f x f a a x --=-=-=+,当20a ->时,即当2a <时,20x =,则()22f x a =< 所以,曲线2C 为函数()()()2e0xh x x x -=+<的图象以及射线()02x y =<,由图可知,曲线1C 、2C 无公共点,B 错; 对于C 选项,对于函数()2e x x g x +=,()()1210e exx x x g x -++'==-<, 此时函数()g x 在()0,∞+上单调递减,且()0g x >,结合图象可知,当0m ≤时,直线y t =与曲线1C 没有公共点,C 错;对于D 选项,对于函数()2e x x x ϕ+=,()1ex x x ϕ+'=-,则()01ϕ'=-, 又因为()02ϕ=,所以,曲线()y x ϕ=在0x =处的切线方程为2y x -=-,即2y x =-+. 构造函数()()2222e e x xx x p x x x ++=--+=+-,则()00p =, ()1e 11e e x x xx x p x +--'=-=,令()e 1xm x x =--,则()e 1x m x '=-,当0x <时,()0m x '<,此时函数()m x 单调递减,当0x >时,()0m x '>,此时函数()m x 单调递增,所以,()()00m x m ≥=,所以,()e 10ex xx p x --'=≥且()p x '不恒为零, 所以,函数()p x 在R 上为增函数, 当0x <时,()()00p x p <=,即22e xx x +<-+, 当0x >时,()()00p x p >=,即22e xx x +>-+, 所以,曲线1C 、2C 分布在直线2y x =-+的两侧,D 对.故选:AD.11.(2022·全国·南京外国语学校模拟预测)己知函数22f xx ,()3ln g x x ax =-,若曲线()y f x =与曲线()y g x =在公共点处的切线相同,则实数=a ________. 【答案】1【解析】设函数22f xx ,()3ln g x x ax =-的公共点为()00,x y ,则()()()()0000,,f xg x f x g x ''⎧=⎪⎨=⎪⎩即200000023,32,0,x lnx ax x a x x ⎧-=-⎪⎪=-⎨⎪⎪>⎩则2003ln 10x x +-=.令()23ln 1h x x x =+-,易得()h x 在()0,∞+上单调递增,所以以由2003ln 10x x +-=,解得01x =,所以切点为()1,1-,所以13ln1a =-,则1a =.故答案为:1.12.(2022·江苏·阜宁县东沟中学模拟预测)已知0a >,0b >,直线y x a =+与曲线1e 21x y b -=-+相切,则21a b+的最小值为___________. 【答案】8【解析】设直线y x a =+与曲线121x y e b -=-+相切于点()00,x y 由函数121x y e b -=-+的导函数为1x y e -'=,则001|e 1x x x k y -='===解得01x =所以0122y a b =+=-,即21a b +=则()21214424428b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⨯ ⎪⎝⎭当且仅当4b aa b =,即11,24a b ==时取得等号. 故答案为:813.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线. 【答案】32()f x x x (答案不唯一)【解析】若()f x 同时满足所给的两个条件,则2()320f x x ax '=-+≤对[1,)x ∈+∞恒成立,解得:min32a x ⎛⎫≤ ⎪⎝⎭,即32a ≤, 且2()321f x x ax '=-+=-在[)1,+∞上有解,即3122x a x=-在[)1,+∞上有解,由函数的单调性可解得:31122x a x=-≥. 所以312a ≤≤.则32()f x x x (答案不唯一,只要()f x 满足32()f x x ax =-+(312a ≤≤即可) 故答案为:32()f x x x14.(2022·山东潍坊·模拟预测)已知()e 1xf x =-(e 为自然对数的底数),()ln 1g x x =+,请写出()f x 与()g x 的一条公切线的方程______. 【答案】e 1y x =-或y x =【解析】设公切线与()f x 相切于点(),e 1mm -,与()g x 相切于点(),ln 1n n +,()e x f x '=,()1g x x '=,∴公切线斜率1e mk n==; ∴公切线方程为:()e 1e m m y x m -+=-或()1ln 1y n x n n--=-, 整理可得:()e 1e 1m my x m =---或1ln y x n n=+, ()1e 1e 1ln m m n m n⎧=⎪∴⎨⎪-+=-⎩,即()ln 1e 1ln mm n m n =-⎧⎨-+=-⎩, ()()()1e 11e 10m m m m m ∴-+-=--=,解得:1m =或0m =, ∴公切线方程为:e 1y x =-或y x =.故答案为:e 1y x =-或y x =.15.(2022·山东师范大学附中模拟预测)已知函数()()2e ,xf xg x x a==,若存在一条直线同时与两个函数图象相切,则实数a 的取值范围__________.【答案】2e (,0),4∞∞⎡⎫-⋃+⎪⎢⎣⎭【解析】数形结合可得:当0a <,存在一条直线同时与两函数图象相切;当0a >,若存在一条直线同时与两函数图象相切, 则,()0x ∈+∞时,2e xx a=有解,所以21,(0,)ex x x a ∞=∈+,令2(),(0,)ex x h x x ∞=∈+,因为22(2)()e e x x x x x x h x --==', 则当(0,2)x ∈时,()0h x '>,()h x 为单调递增函数; 当(2,)x ∈+∞时,()0h x '<,()h x 为单调递减函数; 所以()h x 在2x =处取得极大值,也是最大值, 最大值为24(2)eh =,且()0h x >在,()0x ∈+∞上恒成立, 所以2140,e a ⎛⎤∈ ⎥⎝⎦,即2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭. 故答案为:2e (,0),4a ∞∞⎡⎫∈-⋃+⎪⎢⎣⎭16.(2022·广东佛山·模拟预测)已知函数()()211ln 21,4212,2x x f x x x a x ⎧->⎪⎪=⎨⎪++≤⎪⎩,函数在1x =处的切线方程为____________.若该切线与()f x 的图象有三个公共点,则a 的取值范围是____________. 【答案】 210x y --=【解析】切点坐标为()1,0,()142f x x '=-,()112k f '==,所以切线l 方程为1122y x =-. 函数5124f a ⎛⎫=+ ⎪⎝⎭,即()f x 过点15,24a ⎛⎫+ ⎪⎝⎭,当切线l 过点15,24a ⎛⎫+ ⎪⎝⎭时,切线l 与函数()f x 的图象有三个公共点,将其代入切线l 方程得32a =-;当切线l 与()22f x x x a =++(12x ≤)相切时直线与函数()f x 的图象只有两个公共点, 设切线l :1122y x =-与()22f x x x a =++(12x ≤)在0x x =处相切,()001222k f x x '==+=,034x =-,所以切点坐标为315,416a ⎛⎫-- ⎪⎝⎭,代入切线方程解得116a =,因此直线与曲线有三个交点时,31216a -<≤.故答案为:32-;31,216⎡⎫-⎪⎢⎣⎭1.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.(2020·全国·高考真题(理))若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l 在曲线y x =(00x x ,则00x >,函数y x =2y x'=,则直线l 的斜率02k x , 设直线l 的方程为)0002y x x x x =-,即0020x x x -+=,由于直线l 与圆2215x y +=00145x + 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.3.(2020·全国·高考真题(理))函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 4.(多选题)(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得3x >3x <, 令()0f x '<得33x <<, 所以()f x 在33(上单调递减,在3(,-∞,3()+∞上单调递增,所以3x =是极值点,故A 正确; 因323(10f =>,323(10f =>,()250f -=-<, 所以,函数()f x 在3,⎛-∞ ⎝⎭上有一个零点, 当3x ≥()30f x f ≥>⎝⎭,即函数()f x 在3⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC.5.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1e y x = 1ey x =- 【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1e y x =;1ey x =- 6.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e xk x a =++,切线方程为:()()()0000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()0000e 1e x x x a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞, 故答案为:()(),40,-∞-+∞7.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【答案】0,1 【解析】 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1211x e A x M +,2221x e B x N =+,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11xxxxe e x x e AM e y M x -+=---+,所以()112221111x x x e x e x AM ++,同理2221x e B x N +, 所以()1111212222122221110,1111x x x x x x x e x e e e e e e Nx AM B -===+⋅++∈+++⋅=. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.9.(2020·全国·高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. 【答案】2y x =【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 【点睛】本题考查导数的几何意义,属于基础题.10.(2022·全国·高考真题(文))已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线. (1)若11x =-,求a ; (2)求a 的取值范围. 【答案】(1)3 (2)[)1,-+∞ 【解析】 【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围. (1)由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;(2)2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y xx x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭, 令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >, 令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭ 13-1,03⎛⎫- ⎪⎝⎭0 ()0,11 ()1,+∞()h x '-+-0 +()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.11.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+, 导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上 单调递增,在113113,33a a ⎡⎤⎢⎥⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+, 则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根. 12.(2020·北京·高考真题)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 【答案】(Ⅰ)2130x y +-=,(Ⅱ)32. 【解析】 【分析】(Ⅰ)根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(Ⅱ)根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值. 【详解】(Ⅰ)因为()212f x x =-,所以()2f x x '=-,设切点为()00,12x x -,则022x -=-,即01x =,所以切点为()1,11, 由点斜式可得切线方程为:()1121y x -=--,即2130x y +-=. (Ⅱ)[方法一]:导数法显然0t ≠,因为()y f x =在点()2,12t t -处的切线方程为:()()2122y t t x t --=--,令0x =,得212y t =+,令0y =,得2122t x t+=,所以()S t =()221121222||t t t +⨯+⋅,不妨设0t >(0t <时,结果一样), 则()423241441144(24)44t t S t t t t t++==++, 所以()S t '=4222211443(848)(324)44t t t t t+-+-= 222223(4)(12)3(2)(2)(12)44t t t t t t t -+-++==,由()0S t '>,得2t >,由()0S t '<,得02t <<, 所以()St 在()0,2上递减,在()2,+∞上递增,所以2t =时,()St 取得极小值,也是最小值为()16162328S ⨯==. [方法二]【最优解】:换元加导数法()()2222121121()12(0)2|2|4||t t S t t t t t ++=⋅⋅+=⋅≠.因为()S t 为偶函数,不妨设0t >,221()4S t t =⋅,令a t 2,0t a a =>.令412()a g a a +=,则面积为21[()]4S g a =,只需求出412()a g a a +=的最小值.34422412312()a a a a g a a a ⋅---='=()()()222223223(2)(2)2a a a a a a a -++==. 因为0a >,所以令()0g a '=,得2a =随着a 的变化,(),()g a g a '的变化情况如下表: a()0,22()2,+∞()g a '-0 +()g a减 极小值增所以min [()](2)822g a g === 所以当2a =2t =时,2min 1[()](82)324S t =⨯=. 因为[()]S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==. 综上,当2t =±时,()S t 的最小值为32. [方法三]:多元均值不等式法同方法二,只需求出412()(0)a g a a a+=>的最小值. 令433412444444()482a g a a a a a a a a a a+==+++≥⋅⋅⋅= 当且仅当34a a=,即2a = 所以当2a =2t =时,2min 1[()](82)324S t =⨯=.因为()S t 为偶函数,当0t <时,min [()](2)(2)32S t S S =-==.综上,当2t =±时,()S t 的最小值为32. [方法四]:两次使用基本不等式法同方法一得到()()()()()22222222222121241646464()41626416324||444tt t t S t t t t t t ++++++=≥==+++≥=+++ ,下同方法一. 【整体点评】(Ⅱ)的方法一直接对面积函数求导数,方法二利用换元方法,简化了运算,确定为最优解;方法三在方法二换元的基础上,利用多元均值不等式求得最小值,运算较为简洁;方法四两次使用基本不等式,所有知识最少,配凑巧妙,技巧性较高.。
初高中数学学习资料的店 第 1 页 共 13 页
专题12 导数
1.已知函数()()211ln ,022
f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程;
(2)求函数()f x 的单调区间;
(3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围.
【答案】(1)22y x =-+(2)当0a <时,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x
的递增区间为
)+∞
,递减区间为(; (3)()(],00,1-∞
【解析】(1)3a =时,()2113ln 22f x x x =
--,()10f =()3f x x x '=-,()12f '=- ∴()y f x =在点()()
1,1f 处的切线方程为22y x =-+故答案为:22y x =-+; (2)()()20a x a f x x x x x -'=-=>①当0a <时,()20x a f x x
-'=>恒成立,函数()f x 的递增区间为()0,∞+ ②当0a >时,令()0f x '=
,解得x =
x =
所以函数()f x 的递增区间为+∞,递减区间为( 当0a <时,()20x a f x x -'=>恒成立,函数()f x 的递增区间为()0,∞+; 当0a >时,函数()f x 的递增区间为)+∞,递减区间为(. (3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数,所以只需()10f ≥而()111ln1022f a =--= 所以0a <满足题意;。