中考数学全效复习:第1课时 实数的有关概念
- 格式:doc
- 大小:560.41 KB
- 文档页数:2
初中数学知识复习 第一讲:实数 一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0,a=-b 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较 1、在数轴上表示两个数,右边的数总比左边的数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
五、实数的运算1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
初三数学总复习数与式 实数(一)知识梳理 一.实数的有关概念 1、实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 注意:无理数有三种类型:(1)、π或者含π的式子;(2)、含有根号且开不尽方的数。
如:等;(3)、无限不循环的小数。
如:2.121121112.。
、3.141141114。
等。
实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。
解题中需考虑数的取值范围时,常常用到这种分类方法。
特别要注意0是自然数。
2、数轴数轴的三要素:原点、正方向和单位长度。
实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。
在数轴上表示的两个数,右边的数总比左边的数大。
3、绝对值 绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
数a 的绝对值记着┃a ┃。
4、相反数、倒数只有符号不同的两个数叫做互为相反数【若a+b=0,则a 与b 互为相反数】;数a 的相反数记为-a 【这是求一个数的相反数的方法。
求一个数或式的相反数就是在这个数或式的前面填上一个负号】。
数a (a ≠0)的倒数记为1a。
【这是求倒数的方法,若一个数是小数,求它的倒数时先将这个小数化为分数再求倒数】,若ab =1,则a 与b 互为倒数。
相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。
5、非负数2a a 、、(a ≥0)形式的数都表示非负数。
||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000②非负数的性质:几个非负数的和(积)仍是非负数;几个非负数的和等于零,则必定每个非负数都同时为零。
6、负整数指数幂、零指数幂:1(0)p p a a a-=≠;01(0)a a =≠。
7、实数大小的比较:两个实数比较大小:正数大于零和一切负数;零大于一切负数;两个负数,绝对值大的数较小。
中考必考实数知识点总结一、实数的概念实数是指包括有理数和无理数在内的所有数的集合。
有理数是指可以用分数表示的数,而无理数则是指不能用分数表示的数。
这两种数的集合统称为实数集。
在实数集中,有理数和无理数的性质有所不同。
有理数具有如下性质:有理数的加法、减法、乘法、除法运算封闭;有理数的加法和乘法满足交换律、结合律、分配律;有理数有加法和乘法单位元;有理数的加法有逆元。
而无理数则没有这些性质,它们通常以无限循环小数或者无限不循环小数的形式表示,例如π、√2等。
实数集是一个非常大的集合,其中包含了所有的数,因此实数的概念是数学中的一个基本概念。
二、实数的性质1. 实数的大小比较实数有着天然的大小比较关系,可以通过大小比较运算符来进行比较。
实数的大小比较主要是通过大小关系符号(大于、小于、大于等于、小于等于)来进行。
对于任意的实数a和b,有以下性质:(1)反身性:a ≥ a,a ≤ a(2)反对称性:如果a ≤ b且b ≤ a,则a = b(3)传递性:如果a ≤ b且b ≤ c,则a ≤ c这些性质在实数的大小比较中起着重要的作用,为我们提供了判断实数大小关系的依据。
2. 实数的运算性质实数的运算性质主要包括加法、减法、乘法、除法的性质。
实数的加法和乘法满足交换律、结合律、分配律,实数的除法有着特殊的性质。
(1)加法交换律:对于任意的实数a和b,有a + b = b + a(2)加法结合律:对于任意的实数a、b和c,有(a + b) + c = a + (b + c)(3)乘法交换律:对于任意的实数a和b,有a * b = b * a(4)乘法结合律:对于任意的实数a、b和c,有(a * b) * c = a * (b * c)(5)分配律:对于任意的实数a、b和c,有a*(b+c) = a*b + a*c(6)实数的除法:对于任意的实数a和b,如果b≠0,则存在唯一的实数c,使得a = b * c实数的运算性质是我们进行实数运算的基础,了解这些性质有利于我们掌握实数的运算规则,从而正确进行实数的运算。
1.2.3.4. 第1课时实数的有关概念【知识梳理】实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.有理数和无理数统称为实数.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点绝对值:它本身;相反数:0. 在数轴上表示数a的点到原点的距离叫数a的绝对值,记作I 负数的绝对值是它的相反数;0的绝对值是O.b5E2RGbCAP符号不同、绝对值相等的两个数,叫做互为相反数.「对应a I,正数的绝对值是a的相反数是-a, 0的相反数是5.6.7.8.9.10.11.12.13. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.p1EanqFDPw '科学记数法:把一个数写成axi0n的形式(其中Ka<10,是整数),这种记数法叫做科学记数法如:407000=4.07 X105,0.000043=4.3 10K 5.DXDiTa9E3d:大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小. '数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幕平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根叫做二次方根)•一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是身;负数没有平方根. RTCrpUDGiT .开平方:求一个数a的平方根的运算,叫做开平方.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做算术平方根,0的算术平方根是0 . 5PCzVD7HxA立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 开立方:求一个数a的立方根的运算叫做开立方.(也0本(也jLBHrnAlLg【思想方法】数形结合,分类讨论【例题精讲】1.下列运算正确的是(B -扩A. - -3=32. 2 的相反数是3.2 的平方根是(--3 C. .9 = 3 D. 3万=-3C.例4.《广东省2009年重点建设项目计划用科学记数法表示正确的是()-.2(草案)XHAQX74J0X显示,港珠澳大桥工程估算总投资726亿元,A . 7.26 1010 元B . 72.6 109 元11 C . 0.726 10 元 11D . 7.26 10 元例5•实数a , b 在数轴上对应点的位置如图所示,则必有( ) 亠b -1 0 a 10 例5图aA . a b 0B . a -b ::: 0C . ab 0D . — •;:- 0 b 例6. (改编题)有一个运算程序,可以使:a ®b = n ( n 为常数)时,得 (a +1) ® b = n +2, a ®(A . 2 - . 15 3B . 3 ::15 :: 4C . 4 ::、15 :: 5D . 14 ::15 :: 161 ® 1 = 4,那么 2009® 2009 =(1 1•计算 - 1 2丿3(的结果是()1 11A .—B .--C . —6 6 8 2.—2的倒数是( )1 1 A .—— B . —223•下列各式中, 正确的是( )现在已知 【当堂检测】 C . 2 D . -2 b +1) = n -38•如果LI (-2) =1,贝y “~1”内应填的实数是() 3 3 2 23 A . B .一 C . D . 2 3 3 2 A . 1 B . -1 C . 1 _ 2a D . 2a-1 1 L a I-1 0 1 5. -2的相反数是( )1D . ■ 2第4题图 A . 2 B . -2 1 C . 2 6.-5的相反数是 ,- 1-的绝对值是 2 ,「4 2 = 4•已知实数a 在数轴上的位置如图所示,则化简7•写出一个有理数和一个无理数,使它们都是小于— 1的数 |1 -a | a 2的结果为(。
实数的相关概念中考考点梳理全文共四篇示例,供读者参考第一篇示例:实数是数学中最基础的概念之一,它包括有理数和无理数两类。
在数学的学习中,实数的相关概念是非常重要的。
在中考中,实数相关的考点也是比较多的。
下面我们来看看实数相关概念中中考的考点梳理。
1. 实数的分类实数可以分为有理数和无理数两类。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
无理数是不能表示为有理数的数,如π和根号2等。
在中考中,同学们需要了解实数的分类,并能够判断一个数是有理数还是无理数。
2. 实数的运算实数的运算是中考数学的重要内容之一。
同学们需要掌握实数的加减乘除运算规则,包括有理数和无理数的运算。
在中考中,常见的考点有实数的加法、减法、乘法、除法运算,以及混合运算等。
3. 实数的大小比较在实数的概念中,同学们也需要学会对实数进行大小比较。
无论是有理数还是无理数,都可以通过大小比较符号进行比较,如大于等于、小于等于、大于、小于等等。
在中考中,通常会出现实数的大小比较题目,同学们需要根据实数的性质进行判断。
4. 实数的分数表示实数可以表示为分数的形式,分数是有理数的一种形式。
在中考中,同学们需要能够将实数表示为分数的形式,并且能够进行化简和计算。
分数的化简和运算是中考数学的常见考点之一,同学们需要多进行练习,掌握分数的性质和运算规则。
5. 实数的应用问题实数的概念在中考中不仅仅是为了考察同学们的概念掌握程度,还可以通过应用题目考察同学们对实数的应用能力。
实数在现实生活中有着广泛的应用,比如长度、重量、体积等问题都可以通过实数进行表示和计算。
在中考中,同学们可能会遇到一些实际问题,需要用实数进行求解,这就需要同学们将实数的概念运用到实际问题中去。
实数的相关概念在中考数学中占据着重要的地位,同学们需要充分理解实数的分类、运算、大小比较、分数表示以及应用问题等知识点。
通过不断的练习和巩固,可以帮助同学们提高实数相关概念的理解和运用能力,从而在中考中取得更好的成绩。
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
中考实数知识点总结归纳一、实数的概念1. 实数的定义实数是指可以用在数轴上表示的数,包括有理数和无理数。
有理数是指可以表示为两个整数的比值的数,包括整数和分数。
无理数是指不能表示为两个整数的比值的数,如π和√2等。
2. 实数的性质(1)实数具有传递性,即若a>b,b>c,则a>c。
(2)实数具有传递性,即若a>b,则a+c>b+c。
(3)实数具有传递性,即若a>b且c>0,则ac>bc。
3. 实数的分类(1)有理数:可以表示为有限或无限循环小数的数。
(2)无理数:不能表示为有限或无限循环小数的数。
(3)整数:包括正整数、负整数和0。
(4)分数:可以表示为两个整数的比值的数。
二、实数的运算1. 实数的加法(1)同号实数相加,绝对值加起来,符号不变。
(2)异号实数相加,绝对值差,正负号取绝对值大的数的符号。
2. 实数的减法(1)a-b = a+(-b)(2)减负得正,减正得负。
3. 实数的乘法(1)同号实数相乘,绝对值相乘,结果为正。
(2)异号实数相乘,绝对值相乘,结果为负。
4. 实数的除法(1)a÷b = a×(1/b)5. 实数的乘方(1)乘方运算:a的n次方 = a × a × ... × a (n个a相乘)(2)指数规律:a的m次方 × a的n次方 = a的m+n次方6. 实数的开方(1)开方运算:√a表示使得x²=a的数x。
(2)开方的性质:非负数的平方根是已知的,即√a²=|a|。
三、实数的表示1. 小数的表示(1)有限小数:十进制小数表示法中,小数部分有限位数的小数。
(2)无限循环小数:十进制小数表示法中,小数部分有限位数,但有循环节的小数。
2. 分数和百分数的表示(1)分数:a/b = a÷b(2)百分数:表示数或者分数乘以100后的结果。
3. 实数的化简(1)约分:将一个分数的分子和分母同时除以一个正整数。
初二数学聚焦实数学习要点一、实数的分类观:1、统称观有理数和无理数统称实数。
根据这个定义,我们可以把实数作如下的分类:在这里,同学们要注意,与前面知识的不同。
也就是说,有理数是借助小数来下的定义。
2、正负观根据有理数可以分成正有理数、0、负有理数的正负观,我们可以推广到实数。
也就是说实数可以分成正实数、0、负实数。
当然,我们可以作更细的分类。
具体如下:二、实数背景下的几个重要概念1、相反数:在实数范围内,相反数的定义与在有理数的范围内的定义是相同的。
仍然是:只有符号不同的两个数,称互为相反数。
如:3与-3互为相反数,3+1与-3-1互为相反数。
也就是说,对任意实数a,它的相反数为-a。
只要把一个实数,乘以-1,就变成这个数的相反数了。
2、绝对值对任意实数a,它的绝对值定义如下:正实数的绝对值,是这个数本身;0的绝对值,是0;负实数的绝对值,是这个数的相反数。
不提倡,同学们说成“负实数的绝对值,是正数”的说法。
这不利于绝对值的化简。
3、倒数如果两个非0实数的积为1,就称这两个数互为倒数。
这里的条件非0实数,是很重要的。
如果实数a≠0,那么,实数a的倒数为1/a。
4、算术平方根只有正实数和0有算术平方根,负实数没有算术平方根。
三、实数范围内的大小比较观借助数轴比较两个实数的大小。
在数轴上,实数对应的点的位置,越靠右,数就越大。
如图所示,点A所表示的实数为a,点B所表示的实数为b,因为,点A在点B的右边,所以,点A所表示的实数a,比点B所表示的实数b要大,即a>b。
利用数轴,同学们只要辨析出,所比较的两个数左右位置,就可以确定这两个数的大小了。
这种比较方法是比较实用的。
同学们一定要熟练掌握。
四、实数与数轴上面的作图,就说明了,数轴上的点不仅表示有理数,而且表示无理数。
即数轴上的点与实数是一一对应的。
这一点,同学们一定要清楚。
五、实数背景下的运算观在有理数的各类运算,都可以推伸的实数范围。
六、常见题型6.1判断题例1、判断下列说法是否正确:⑴无限小数都是无理数。
⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字.中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:0________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b •互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥00.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π,3,0+1,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.000=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)000保留两个有效数字得到的近似数为________.答案:(1).-2,,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3-a)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│+果是多少?b a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3+1 4.5.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c。
中考数学深度复习讲义:实数的有关概念
2019年中考数学深度复习讲义:实数的有关概
念
◆知识讲解
1.实数的分类
实数
实数还可分为
2.数轴
(1)数轴的三要素:原点、正方向和单位长度.
(2)数轴上的点与实数一一对应.
3.相反数
实数a的相反数是-a,零的相反数是零.
(1)a、b互为相反数 a+b=0.
(2)在数轴上表示相交数的两点关于原点对称.
4.倒数
乘积是1的两个数互为倒数,零没有倒数.
a、b互为倒数 ab=1.
5.绝对值
│a│=
6.非负数
像│a│、a2、 (a0)形式的数都表示非负数.
7.科学记数法
把一个数写成a10n的形式(其中1│a│10,n为整数),•。
第一部分 数与代数
第一章 实 数
第1课时 实数的有关概念
(60分)
一、选择题(每题6分,共42分)
1.[2019·海南]如果收入100元记作+100元,那么支出100元记作( ) A .-100元 .+100元 C .-200元
D .+200元
2.[2019·扬州]下列各数中,小于-2的数是( ) A .- 5 B .- 3 C .- 2
D .-1
3.[2019·仙桃]下列各数中,是无理数的是( ) A .3.141 5 B . 4 C .227
D . 6
4.[2019·安徽]在-2,-1,0,1这四个数中,最小的数是 ( ) A .-2 B .-1 C .0
D .1
5.[2019·常德]下列各数中,比3大且比4小的无理数是( ) A.10 B .17 C .3.1
D .103
6.[2019·巴中]企业家陈某,在家乡投资9 300万元,建立产业园区2万余亩,将9 300万元用科学记数法表示为( )
A .93×108
B .9.3×108
C .9.3×107
D .0.93×108
7.[2019·自贡]实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )
A .|m|<1
B .1-m>1
C .mn>0
D .m +1>0
二、填空题(每题6分,共18分)
8.[2019·常德]数轴上表示-3的点到原点的距离是________. 9.[2019·宁波]请写出一个小于4的无理数:________.
10.[2019·福建]如图,数轴上A,B两点所表示的数分别是-4和2,点C是线段AB的中点,则点C所表示的数是________.
(30分)
11.(10分)[2019·枣庄]点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB,若点C所表示的数为a,则点B所表示的数为( )
A.-(a+1) B.-(a-1)
C.a+1 D.a-1
12.(10分)[2019·台州]砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,……接着把编号是3的整数倍的“金蛋”全部砸碎,按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止,操作过程中砸碎编号是66的“金蛋”共________个.
13.(10分)[2018·枣庄]将从1开始的连续自然数按如下规律排列:
第1行 1
第2行 2 3 4
第3行9 8 7 6 5
第4行10 11 12 13 14 15 16
第5行25 24 23 22 21 20 19 18 17
…………
则2 018
(10分)
14.(10分)[2019·聊城]数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n(n≥3,n是整数)处,那么线段A n A的长度为__________(n≥3,n是整数).
参考答案
1.A 2.A 3.D 4.A 5.A 6.C 7.B
8.3 9.π10.-1 11.B 12.3 13.45
14.4-1
2n-2
关闭Word文档返回原板块。