一次函数与一元一次方程一元一次不等式 课件 沪科版
- 格式:ppt
- 大小:3.88 MB
- 文档页数:7
第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。
4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。
《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇教具安排学生课堂自主探究材料、多媒体课件。
课时安排这节内容安排两个课时,本节课是第一课时,主要通过探究活动领悟一次函数与一元一次方程、一次不等式之间的联系。
教学过程设计问题与情境师生活动设计意图复习旧知、学前热身小明的爸爸应邀来到合肥投资,在庐阳工业园投资300万元成本建成一个小型家电生产工厂。
建成投产后,不考虑材料费等其他因素,每年盈利75万元。
回答下面两个问题,1:该工厂投产几年刚好收回成本?2:该工厂从哪一年后盈利开始超过300万元以上?师:从小学到现在我们学过哪些解决问题的方法?生:小学的算术法和初中学过的方程、不等式。
师:怎样利用函数图象解决上面的问题呢?贴切的生活情境可以让大多数同学想到解决问题的方法,除了能激发学生的求知欲,也让学生初步感受一次方程和一元一次不等式与一次函数是有联系的,引入课题。
合作交流、探究新知活动一:探究一次函数与一元一次方程之间的联系。
1.解方程 3x+6=0。
2.直线y=3x+6与x轴交点的坐标是什么?3.讨论:图象与方程的解之间的关系。
4.不解方程:你能说出方程3x+6=6的解吗?学生口答三个问题。
师:课前让大家准备了任意的一次函数的图象,观察你的图象,在图象中也有类似的联系吗?学生举例说明。
师:将刚才的思考概括为一般形式呢?归纳:一次函数y=kx+b(k、b为常数,k≠0)与x轴交点的横坐标就是方程kx+b=0的解。
一元一次方程kx+b=0(k、b为常数,k≠0)的解就是一次函数y=kx+b(k0)与x轴交点的横坐标。
引题分解难度,给学生提供了思考的角度和方向。
通过学生反复实践和教师引导,学生从“形”到“数”,或者从“数”到“形”,自己探究一次函数的图象与一元一次方程解的关系,体验知识生成的过程。
5.合作交流(一)你还能利用图象求出哪些一元一次方程的解?6.合作交流(二)通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?师:请写出几个这样的一元一次方程和同伴进行交流。
专题12.4 一次函数与方程、不等式的关系【十大题型】【沪科版】【题型1 一次函数与一元一次方程的解】 (1)【题型2 两个一次函数与一元一次方程】 (2)【题型3 利用一次函数的变换求一元一次方程的解】 (3)【题型4 一次函数与二元一次方程(组)的解】 (3)【题型5 不解方程组判断方程组解的情况】 (4)【题型6 一次函数与一元一次不等式的解集】 (4)【题型7 两个一次函数与一元一次不等式】 (5)【题型8 绝对值函数与不等式】 (6)【题型9 一次函数与一元一次不等式组的解集】 (8)【题型10 一次函数与不等式组中的阴影区域问题】 (10)【题型1 一次函数与一元一次方程的解】【例1】(2022秋•白塔区校级月考)直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.【变式11】(2022春•安阳县期末)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为.【变式12】(2022春•雷州市校级期末)一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是()A.x=3B.x=4C.x=0D.x=b【变式13】(2022秋•招远市期末)已知关于x的一次函数y=3x+n的图象如图,则关于x的一次方程3x+n =0的解是()A.x=﹣2B.x=﹣3C.D.【题型2 两个一次函数与一元一次方程】【例2】(2022秋•双流区期末)已知一次函数y=5x+m的图象与正比例函数y=kx的图象交于点(﹣2,4)(k,m是常数),则关于x的方程5x=kx﹣m的解是.【变式21】(2022秋•龙岗区期末)如图,函数y=2x+b与函数y=kx﹣1的图象交于点P,则关于x的方程kx﹣1=2x+b的解是.【变式22】(2022秋•苏州期末)已知一次函数y=kx+1与的图象相交于点(2,5),求关于x的方程kx +b =0的解.【变式23】(2022秋•包河区期末)已知直线y =x +b 和y =ax +2交于点P (3,﹣1),则关于x 的方程(a ﹣1)x =b ﹣2的解为 .【题型3 利用一次函数的变换求一元一次方程的解】【例3】(2022春•江都区校级月考)若一次函数y =kx +b (k 为常数且k ≠0)的图象经过点(﹣2,0),则关于x 的方程k (x ﹣5)+b =0的解为 .【变式31】(2022•姜堰区一模)若一次函数y =ax +b (a 、b 为常数,且a ≠0)的图象过点(2,0),则关于x 的方程a (x +1)+b =0的解是 .【变式32】(2022秋•庐阳区校级期中)若关于x 的一次函数y =kx +b 的图象经过点A (﹣1,0),则方程k (x +2)+b =0的解为 .【变式33】(2022秋•庐阳区校级期中)将直线y =kx ﹣2向下平移4个单位长度得直线y =kx +m ,已知方程kx +m =0的解为x =3,则k = ,m = . 【题型4 一次函数与二元一次方程(组)的解】【例4】(2022春•夏津县期末)如图,根据函数图象回答问题:方程组{y =kx +3y =ax +b的解为 .【变式41】(2022•贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b2的解是 .【变式42】(2022秋•西乡县期末)已知二元一次方程组{x −y =−5x +2y =−2的解为{x =−4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =−12x ﹣1的交点坐标为( )A .(4,1)B .(1,﹣4)C .(﹣1,﹣4)D .(﹣4,1)【变式43】(2022•德城区二模)若以关于x 、y 的二元一次方程x +2y ﹣b =0的解为坐标的点(x ,y )都在直线y =−12x +b ﹣1上,则常数b 的值为( )A .12B .1C .﹣1D .2【题型5 不解方程组判断方程组解的情况】【例5】(2022秋•泰兴市校级期末)已知关于x ,y 的方程组{y =kx +by =(3k −1)x +2(1)当k ,b 为何值时,方程组有唯一一组解; (2)当k ,b 为何值时,方程组有无数组解; (3)当k ,b 为何值时,方程组无解.【变式51】(2022秋•苏州期末)若二元一次方程组{3x +y =−12x +my =−8有唯一的一组解,那么应满足的条件是( ) A .m =23B .m ≠23C .m =−23D .m ≠−23【变式52】(2022春•覃塘区期中)如果关于x ,y 的方程组{x +y =1ax +by =c 有唯一的一组解,那么a ,b ,c的值应满足的条件是( ) A .a ≠bB .b ≠cC .a ≠cD .a ≠c 且c ≠1【变式53】(2022春•高明区期末)k 为何值时,方程组{kx −y =−133y =1−6x 有唯一一组解;无解;无穷多解?【题型6 一次函数与一元一次不等式的解集】【例6】(2022•海淀区校级自主招生)已知一次函数y =kx +b 中x 取不同值时,y 对应的值列表如下:x … ﹣m 2﹣1 1 2 … y…﹣2n 2+1…则不等式kx +b >0(其中k ,b ,m ,n 为常数)的解集为( ) A .x >1B .x >2C .x <1D .无法确定【变式61】(2022春•龙岗区期末)如图,已知一次函数y =kx +b 的图象经过点A (﹣3,2),B (1,0),则关于x 的不等式kx +b <2解集为 .【变式62】(2022春•湖南期中)已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( ) A .(0,1)B .(﹣1,0)C .(0,﹣1)D .(1,0)【变式63】(2022春•高明区校级期末)如图,直线y =kx +b 与直线y =−12x +52交于点A (m ,2),则关于x 的不等式kx +b ≤−12x +52的解集是( )A .x ≤2B .x ≥1C .x ≤1D .x ≥2【题型7 两个一次函数与一元一次不等式】【例7】(2022•钟山县校级模拟)直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x +b 的解集为( )A .x >3B .x <3C .x >﹣1D .x <﹣1【变式71】(2022•烟台)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解集为 .【变式72】(2022春•楚雄州期末)已知关于x的一次函数y=kx+b(k≠0)的图象过点A(2,4)、B(0,3).(1)求一次函数y=kx+b的解析式;(2)若关于x的一次函数y=mx+n(m<0)的图象也经过点A,则关于x的不等式mx+n≥kx+b的解集为.【变式73】(2022春•潮安区期末)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.【题型8 绝对值函数与不等式】【例8】(2022秋•临海市校级月考)小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c 的图象和性质.(1)在给出的平面直角坐标系中画出函数y=|x﹣2|和y=|x﹣2|+1的图象;(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.【变式81】(2022秋•玄武区期末)请你用学习“一次函数”时积累的经验和方法研究函数y =|x |的图象和性质,并解决问题.(1)完成下列步骤,画出函数y =|x |的图象; ①列表、填空;x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y …31123…②描点; ③连线.(2)观察图象,当x 时,y 随x 的增大而增大; (3)根据图象,不等式|x |<12x +32的解集为 .【变式82】(2022春•确山县期末)画出函数y =|x |﹣2的图象,利用图象回答下列问题: (1)写出函数图象上最低点的坐标,并求出函数y 的最小值; (2)利用图象直接写出不等式|x |﹣2>0的解集;(3)若直线y =kx +b (k ,b 为常数,且k ≠0)与y =|x |﹣2的图象有两个交点A (m ,1),B (12,−32),直接写出关于x 的方程|x |﹣2=kx +b 的解.【变式83】(2022春•重庆期末)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|2x+4|+x+m性质及其应用的部分过程,请按要求完成下列各小题.(1)如表是部分x,y的对应值:x…﹣6﹣5﹣4﹣3﹣2﹣1012…y…0n﹣2﹣3﹣4﹣1258…根据表中的数据可以求得m=,n=;(2)请在给出的平面直角坐标系中,描出以如表中各组对应值为坐标的点,再根据描出的点画出该函数的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若一次函数y=kx+b(k≠0)的图象经过点(﹣4,﹣2)和点(1,5),结合你所画的函数图象,直接写出不等式kx+b<|2x+4|+x+m的解集.【题型9 一次函数与一元一次不等式组的解集】【例9】(2022秋•青田县月考)如图,可以得出不等式组{ax+b<0cx+d>0的解集是()A .x <﹣1B .﹣1<x <0C .﹣1<x <4D .x >4【变式91】(2022春•南康区期末)如图,直线y =﹣x +m 与直线y =12x +3交点的横坐标为﹣2.则关于x 的不等式组{−x +m >12x +312x +3>0的解集为 .【变式92】(2022•富阳区二模)如图,直线y =kx +b 经过点A (﹣1,3),B (−52,0)两点,则不等式组0<kx +b <﹣3x 的解集为 .【变式93】(2022•青羊区校级自主招生)如图,直线y 1=ax +2与y 2=bx +4交于点N (1,a +2),将直线y 1=ax +2向下平移后得到y 3=ax ﹣5,则能使得y 3<y 2<y 1的x 的所有整数值分别为( )A .1,2,3B .2,3C .2,3,4D .3,4,5【题型10 一次函数与不等式组中的阴影区域问题】【例10】(2022•黄冈中学自主招生)如图,表示阴影区域的不等式组为( )A .{2x +y ≥53x +4y ≥9y ≥0B .{2x +y ≤53x +4y ≤9y ≥0C .{2x +y ≥53x +4y ≥9x ≥0D .{2x +y ≤53x +4y ≥9x ≥0【变式101】(2022秋•包河区期中)图中所示的阴影部分为哪一个不等式的解集( )A .x ﹣y ≤﹣5B .x +y ≥﹣5C .x +y ≤5D .x ﹣y ≤5【变式102】(2012春•南岸区期末)如图,用不等式表示阴影区域为( )A .x +y ≤0,且x ﹣y ≥0B .x +y ≥0,且x ﹣y ≥0C .x +y ≥0,且x ﹣y ≤0D .x +y ≤0,且x ﹣y ≤0【变式103】(2022春•广水市期末)阅读材料:在平面直角坐标系中,二元一次方程x ﹣y =0的一个解{x =1y =1可以用一个点(1,1)表示,二元一次方程有无数个解,以方程x ﹣y =0的解为坐标的点的全体叫作方程x ﹣y =0的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程x ﹣y =0的图象称为直线x ﹣y =0.直线x ﹣y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x ﹣y ≤0,那么点M (x 0,y 0)就在直线x ﹣y =0的上方区域内.特别地,x =k (k 常数)表示横坐标为k 的点的全体组成的一条直线,y =m (m 为常数)表示纵坐标为m 的点的全体组成的一条直线.请根据以上材料,探索完成以下问题:(1)已知点A (2,1)、B (83,32)、C (136,54)、D (4,92),其中在直线3x ﹣2y =4上的点有 (只填字母);请再写出直线3x ﹣2y =4上一个点的坐标 ;(2)已知点P (x ,y )的坐标满足不等式组{0≤x ≤40≤y ≤3则所有的点P 组成的图形的面积是 ; (3)已知点P (x ,y )的坐标满足不等式组{0≤x ≤10≤y ≤2x −y ≥0,请在平面直角坐标系中画出所有的点P 组成的图形(涂上阴影),并求出上述图形的面积.。
一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。
一次函数的图像为一条直线,具有特定的斜率和截距。
一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。
2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。
解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。
求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。
通过以上步骤,可以求得一元一次方程的解。
3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。
求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。
求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。
需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。
4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。
掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。
6.6一次函数、一元一次方程和一元一次不等式班级 姓名教学目标:1、经历实际问题中的数量关系的分析、抽象初步体会一元一次不等式与一元一次方程、一次函数的内在联系。
2、了解不等式、方程、函数在解决问题过程中的作用和联系。
3、通过解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式与一元一次方程、一次函数的内在联系教学难点:一元一次不等式与一元一次方程、一次函数的内在联系教学过程一、创设问题情境,引入新课一根长20cm 的弹簧,一端固定,另一端挂物体。
在弹簧伸长后的长度不超过30cm 的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.ycm 。
(1)、求y 与x 之间的函数关系式,并画出函数的图像。
(2)、求弹簧所挂物体的最大质量是多少?分析:根据题意,这根弹簧挂xkg 质量的物体后,伸长了此时弹簧的长度是(0.5x +20)cm ,即得x 与y 205.0+=x y 本题也可用图像法:205.0+=x y 簧得长度不能超过30cm ,所以当y =30质量最大。
解一元一次方程30205.0=+x得 20=x所以该弹簧所挂物体的最大质量是20kg.问题:能否用不等式来求解?(请学生自由讨论)注意:因为学生通过前面的学习很容易就能被这个题目所吸引,他们可能会安静的寻找答案,也可能会在一起讨论,那么我们不管发生什么情况一定要及时的予以辅导,要引导学生正确的找到不等关系,列出不等式,对于理解能力比较差的学生,教师可以单独辅导,也可以让先完成的同学讲解给后进生听,形成帮扶对子。
最后一定要作总结给出正确的答案。
二、探索新知1、一元一次方程、一次函数的关系由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
从图像上看,这相当于已知 ,确定 的值。
2、一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a ≠0)是一次函数y=ax+b (a ≠0)•的函数值 的情形.(2)直线y=ax+b 上使函数值y>0(x 轴上方的图像)的x 的取值范围是0221=+x 221+=x y ax+b 0的解集;使函数值y<0(x 轴下方的图像)的x 的取值范围是ax+b 0的解集.三、例题精选例1 如图是一个一次函数,请根据图像回答问题:(1)当x =0时,y = ,当y =0时,x = ;(2)写出直线对应的一次函数的表达式 ;(3)一元一次方程 和一次函数 有什么联系?例2 画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.例3 某用煤单位有煤m 吨,每天烧煤n 吨,现已知烧煤三天后余煤102吨,烧煤8天后余煤72吨.(1)求该单位余煤量y 吨与烧煤天数x 之间的函数解析式;(2)当烧煤12天后,还余煤多少吨?(3)预计多少天后会把煤烧完?例4 某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,设xh 后蜡烛剩下的长度为y ㎝。