人教版初中数学七年级上册期末数学试卷(2019-2020学年湖南省长沙市天心区长郡教育集团
- 格式:doc
- 大小:187.00 KB
- 文档页数:18
2019-2020学年七年级上学期期末考试数学试卷一、选择题(本大题共16小题,1-6小题,每小题2分;7-16小题每小题2分,满分共42分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中结果为负数的是()A.﹣(﹣1)B.|﹣1|C.|1﹣2|D.﹣|﹣1|2.的相反数为()A.2B.﹣C.D.﹣23.下列各式中运算正确的是()A.4m﹣m=3B.a2b﹣ab2=0C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy4.已知x=﹣5是方程k(x+4)﹣2k﹣x=14的解,则k值为()A.﹣3B.﹣2C.2D.35.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.6.大量事实证明,环境污染治理刻不容缓,据统计,全球每分钟约有852.1万吨污水排入江河湖海,把852.1万用科学记数法表示为()A.0.8521×106B.8521×107C.8.521×106D.8.521×1077.在0,﹣1,﹣x,,3﹣x,,中,是单项式的有()A.3个B.4个C.5个D.6个8.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是()A.0.7(1+0.6)x=x﹣36B.0.7(1+0.6)x=x+36C.0.7(1+0.6x)=x﹣36D.0.7(1+0.6x)=x+369.如图,点C在线段AB上,点D是AC的中点,如果CD=4,AB=14,那么BC长度为()A.4B.5C.6D.6.510.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解11.设n是自然数,则的值为()A.1或﹣1B.0C.﹣1D.0或112.在如图所示的2019年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.7213.如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC=AB,则CD等于()A.a B.a C.a D.a14.如图所示的运算程序中,若开始输入的x值为11,则第1次输出的结果为14,第2次输出的结果为7,…,第2019次输出的结果为()A.1B.2C.4D.715.如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,则∠DOE的度数为()A.35°B.45°C.55°D.60°16.已知整数a1、a2、a3、a4、…满足下列条件:a1=﹣1,a2=﹣|a1+2|,a3=﹣|a2+3|,a4=﹣|a3+4|,…,a n+1=﹣|a n+n+1|(n为正整数)依此类推,则a2019的值为()A.﹣1009B.﹣1010C.﹣2019D.﹣2020二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.若单项式与4x m y4的和是一个单项式,则m﹣n=.18.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为只,树为棵.19.已知∠1=42°13′,则∠1的余角是,补角是.20.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明步骤成演算步骤)21.(8分)计算(1)﹣22×3+(﹣2)3÷9(2)|﹣36|×()+(﹣8)÷(﹣2)222.(14分)整式与方程(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.(2)解方程:①4﹣x=3(2﹣x)②=323.(6分)如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB.(2)画射线AD、BC,交于点P.(3)在平面内找到一点O,使点O到A、B、C、D四点距离最短.24.(9分)一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x表示);(3)这辆出租车一共行驶了多少路程(结果用x表示)?25.(9分)(1)观察下列各式,并完成填空:21﹣12=9=9×;75﹣57=18=9×;96﹣69=27=9×,45﹣54=﹣9=9×;27﹣72=﹣45=9×;19﹣91=﹣72=9×.(2)请用文字补全上述规律:把一个两位数的个位数字和十位数字交换位置,原数与所得新数的差等于的9倍;(3)请用含有a、b的等式表示上述规律,并说明它的正确性.26.(10分)某主题公园的门票价格规定如下表:某校初一甲、乙两班共105人去游主题公园,如果两班都以班为单位分别购票,则一共需付496元.(1)如果两班联合作为一个团体购票,可节约多少钱?(2)如甲班人数多于乙班人数,求两班各有多少名学生?27.(10分)如图,数轴上有A,B两点,AB=18,原点O是线段AB上的一点,OA=2OB.(1)求出A,B两点所表示的数;(2)若点C是线段AO上一点,且满足AC=CO+CB,求C点所表示的数;(3)若点E以3个单位长度/秒的速度从点A沿数轴向点B方向匀速运动,同时点F以1个单位长度/秒的速度从点B沿数轴向右匀速运动,并设运动时间为t秒,问t为多少时,E、F两点重合.并求出此时数轴上所表示的数.参考答案与试题解析一、选择题(本大题共16小题,1-6小题,每小题2分;7-16小题每小题2分,满分共42分,每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】逐项计算,再由负数的定义判断即可.【解答】解:∵﹣(﹣1)=1,|﹣1|=1,|1﹣2|=1,﹣|﹣1|=﹣1,∴为负数的是﹣|﹣1|,故选:D.【点评】本题主要考查相反数和绝对值的计算,掌握绝对值的计算是解题的关键.2.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.【分析】根据合并同类项得到4m﹣m=3m,2a3﹣3a3=﹣a3,xy﹣2xy=﹣xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【解答】解:A、4m﹣m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3﹣3a3=﹣a3,所以C选项错误;D、xy﹣2xy=﹣xy,所以D选项正确.故选:D.【点评】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.4.【分析】把x=﹣5代入方程k(x+4)﹣2k﹣x=14得到关于k的一元一次方程,解之即可.【解答】解:把x=﹣5代入方程k(x+4)﹣2k﹣x=14得:﹣k﹣2k+5=14,解得:k=﹣3,【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:梯形绕下底边旋转是圆锥加圆柱,故C正确;故选:C.【点评】本题考查了点、线、面、体,利用面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:852.1万=8.521×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.【解答】解:在0,﹣1,﹣x,,3﹣x,,中,是单项式的有:在0,﹣1,﹣x,共4个.故选:B.【点评】本题主要考查了单项式的定义,解题的关键是熟记定义.8.【分析】设这件夹克衫的成本价是x元,根据售价=成本价+36,即可得出关于x的一元一次方程,此题得解.【解答】解:设这件夹克衫的成本价是x元,依题意,得:0.7(1+0.6)x=x+36.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【分析】由线段中点的定义可求AC的长,利用线段的和差关系可求BC的长度.【解答】解:∵点D是AC的中点,如果CD=4,∴AC=2CD=8∴BC=AB﹣AC=6故选:C.【点评】本题考查了两点间的距离,线段中点的定义,熟练运用线段的和差求线段的长度是本题的关键.10.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.11.【分析】分n为奇数和偶数两种情况,根据有理数乘方运算法则计算可得.【解答】解:若n为奇数,则n+2也是奇数,此时==﹣1;若n为偶数,则n+2也为偶数,此时==1;故选:A.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则和分类讨论思想的运算.12.【分析】根据日历中竖列相邻三个数的特点,用代数式表示出三个竖列相邻数的和,根据日历上的数字都是整数,其和为整数可得结论【解答】解:设数列中中间数为x,则上面的数为(x﹣7),下面的数为(x+7).由题意,竖列中三个相邻的数的和为:x+x﹣7+x+7=3x.由于65不是3的整倍数,所以三个数的和不可能是C.故选:C.【点评】本题考查了日历上竖列相邻数的特点及一元一次方程的应用.找到竖列上相邻三个数的特点是解决本题的关键.13.【分析】把AC+BD=a代入AD+BC=AB得出(a+CD))=2CD+a,求出方程的解即可.【解答】解:∵AD+BC=AB=AC+CD+BD+CD,AC+BD=a,AB=AC+BD+CD,∴(a+CD))=2CD+a,解得:CD=a,故选:B.【点评】本题考查了求两点之间的距离,能得出关于CD的方程是解此题的关键.14.【分析】通过计算发现数据之间的规律,利用规律推理具体数的结果.【解答】解:第1次输出为14,第2次输出为7,第3次输出为10,第4次输出为5,第5次输出为8,第6次输出为4,第7次输出为2,第8次输出为1,第9次输出为4,…即:14,7,10,5,8,4,2,1,4,2,1,…从第6次开始,每4,2,1三个数循环一次,所以(2019﹣5)÷3=671…1.故选:C.【点评】本题考查学生的计算和推理能力,找出数据循环的规律,难点是找出规律.15.【分析】首先根据OD平分∠AOB,求出∠AOD、∠BOC的度数是多少;然后求出∠COE的度数,即可求出∠DOE的度数是多少.【解答】解:∵OD平分∠AOB,∠AOB=140°,∴∠AOD=∠AOB=70°,∴∠BOC=∠AOB﹣∠AOD﹣∠COD=50°,∴∠COE=∠BOC=25°,∴∠DOE=∠COD+∠COE=45°.故选:B.【点评】此题主要考查了角的计算,以及角平分线的定义和应用,要熟练掌握,解答此题的关键是要明确:角平分线可以得到两个相等的角.16.【分析】根据已知条件代入求出数据,再找出数据之间的规律求解即可.【解答】解:把a1=﹣1代入得a2=﹣1,依此类推得a3=﹣2,a4=﹣2,a5=﹣3,类比可得a2n﹣1=﹣n,a2n=﹣n,所以a2019=a2×1010﹣1=﹣1010故选:B.【点评】本题主要考查学生代数求值,通过观察发现数据之间的规律,关键是找出规律.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.【分析】因单项式与4x m y4的和是一个单项式,说明单项式与4x m y4能合并,即是同类项,结合同类项的定义中相同字母的指数也相同的条件,可求m和n的值,再求m ﹣n的值即可.【解答】解:∵单项式与4x m y4的和是一个单项式,∴单项式与4x m y4是同类项,∴m=6,2n=4即m=6,n=2.∴m﹣n=6﹣2=4.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项.特别注意运用同类项的定义中相同字母的指数也相同的条件.18.【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【解答】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为:45,10【点评】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.19.【分析】根据余角及补角的定义进行计算即可.【解答】解:∵∠1=42°13′,∴∠1的余角是90°﹣42°13′=47°47′;∠1的补角是:180°﹣42°13′=137°47′.故答案为:47°47′,137°47′.【点评】本题考查的是余角及补角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角.20.【分析】由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.【解答】解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.【点评】本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明步骤成演算步骤)21.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的简便计算.【解答】解:(1)﹣22×3+(﹣2)3÷9=﹣4×3+(﹣8)÷9=﹣12﹣=﹣12;(2)|﹣36|×()+(﹣8)÷(﹣2)2=36×()+(﹣8)÷4=36×﹣36×﹣2=27﹣30﹣2=﹣5.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.【分析】(1)先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.(2)根据去分母、去括号,再移项,合并同类项,把x的系数化为1解答即可.【解答】解:(1)原式=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,把x=﹣1,y=﹣2代入﹣2x2y+7xy=﹣2×(﹣1)2×(﹣2)+7×(﹣1)×(﹣2)=18;(2)①4﹣x=6﹣3x﹣x+3x=6﹣42x=2x=1;②2(x+1)=12+x﹣62x+2=12+x﹣62x﹣x=12﹣6﹣2x=4.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.23.【分析】(1)利用直线的定义得出答案;(2)利用射线的定义得出答案;(3)连接AC、BD,其交点即为点O.【解答】解:(1)如图所示,直线AB即为所求.(2)如图所示,射线AD、BC即为所求.(3)如图所示,点O即为所求.【点评】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知:直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.24.【分析】(1)以A为原点,根据数的符号即可判断车的行驶方向;(2)将四次行驶路程(包括方向)相加,根据判断出租车的位置;(3)将四次行驶路程的绝对值相加即可.【解答】(1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)x+()+(x﹣5)+2(6﹣x)=7﹣∵x>6且x<14,∴7﹣>0∴经过连续4次行驶后,这辆出租车所在的位置是向东(7﹣)km.(3):|x|+||+|x﹣5|+|2(6﹣x)|=.答:这辆出租车一共行驶了()km的路程.【点评】本题考查了整式的加减,绝对值等知识点的应用,主要考查将实际问题转化为数学问题能力,用数学解决实际问题,题型较好.25.【分析】(1)通过观察找出等式之间的关系,容易得:两位数﹣十位与个位互换的两位数=9×(十位数字﹣个位数字),代入数就可以得出答案;(2)总结(1)可以得出答案;(3)用字母代替数字,再用多项式的去括号合并同类项可以得出结论.【解答】解:(1)21﹣12=9=9×1;75﹣57=18=9×2;96﹣69=27=9×3,45﹣54=﹣9=9×(﹣1);27﹣72=﹣45=9×(﹣5);19﹣91=﹣72=9×(﹣8).故答案为:1,2,3;(﹣1),(﹣5),(﹣8);(2)观察(1)中各式,可发现:原两位数﹣十位与个位互换的两位数=9×(原两位数的十位数字﹣原两位数的个位数字),故答案为:原数十位数字与个位数字的差;(3)设原数十位数字为a,个位数字为b,则(10a+b)﹣(10b+a)=9(a﹣b)(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b)【点评】本题考查学生的通过观察发现规律,并熟练进行整式加减运算,即去括号和合并同类项,关键是发现规律.26.【分析】(1)根据节约费用=496﹣总人数×每张门票价钱,即可求出结论;(2)设甲班有x名学生,则乙班有(105﹣x)名学生,由4.5×105≠496可得出x≥55,再根据总价=4.5×甲班人数+5×乙班人数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)496﹣105×4=76(元).答:如果两班联合作为一个团体购票,可节约76元钱.(2)设甲班有x名学生,则乙班有(105﹣x)名学生,∵4.5×105=472.5≠496,∴x>51,105﹣x≤50.∴x≥55.根据题意得:4.5x+5(105﹣x)=496,解得:x=58,∴105﹣x=47.答:甲班有58名学生,乙班有47名学生.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.27.【分析】(1)由OA=2OB,OA+OB=18即可求出OA、OB;(2)设OC=x,则AC=12﹣x,BC=6+x,根据AC=CO+CB列出方程即可解决;(3)由点E运动路程=18+点F运动路程,可列方程,可求t的值.【解答】解:(1)∵OA+OB=AB=18,且OA=2OB∴OB=6,OA=12,∴A,B两点所表示的数分别是﹣12,6;(2)设OC=x,则AC=12﹣x,BC=6+x,∵AC=CO+CB,∴12﹣x=x+6+x,∴x=2,∴OC=2,∴C点所表示的数是﹣2;(3)根据题意得:3t=18+t,∴t=9∴当t=9时,E、F两点重合,此时数轴上所表示的数为OB+9=6+9=15.【点评】本题考查一元一次方程的应用,实数与数轴以及数轴上两点之间距离公式的运用,找等量关系列出方程是解决问题的关键,属于中考常考题型.。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(共12小题).1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109 4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an25.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.37.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣268.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m 的值为()A.8B.﹣8C.6D.﹣69.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.1810.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是.15.(3分)若a﹣5b=3,则17﹣3a+15b=.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =°.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.参考答案一、选择题(共12小题).1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣解:2019的倒数是:.故选:C.2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109解:460 000 000=4.6×108.故选:C.4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an2解:A.所含的字母相同,并且相同字母的指数也分别相同,是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.5.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>1,则B>A,故选:A.6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.3解:把x=2代入方程得:=1,解得:m=1,故选:B.7.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣26解:由7x+2=3x﹣6,得x=﹣2,由7x+2=3x﹣6与x﹣1=k的解相同,得﹣2﹣1=k,解得k=﹣3.则3k2﹣1=3×(﹣3)2﹣1=27﹣1=26,故选:C.8.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m 的值为()A.8B.﹣8C.6D.﹣6解:根据题中的新定义得:2△m=2m+2+m=﹣16,移项合并得:3m=﹣18,解得:m=﹣6.故选:D.9.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.18解:∵点E是AC中点,点D是BC中点,∴AE=CE=AC,CD=BD=BC,∴CE+CD=AC+BC,即ED=(AC+BC)=AB,∴AB=2ED=12;故选:C.10.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故选:B.12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.解:把x=1代入得:﹣=1,去分母得:4k+2a﹣1+kb﹣6=0,即(b+4)k=7﹣2a,∵不论k取什么实数,关于x的方程﹣=1的根总是x=1,∴,解得:a=,b=﹣4,∴a+b=﹣,故选:C.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是3.解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是﹣1.解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2019=(1﹣2)2019=﹣1.故答案为:﹣1.15.(3分)若a﹣5b=3,则17﹣3a+15b=8.解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=﹣2.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.故答案为:﹣2.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为100元.解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜4场.解:设甲队胜了x场,则平了(6﹣x)场,3x+(6﹣x)=14,解得:x=4,答:甲队胜了4场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是3或13 cm.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =40°.解:∵∠COE=100°,∴∠DOE=80°,∵OB平分∠EOD,∴∠BOD=40°,∴∠AOC=40°,故答案为:40.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).解:﹣10+8÷(﹣2)2+(﹣4)×(﹣3)=﹣10+8÷4+12=﹣10+2+12=4.22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.解:(1)∵多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关,∴(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)=(2﹣2b)x2+(a+3)x+ty3﹣5my﹣3,则2﹣2b=0,a+3=0,解得:b=1,a=﹣3;(2)∵当y=1时,代数式的值3,则t﹣5m﹣3=3,故t﹣5m=6,∴当y=﹣1时,原式=﹣t+5m﹣3=﹣6﹣3=﹣9.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为3;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.解:(1)①∵∠AOC=30°,∠AOB=180°,∴∠BOC=∠AOB﹣∠AOC=150°,∵OD平分∠BOC,∴∠BOD=BOC=75°,∴t==3.②是,理由如下:∵转动3秒,∴∠AOE=15°,∴∠COE=∠AOC﹣∠AOE=15°,∴∠COE=∠AOE,即OE平分∠AOC.(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),设经过x秒时,OC平分∠DOE,由题意:①8x﹣5x=45﹣30,解得:x=5,②8x﹣5x=360﹣30+45,解得:x=125>45,不合题意,③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,∴OE旋转345°时,OC平分∠DOE,∴t==69(秒),综上所述,t=5秒或69秒时,OC平分∠DOE.(3)如图3中,由题意可知,OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=18(秒),所以OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,由题意:8x﹣(180﹣30)=(5x﹣90),解得:x=,所以经秒时,OC平分∠DOB.。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.﹣3B.﹣1C.2D.42.(3分)下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a53.(3分)如图直线l1∥l2,则∠α的大小是()A.120°B.130°C.140°D.150°4.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=55.(3分)下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个6.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.7.(3分)若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定8.(3分)如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°9.(3分)猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a亥b=ab﹣b,则满足等式的x的值为()A.B.C.D.10.(3分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.3个B.4个C.5个D.6个11.(3分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④12.(3分)如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒二、填空题(共6小题,18分)13.(3分)若∠α=31°42′,则∠α的补角的度数为.14.(3分)已知5x m+2y3与是同类项,则(﹣m)3+n等于.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值等于.16.(3分)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家距离学校km.17.(3分)如图,在平行线a,b之间放置一个直角三角形,三角形的顶点A,C分别在直线a,b 上,∠ACB=90°,∠BAC=20°,则∠1+∠2=.18.(3分)已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON =.三、解答题(共10题,66分)19.(8分)解方程(1)7y﹣3(3y+2)=6(2)+1=x﹣20.(6分)先化简,再求值:5﹣2(a2b﹣ab2+2)+(3ab2+a2b﹣1),其中a=2,b=﹣1.21.(6分)一元一次方程解答题:已知关于x的方程与x﹣1=2(2x﹣1)的解互为倒数,求m的值.22.(6分)立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1)画出该图形的三视图;(2)它的表面积是多少?23.(6分)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.24.(6分)线段计算题:已知线段AB=6,在直线AB上取一点C,恰好使AC=2BC,点D为CB 的中点,求线段AD的长.25.(6分)如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数;(3)求证:∠AOB=∠DAC+∠CBD.26.(6分)某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.27.(8分)如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠()∴∠3=∠∴AD∥BE()28.(8分)综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(l)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠PAC绕点P逆时针旋转,转速为10°/秒,转动一周三角板PAC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;(3)如图③,在图①基础上,若三角板PAC的边PA从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC 转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?参考答案与试题解析一、选择题(每小题3分,共36分)1.解:∵|﹣1|<|2|<|﹣3|<|4|,∴﹣1最接近标准,故选:B.2.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.3.解:∵直线ll1∥l2,∴∠BCD=180°﹣130°=50°,∴∠α与∠ACD是对顶角,∴∠α=70°+50°=120°.故选:A.4.解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.5.解:A、单项式的系数是的系数是π,次数是3,不符合题意;B、单项式m的次数是1,系数是1,不符合题意;C、多项式2x2+xy2+3是三次三项式,不符合题意;D、在,2x+y,,,,0中整式有2x+y,,,0,一共4个,符合题意.6.解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故选:D.7.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式,故选:C.8.解:∵OD边平分∠AOB,OE平分∠BOC,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠EOD=∠AOB+∠BOC=∠AOC,∵∠EOD=60°,∴∠AOC=2×60°=120°.故选:C.9.解:根据题中的新定义得:×6﹣6=﹣1,整理得:2(1﹣2x)﹣6=﹣1,去括号得:2﹣4x﹣6=﹣1,移项合并得:﹣4x=3,解得:x=﹣,故选:B.10.解:如图,∵DC∥EF,∴∠BCD=∠BFE,∵EG∥BC,∴∠EFB=∠GEF,∵DC∥EF,∴∠EMD=∠GEF=∠GMC,∴∠EMD=∠CDH,∵DH∥EG∥BC,∴∠CDH=∠DCB.∴与∠DCB相等的角的个数为5.故选:C.11.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.12.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.二、填空题(共6小题,18分)13.解:∵∠α=31°42′,∴∠α的补角的度数=180°﹣31°42′=148°18′.故答案为:148°18′.14.解:∵5x m+2y3与是同类项,∴m+2=3,3=﹣n+1,解得:m=1,n=﹣2,∴(﹣m)3+n=﹣1﹣2=﹣3.故答案为:﹣3.15.解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1.故答案为:1.16.解:10分钟=小时,5分钟=小时,设他家距离学校xkm,根据题意得:+=﹣,解得:x=15,即他家距离学校15km,故答案为:15.17.解:∵a∥b,∴∠DAC+∠ECA=180°,又∵∠BAC=30°,∠ACB=90°,∴∠1+∠2=180°﹣30°﹣90°=60°,故答案为:70°18.解:①如图,当OC在∠AOB外部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM+∠BON=40°;②如图,当OC在∠AOB内部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM﹣∠BON=20°,故答案为:40°或20°.三、解答题(共10题,66分)19.解:(1)去括号,得7y﹣9y﹣6=6移项,得7y﹣9y=6﹣6合并同类项,得﹣2y=12系数化1,得y=﹣6(2)去分母,得2(x+1)+6=6x﹣3(x﹣1)去括号,得2x+2+6=6x﹣3x+3移项,得2x﹣6x+3x=3﹣2﹣6合并同类项,得﹣x=﹣5系数化1,得x=520.解:原式=5﹣2a2b+2ab2﹣4+3ab2+a2b﹣1=﹣a2b+5ab2将a=2,b=﹣1代入上式,原式=4+10=14;21.解:方程x﹣1=2(2x﹣1),去括号得:x﹣1=4x﹣2,解得:x=,将x=3代入方程得,=3﹣,去分母得:9﹣3m=18﹣2m,解得:m=﹣9.22.解:(1)三视图如图所示:(2)它的表面积为:(7+5+2+1)×2×(2×2)=120 cm223.解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得﹣=42.∴180﹣x﹣x=84,∴﹣2x=﹣96,解得x=48,故∠AOB=48°,∠AOC=132°.24.解:①当点C在线段AB上时,如图1,∵AC=2BC,设BC=x,则AC=2x,∵AB=AC+BC,∴6=2x+x,∴x=2,∴BC=2,AC=4,∵点D是CB的中点,∴CD=BD=BC=1,∴AD=AC+CD=4+1=5;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=2BC=2x,∵AB=AC﹣BC=x=6,∴x=6,∴BC=6,AC=12,AB=6,∵点D是CB的中点,∴BD=CD=BC=3,∴AD=AB+BD=6+3=9;③当点C在BA的延长线上时,明显,此情况不存在;综上所述,AD的长为5或9.25.(1)证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°,∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;(2)解:∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC∴∠DAC=∠ACB=45°,∠EAD=180°﹣∠DAC﹣∠BAC=180°﹣45°﹣60°=75°;(3)证明:过点O作OF∥AD,∵AD∥BC,∴∠ADB=∠DBC,OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.26.解:(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(240﹣150)×8×75%=1600(元).∵1632>1600,在乙家批发更优惠.(2)当100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x﹣50)×8×85%=6.8x+40.不可能相等;当x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(x﹣150)×8×75%=6x+160.∵6.8x=6x+160,∴x=200.综上所得:当x=200时他选择任何一家批发所花费用一样多.27.解:∵AB∥CD(已知),∴∠4=∠BAF(两直线平行,同位角相等),∵∠3=∠4(已知),∴∠3=∠BAF(等量代换),∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠CAD(角的和差),∴∠3=∠CAD,∴AD∥BE(内错角相等,两直线平行).故答案为:BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.28.解:(1)∵∠BPD=∠D=45°,∠APC=60°,∴∠DPC=180°﹣45°﹣60°=75°,故答案为:75°;(2)如图1,此时,BD∥PC成立,∵PC∥BD,∠DBP=90°,∴∠CPN﹣∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图2,PC∥BD,∵PC∥BC,∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转D的角度为180°=30°=210°,∵转速为10°/秒,∴旋转时间为21秒,综上所诉,当旋转时间为3或21秒时,PC∥DB成立;(3)设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,∴∠BPN=180°﹣∠BPM=180°﹣2t°,∴∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,当∠CPD=∠BPM,即2t°=75°﹣t°,解得:t=25,∴当∠CPD=∠BPM,求旋转的时间是25秒.。
2019-2020学年七年级上学期期末考试数学试卷一.选择题(共8小题)1.﹣5的绝对值是()A.5B.﹣C.﹣5D.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d3.如图是一个由两个小正方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.4.下列说法正确的是()A.﹣的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.2x﹣5x2+7是二次三项式5.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.6.已知等式3a=2b+5,则下列等式不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc D.a=+7.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.8.如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°二.填空题(共6小题)9.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.10.长春市奥林匹克公园于2018年年底建成,它的总占地面积约为528000平方米,528000这个数字用科学记数法表示为.11.如图,∠AOB=72°32′,射线OC在∠AOB内,∠BOC=30°40′,则∠AOC=.12.今年十一小长假期间,迟老师一家三口开着一辆轿车去长春市净月潭森林公园度假,若门票每人a元,进入园区的轿车每辆收费40元,则迟老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).13.如图,能与∠1构成同位角的角有个.14.如图,在三角形ABC中,AB⊥AC于点A,AB=6,AC=8,BC=10,点P是线段BC上的一点,则线段AP的最小值为.三.解答题(共10小题)15.计算:(1)(+﹣)×(﹣48)(2)(﹣5)3×(﹣)+32÷(﹣2)2×16.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)17.解下列一元一次方程:(1)4x+7=32﹣x(2)8x﹣3(3x+2)=1(3)2(y﹣)=(3y﹣2)(4)﹣=118.先化前,再求值:2(a2+2a﹣1)﹣3(a2﹣2a﹣3),其中a=﹣2.19.如图,点P是∠AOB的边OB上的一点,点M是∠AOB内部的一点,按下述要求画图,并回答问题:(1)过点M画OA的平行线MN;(2)过点P画OB的垂线PC,交OA于点C;(3)点C到直线OB的距离是线段的长度.20.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG相交于点H,∠C=∠EFG,∠BFG=∠AEM,求证:AB∥CD.(完成下列填空)证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC()∴∠BEC=∠BFG(等量代换)∴MC∥()∴∠C=∠FGD()∵∠C=∠EFG(已知)∴∠=∠EFG,(等量代换)∴AB∥CD()21.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.22.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.23.如图,直线AB、CD相交于点O,OF平分∠AOE,OF⊥CD,垂足为O.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=110°,求∠BOD的度数.24.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∵AB∥CD,PQ∥AB∴∥CD∴∠C=∠∵∠APC=∠﹣∠∴∠APC=应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P =°.参考答案与试题解析一.选择题(共8小题)1.【分析】根据负数的绝对值是它的相反数是,可得答案.【解答】解:﹣5的绝对值是5.故选:A.【点评】本题考查了绝对值,利用了绝对值的性质是解题关键.2.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.【分析】根据题目中的几何图形,可以得到它的主视图,从而可以解答本题.【解答】解:由两个小正方体和一个圆锥组成的几何体,它的主视图是,故选:B.【点评】本题考查简单组合的三视图,解答本题的关键是明确题意,画出相应的图形.4.【分析】根据单项式和多项式的有关概念逐一求解可得.【解答】解:A.﹣的系数是﹣,此选项错误;B.x2+x﹣1的常数项为﹣1,此选项错误;C.22ab3的次数是4次,此选项错误;D.2x﹣5x2+7是二次三项式,此选项正确;故选:D.【点评】本题考查多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.6.【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可.【解答】解:A.3a=2b+5,等式两边同时减去5得:3a﹣5=2b,即A项正确,B.3a=2b+5,等式两边同时加上1得:3a+1=2b+6,即B项正确,C.3a=2b+5,等式两边同时乘以c得:3ac=2bc+5c,即C项错误,D.3a=2b+5,等式两边同时除以3得:a=+,即D项正确,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.7.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.8.【分析】根据角平分线的定义和邻补角的性质计算即可.【解答】解:∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=∠DOF=90°,∴∠AOF=90°﹣36°=54°.故选:D.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.二.填空题(共6小题)9.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528000=5.28×105,故答案为:5.28×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】根据图形进行角的计算即可【解答】解:∠AOC=∠AOB﹣∠BOC=72°32′﹣30°40′=41°52′,故答案为:41°52′.【点评】本题考查的是角的计算,掌握度、分的转化是解本题的关键.12.【分析】根据题意得:每辆车的收费与每个人门票之和列出代数式即可.【解答】解:根据题意得:(40+3a),故答案为:(40+3a)【点评】此题考查了列代数式,弄清题意是解本题的关键.13.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.依此求解即可.【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3共2个.故答案为2【点评】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.14.【分析】根据三角形的面积公式即可得到结论.【解答】解:∵AB⊥AC,∴∠BAC=90°,当AP⊥BC时,AP的值最短,∴AP===,∴线段AP的最小值为,故答案为:.【点评】本题考查了垂线段最短,三角形的面积,熟练掌握勾股定理的逆定理即可得到结论.三.解答题(共10小题)15.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)(+﹣)×(﹣48)=×(﹣48)+×(﹣48)﹣×(﹣48)=﹣40﹣42+46=﹣36;(2)(﹣5)3×(﹣)+32÷(﹣2)2×=(﹣125)×(﹣)+32÷4×=75+8×=75﹣10=65.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【分析】(1)直接去括号,进而合并同类项得出答案;(2)直接去括号,进而合并同类项得出答案.【解答】解:(1)3x+2(x﹣)﹣(x+1)=3x+2x﹣1﹣x﹣1=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=10a2b﹣2ab2﹣4a2b+2ab2=6a2b.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.17.【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去括号、移项、合并同类项、系数化为1可得;(4)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)4x+7=32﹣x,4x+x=32﹣7,5x=﹣25,x=﹣5;(2)8x﹣9x﹣6=1,8x﹣9x=1+6,﹣x=7,x=﹣7;(3)2y﹣3=y﹣4,2y﹣y=﹣4+3,﹣y=﹣1,y=2.(4)3(5y﹣1)﹣4(2y+6)=12,15y﹣3﹣8y﹣24=12,15y﹣8y=12+3+24,7y=39,y=.【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.18.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2a2+4a﹣2﹣3a2+6a+9=﹣a2+10a+7,当a=﹣2时,原式=﹣4﹣20+7=﹣24+7=﹣17.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【分析】(1)根据平行线的判定画图,(2)根据垂线的定义画图,(3)根据点到直线的距离即可解决问题.【解答】解:(1)如图所示:(2)如图所示:(3)点C到直线OB的距离是线段PC的长度;故答案为:PC.【点评】本题考查作图﹣复杂作图,垂线,点到直线距离,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】根据同位角相等两直线平行,可证MC∥GF,进而利用平行线的性质和判定证明.【解答】证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC(对顶角相等)∴∠BEC=∠BFG(等量代换)∴MC∥GF(同位角相等,两直线平行)∴∠C=∠FGD(两直线平行,同位角相等)∵∠C=∠EFG(已知)∴∠FGD=∠EFG,(等量代换)∴AB∥CD(内错角相等,两直线平行).故答案是:对顶角相等;GF;同位角相等,两直线平行;FGD;内错角相等,两直线平行.【点评】考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.21.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【点评】此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.22.【分析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【解答】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC ﹣∠PBC ,∠2=∠BCD ﹣∠BCQ ,∴∠1=∠2.【点评】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.【分析】(1)根据邻补角的性质可知,与∠AOD 互补的角:∠BOD 与∠AOC ;(2)先求出∠BOE 的度数,然后根据OF 平分∠AOE 求出∠FOE ,再根据OF ⊥CD ,可知∠FOD =90°,求出∠EOD ,最后得出∠BOD =∠BOE ﹣∠EOD 求出答案.【解答】解:(1)与∠AOD 互补的角:∠BOD 与∠AOC ;(2)∵∠AOE =110°,∴∠BOE =180°﹣∠AOE =180°﹣110°=70°,∵OF 平分∠AOE ,∴∠FOE =∠AOE =,∵OF ⊥CD ,∴∠FOD =90°,∴∠EOD =∠FOD ﹣∠FOE =90°﹣55°=35°,∴∠BOD =∠BOE ﹣∠EOD =70°﹣35°=35°.【点评】本题考查了补角以及角平分线的性质.正确运用补角的定义和角平分线性质是解题的关键.24.【分析】作平行线利用平行线的性质与角平分线的性质通过角等量关系转化解题即可.【解答】解:感知:如图①,过点P 作PQ ∥AB∴∠A =∠APQ ,∵AB ∥CD ,PQ ∥AB∴PQ ∥CD ,∴∠C =∠QPC ,∴∠APQ +∠QPC =∠A +∠C ,∠APC =∠A +∠C .故答案为∠P =∠A +∠C ;探究:证明:如图③,过点P 作PQ ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.【点评】本题考查了角平分线的性质与平行线的性质,正确运用角平分线与平行线的性质是解题的关键.。
2019-2020学年湖南省长沙市七年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.2018的倒数是()A. 2018B. 12018C. −12018D. −20182.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A. 3℃B. −3℃C. 4℃D. −2℃3.我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A. 7.062×103B. 7.1×103C. 0.7062×104D. 7.062×1044.下列单项式中,单项式12ab2的同类项是()A. B. C. −5ab2 D. −ab35.设M=x2+8x+12,N=−x2+8x−3,那么M与N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定6.若x=2是方程4x+2m−14=0的解,则m的值为()A. 10B. 4C. 3D. −37.若关于x的方程2x+4=3m与x−1=m有相同的解,则m的值为()A. 6B. 5C. 52D. −238.若“∗”是新规定的某种运算符号,有x∗y=2x−y,则(−1)∗k=4中k的值为()A. 2B. 6C. −2D. −69.如图,D为线段CB的中点,CD=3,AB=11,则AC的长为()A. 4B. 5C. 6D. 810.把10.26°用度、分、秒表示为()A. 10°15′36″B. 10°20′6″C. 10°14′6″D. 10°26″11.如图,O为直线AB上一点,OE、OF分别是∠AOC、∠BOC的平分线,则∠EOF的度数是A. 60°B. 80°C. 90°D. 100°12.若关于x的方程2x+a=9−a(x−1)的解是x=3,则a的值为()A. 1B. 2C. −3D. 5第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)13.已知|a−1|=3,|b|=3,a,b在数轴上对应的点分别为A、B,则A、B两点间距离等于.14.若m,n满足|m−6|+(7+n)2=0,则(m+n)2018=______.15.若2m−n−4=2,则4m−2n−9=______ .16.关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,则m的值是______.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为______元.18.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.19.已知点C在直线AB上,若AC=4cm,BC=6cm,E、F分别为线段AC、BC的中点,则EF=______cm.20.如图,直线AB,CD相交于点O,OA平分且,则______ .三、计算题(本大题共1小题,共5.0分)21.计算:(1)(+8)+(−7)−(−3)(2)−8÷(−2)+4×(−3)四、解答题(本大题共5小题,共55.0分)22.解方程:(1)2(x+1)−3(3x−4)=2(2)3x−14−5x−76=123.某车间有28名工人,生产某种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个.问:多少名工人生产螺栓,多少名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套?24.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.25.代数式(x3−1)−2(x3−3)+x3的值与x的值有关吗?请说明理由26.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON的数量关系,并说明理由.答案和解析1.【答案】B,【解析】解:2018的倒数是12018故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【答案】B【解析】【分析】此题主要考查了有理数的加减混合运算的应用,要熟练掌握.根据有理数的加减混合运算的运算方法,结合题意列出算式即可解答.【解答】解:根据题意可列算式:10+2−15=12−15=−3,则半夜的气温是−3℃,故选B.3.【答案】A【解析】解:7062用科学记数法表示为7.062×103,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项的定义,属于基础题.解题时,根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,结合选项逐一判断即可.【解答】解:A.12a2b与12ab2所含字母相同,但相同字母的指数不相同,不是同类项,故此选项错误;B.3ab与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误;C.−5ab2与12ab2所含字母相同,且相同字母的指数也相同,是同类项,故此选项正确;D.−ab3与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误.故选C.5.【答案】A【解析】【分析】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.将M与N代入M−N中,去括号合并得到最简结果,根据结果的正负即可做出判断.【解答】解:因为M−N=(x2+8x+12)−(−x2+8x−3)=x2+8x+12+x2−8x+3= 2x2+15>0,所以M>N.故选A.6.【答案】C【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值;把x=2代入方程计算即可求出m的值.【解答】解:将x=−2代入方程得:8+2m−14=0,解得m=3,故选C.7.【答案】A【解析】【分析】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.根据同解方程,可得关于m的方程,解方程可得答案.【解答】解:由题意,得x=m+1,2(m+1)+4=3m,解得m=6,故选:A.8.【答案】D【解析】【分析】此题考查了新定义运算以及解一元一次方程,解题关键是掌握新定义运算的规则.解题时,先将新定义方程转化为一元一次方程,求解,即可求出k的值.【解答】解:根据题中的新定义得:(−1)∗k=−2−k,所求方程化为−2−k=4,k=−6.故选D.9.【答案】B【解析】解:∵D为线段CB的中点,CD=3,∴BC=2CD=6,∴AC=AB−BC=5.故选:B.根据线段中点的定义求出BC,结合图形计算即可.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.10.【答案】A【解析】【分析】此类题是进行度分秒的换算,相对比较简单,注意以60为进制即可.【解答】解:∵0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.故选:A.11.【答案】C【解析】【分析】此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【解答】解:∵OE、OF分别是∠AOC、∠BOC的平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC+∠COB=∠AOE+∠COE+∠COF+∠FOB=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,则∠EOF=∠COE+∠COF=90°.故选C.12.【答案】A【解析】解:将x=3代入方程2x+a=9−a(x−1),得:6+a=9−2a,解得:a=1,故选:A.把x=3代入方程,即可二次一个关于a的方程,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.13.【答案】1或5或7【解析】解:∵|a−1|=3,∴a−1=3或a−1=−3,a=4或a=−2;∵|b|=3,∴b=±3,分为四种情况:①当a=4,b=3时,A、B两点间的距离是4−3=1;②当a=4,b=−3时,A、B两点间的距离是4−(−3)=7;③当a=−2,b=3时,A、B两点间的距离是3−(−2)=5;④当a=−2,b=−3时,A、B两点间的距离是(−2)−(−3)=1.则A,B两点间距离等于1或5或7.故答案为:1或5或7.求出a=4或−2,b=±3,分为四种情况:①当a=4,b=3时,②当a=4,b=−3时,③当a=−2,b=3时,④当a=−2,b=−3时,求出A、B两点间的距离即可求解.本题考查了数轴,绝对值,注意:若数轴上A表示的数是m,B表示的数是n(m>n),数轴上两点A、B间的距离表示为|m−n|,也可以表示为m−n(大的数减去小的数).14.【答案】1【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质,可求出m、n的值,然后再代值计算即可得出答案.【解答】解:∵|m−6|+(7+n)2=0,∴m−6=0且7+n=0,解得:m=6、n=−7,则原式=(6−7)2018=1.故答案为:1.15.【答案】3【解析】解:由2m−n−4=2得,2m−n=6,4m−2n−9=2(2m−n)−9,=2×6−9,=12−9,=3.故答案为3.先求出2m−n的值,然后整体代入进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.16.【答案】2【解析】解:∵关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,∴2−m=0,解得:m=2.故答案为:2.直接利用多项式中不含x3项,得出2−m=0,进而得出答案.此题主要考查了多项式,得出x3项的系数为零是解题关键.17.【答案】80【解析】【分析】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:110×80%−x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为80.18.【答案】4【解析】解:8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,则3x+(7−x)=15,解得:x=4.故答案是:4.8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,总分数为15即可列出方程,即可解题.本题考查了一元一次方程的应用,本题中根据题意找出总比赛场数为7是解题的关键.19.【答案】5或1【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.分类讨论点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.【解答】解:当点C在线段AB上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CE+CF=2+3=5cm;当点C在线段AB的反向延长线上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CF−CE=3−2=1cm,故答案为5或1.20.【答案】30°【解析】【分析】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义有关知识,根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×11+2=60°,∵OA平分∠EOC,∴∠AOC=∠EOA=12×60°=30°,∴∠BOD=∠AOC=30°.故答案为30°.21.【答案】解:(1)(+8)+(−7)−(−3)=8+(−7)+3=4;(2)−8÷(−2)+4×(−3)=4+(−12)=−8.【解析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.【答案】(1)解:去括号得:2x+2−9x+12=2移项得:2x−9x=2−2−12合并同类项得:−7x=−12系数化为1得:x=12;7(2)解:去分母得:3(3x−1)−2(5x−7)=12,去括号得:9x−3−10x+14=12,移项得:9x−10x=12+3−14,合并同类项得:−x=1,系数化为1得:x=−1.【解析】本题主要考查一元一次方程的解法,掌握一元一次方程的一般步骤是解题的关键.(1)可去括号,移项,合并同类项,把系数化为1即可求解;(2)可先去分母,去括号,再移项,合并同类项,把系数化为1即可求解.23.【答案】解:设应分配x名工人生产螺栓,(28−x)名工人生产螺母.根据题意,得12x×2=18×(28−x),解得x=12,则28−x=16,答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套.【解析】本题主要考查一元一次方程的应用.解题的关键是找出题目中的等量关系.设应分配x名工人生产螺栓,(28−x)名工人生产螺母,根据等量关系为:生产的螺栓的数量×2=生产的螺母的数量,由此可列出方程求解.24.【答案】解:(1)∵M是AC的中点,AC=6cm,∴MC=12AC=6×12=3cm,又因为CN:NB=1:2,BC=15cm,∴CN=15×13=5cm,∴MN=MC+CN=3+5=8cm,∴MN的长为8cm;(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=23∠AOB,∵OF平分∠AOB,∴∠BOF=12∠AOB,∴∠EOF=∠BOE−∠BOF=16∠AOF,∵∠EOF=20°,∴∠AOB=120°.【解析】(1)直接利用两点之间距离分别得出CN,MC的长进而得出答案;(2)直接利用角平分线的性质以及结合已知角的关系求出答案.此题主要考查了角平分线的定义以及两点之间距离,正确把握相关定义是解题关键.25.【答案】解:该代数式的值与x的值无关.理由:∵(x3−1)−2(x3−3)+x3=x3−1−2x3+6+x3=5,故该代数式的值与x的值无关.【解析】直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.【答案】解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°,(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM= 60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15.③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24,综上所述,得知t的值为6或15或24,(3)当ON在∠AOC内部时,∠AOM−∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON−∠AON=(90−x)°,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.【解析】本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.(1)根据已知及角的计算,求出∠CON的值,(2)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分三种情况讨论,即可求出t的值;(3)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.。
长沙市2019-2020学年七年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若,则的值为()A.40B.-2C.2D.212 . 一把直尺和一块三角板(含角)摆放位置如图所示,直尺与三角板的两直角边分别交于点、点另一边与三角板的两直角边分别交点、点且,那么的大小为()A.B.C.D.3 . 如图是由若干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是()C.D.A.B.4 . 已知线段AB=2,延长AB至点C,使AC=3AB,则线段BC的长是()A.8B.6C.5D.45 . 截至2014年1月初,济南户籍总人口613.4万人,其中613.4万人用科学记数法表示为()A.6.134×102人B.613.4×104人C.6.134×105人D.6.134×106人6 . 如图由七个相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.7 . 的相反数是()A.5B.C.0D.18 . 如果kx2+(k+1)x+3中不含x的一次项,则k的值为()A.1B.-1C.0D.29 . 下列哪一个数是﹣3的相反数的绝对值的倒数()A.3B.﹣3C.D.10 . 根据如图所示的计算程序,若输入的值,则输出的值为()A.-2B.-7C.5D.3二、填空题11 . 如图,将三角尺ABC沿BC方向平移,得到三角形A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′的度数为________.12 . 如图.O是直线AB上的一点.∠AOC=53°17',则∠BOC的度数是____.13 . 数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为______.14 . 数列:0,2,4,8,12,18,…是我国的大衍数列,也是世界数学史上第一道数列题.该数列中的奇数项可表示为,偶数项表示为.如:第一个数为=0,第二个数为=2,…现在数轴的原点上有一点P,依次以大衍数列中的数为距离向左右来回跳跃.第1秒时,点P在原点,记为P1;第2秒时,点P向左跳2个单位,记为P2,此时点P2所表示的数为-2;第3秒时,点P向右跳4个单位,记为P3,此时点P3所表示的数为2;…按此规律跳跃,点P20表示的数为______.15 . 如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______.三、解答题16 . 如图,已知∠1=∠2,∠B=∠C,试说明AB∥CD.17 . 如图,△ABC中,∠A=50°,∠ABC的平分线与∠C的外角∠ACE平分线交于D,求∠D的度数.18 . 已知单项式3a2b2m-n与-2a2b是同类项(ab≠0),c,d互为倒数,e,f互为相反数,试求(e+f)-2cd+(2m-n)2的值.19 . 如图,点O为直线AB上一点,∠AOC=48°,OD平分∠AOC,OE⊥OD交于点O.(1)求出∠BOD的度数;(2)试用计算说明∠COE=∠BOE.20 . 计算:.21 . 计算(1)﹣2.47×0.75+0.47×﹣6×0.75(2)﹣14+(﹣2)﹣|﹣9|22 . 如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.23 . 如图所示,在平整的地面上,若干个完全相同的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成;(2)请在网格中画出这个几何体的三视图.。
人教版2019-2020学年度第一学期七年级数学期末考试卷(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1 C .1-与1 D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120° 9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110 B.158 C.168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)A B C D6 2 22 4 2 0 4 8 84 446 (43)共94元第8题图21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数.27.(本小题满分8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.AE DBFC28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B.二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分)21.解:原式= -1-14×(2-9) (3)分=-1+47 (5)分=43……………………………………………………………………………6分22.解:设这个角的度数为x. ……………………………………………………………1分由题意得:30)90(21=--xx (3)分解得:x=80 ...........................................................................5分答:这个角的度数是80° (6)分23.解:原式=1212212+--+-xxx………………………………………………3分=12--x (4)分把x=21代入原式:原式=12--x=1)21(2--……………………………………………………………5分=45-……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . (4)分8x =3. (6)分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm . ...................................................3分 ∴EF =AC -AE -CF =2.5x cm . (4)分∵EF =10cm ,∴2.5x =10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 (3)分解得:x =21则x +4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25(105-z)=2447-a. 即:4z=178+a ,因为 a 、z 都是整数,且178+a 应被4整除,所以 a 为偶数,又因为a 为小于10元的整数,所以 a 可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意; 当a=4时,4z=182,z=45.5,不符合题意; 当a=6时,4z=184,z=46,符合题意; 当a=8时,4z=186,z=46.5,不符合题意. 所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
人教版2019-2020学年七年级上册期末数学试卷含答案解析一、选择题(每小题2分,共20分)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m 2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)27.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=60009.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18二、填空题(每小题3分,共30分)11.单项式的系数是,次数是.12.﹣8的立方根是,9的算术平方根是.13.近似数13.7万精确到位.14.用度表示30°9′36″为.15.已知2x6y2和﹣是同类项,则m﹣n的值是.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的位数.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是.三、解答题(本大题共有8小题,共50分)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|22.解下列方程(1)4+3(x﹣2)=x(3)=1﹣.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是;(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=,y=.参考答案与试题解析一.选择题(共10小题)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:在所列6个数中无理数有、这两个,故选:B.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:因为两点之间线段最短.故选:D.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.6.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.9.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c﹣2b>0,则原式=a+c﹣a+2b﹣c+2b=4b.故选:B.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18【分析】根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.【解答】解:由题意可得,这次考试总分为:82+(100﹣82)×2=118(分),如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:118﹣[82+(93﹣82)×2]=118﹣(82+11×2)=118﹣(82+22)=118﹣104=14(分),故选:B.二.填空题(共10小题)11.单项式的系数是,次数是 4 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式的系数是,次数是4;故答案为:;4.12.﹣8的立方根是﹣2 ,9的算术平方根是 3 .【分析】根据立方根和算术平方根的定义求解可得.【解答】解:﹣8的立方根是﹣2,9的算术平方根是3,故答案为:﹣2、3.13.近似数13.7万精确到千位.【分析】根据近似数的精确度求解.【解答】解:近似数13.7万精确到千位.故答案为千.14.用度表示30°9′36″为30.16°.【分析】根据度分秒的进率为60,再进行换算即可.【解答】解:30°9′36″=30.16°,故答案为:30.16°15.已知2x6y2和﹣是同类项,则m﹣n的值是0 .【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为 2 .【分析】根据新定义列出关于x的方程,解之可得.【解答】解:由题意得2(5x﹣3)﹣3(1﹣3x)=29,10x﹣6﹣3+9x=29,10x+9x=29+6+3,19x=38,x=2,故答案为:2.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有⑥(填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC=∠DOE互为补角,正确;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑥.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的9 位数.【分析】根据题意得28=256,29=512,根据规律可知最高位应是1×28,故可求共由有9位数.【解答】解:∵28=256,29=512,且256<365<512,∴最高位应是1×28,则共有8+1=9位数,故答案为:9.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是 1 .【分析】从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.【解答】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:(1010÷2)×2=1010如果剩余的一个数取﹣1009或﹣1011,整个代数和最小,即|1010﹣1009|=1或|1010﹣1011|=1所以其代数和的绝对值最小值是:1故答案为:1三.解答题(共8小题)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣1+36×=﹣1+6=5;(2)原式=2+﹣3=.22.解下列方程(1)4+3(x﹣2)=x(2)=1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4+3x﹣6=x,移项合并得:2x=2,解得:x=1;(2)去分母得:8x﹣2=6﹣3x+1,移项合并得:11x=9,解得:x=.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.【分析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.【分析】(1)画线段AD,BC即可;(2)画射线AB与直线CD,交点记为E点;(3)根据垂线段最短作出垂线段即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:理由是垂线段最短.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【分析】(1)根据M、N分别是AC、BC的中点,求出MC、CN的长度,MN=MC+CN;(2)根据(1)的方法求出MN=AB;(3)作出图形,MC=AC,CN=BC,所以MN=AC﹣CB.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN=AC+CB=(AC+CB)=(a+b).(3)图如右,MN=(a﹣b).理由:由图知MN=MC﹣NC=AC﹣BC=a﹣b=(a﹣b).26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是(0,0);(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”(4,);(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.【分析】(1)根据“有趣数对”的定义即可得到结论;(2)根据“有趣数对”的定义列方程即可得到结论;(3)根据根据“有趣数对”的定义即可得到结论;(4)根据“有趣数对”的定义列方程即可得到结论.【解答】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+=,5×=,∴(5,)不是“有趣数对”,故答案为:(0,0);(2)∵(a,)是“有趣数对”,∴a=a+,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,);故答案为:(4,);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×=﹣,∴3﹣2a2﹣2a=3﹣=.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;则乙厂家运往B地的自行车的量数为30+x;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?【分析】(1)根据表格中的数据填空;(2)根据总运费是470元列出方程并解答.【解答】解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 20﹣x;则乙厂家运往A地的自行车的量数为 30﹣x;则乙厂家运往B地的自行车的量数为 30+x;故答案是:20﹣x;30﹣x;30+x.(2)根据题意,得5x+6(20﹣x)+10(30﹣x)+4(30+x)=470解得x=10则20﹣x=10(辆)30﹣x=20(辆)30+x=40(辆)答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为9x;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是21 ;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= 1 ,y=19 .【分析】观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;(1)(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)(2)﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填﹣2的两侧;(3)三个数之和18+x,2边填16,以此为突破口;(4)设第一行最后一个数是m,则每一个横或斜方向的线段的和是28+m,以此展开推理;【解答】解:(1)三阶幻方如图所示:用x的代数式表示幻方中9个数的和S=(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)=9x;故答案为9x;(2)三阶幻方如图所示:(3)故答案为21;(4)如图所示:x=1,y=19;故答案气为1,19;。
2019-2020学年上学期期末考试七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1.选择题、填空题和解答题都在答题卡上作答,不能答在本试卷上.2.作图(含辅助线)或画表,用铅笔(如2B 铅笔)进行画线、绘图、要求痕迹清晰.第Ⅰ卷 选择题(共30分)一.选择题(10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.34的绝对值是( ) A .-34 B .34C .43D .34±2.下列四个数中最小的数是( )A .-310 B .-3C .0D .53.用科学计数法表示2017000,正确的是( ) A .2017×310B .2.017×510C .2.017×610 D .0.2017×7104.下列简单几何体中,属于柱体的个数是( )A.5B .4C.3D .25.计算43+(-77)+27+(-43)的结果是( ) A .50B .-104C .-50D .1046.下列各式成立的是( ) A .4334⨯=B .3662=-C .91313=⎪⎭⎫ ⎝⎛D .161412=⎪⎭⎫⎝⎛-7.下列每组单项式是同类项的是( )A .xy 2与yx 31-B .y 2x 3与2x 2y -C .x 21-与xy 2- D .xy 与yz8.下列调查中,适合用普查的是( )A .中央电视台春节联欢晚会的收视率B .一批电视机的寿命C .全国中学生的节水意识D .某班每一位同学的体育达标情况9.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是 A .五边形B .六边形C .七边形D .八边形10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子第一个“口” 第二个“口” 第三个“口”第Ⅱ卷 非选择题(共70分)二、填空题(本大题6小题,每小题4分,共24分.把答案填在答题卡上)11.计算()[]3116÷+-的结果为 .12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1、2、 3、-3、A 、B ,相对面上的两个数互为相反数,则A= .第12题图13.某场电影成人票25元/张,卖出m 张,学生票15元/张,卖出n 张,共得票款 元14.把角度化为秒的形式,则05.5= .15.在一次全市的数学监测中,某6名学生的成绩与全市学生的平均分80的差分别为5、-2、8、 11、5、-6,则这6名学生的平均成绩为 分。
湖南省长沙市天心区长郡教育集团2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.−2018的倒数是()A. 2018B. −12018C. 12018D. −20182.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A. 3℃B. −3℃C. 4℃D. −2℃3.我国研制的“曙光3000服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学记数法可表示为()A. 4032×108B. 403.2×109C. 4.032×1011D. 0.4032×10124.下列单项式中,单项式12ab2的同类项是()A. B. C. −5ab2 D. −ab35.已知有一整式与2x2+5x−2的和为2x2+5x+4,则此整式为().A. 2B. 6C. 10x+6D. 4x2+10x+26.方程3x+1=12m+4的解是x=2,则m的值是()A. 4B. 5C. 6D. 77.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为()A. 2B. −2C. 1D. −18.若“※”是新规定的某种运算符号,得x※y=x4+y,则(−1)※k=6中k的值为()A. −3B. 3C. −5D. 59.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A. 5cmB. 4cmC. 3cmD. 2cm10.15°48′36″用度表示为().A. 15.4836°B. 15.81°C. 15°D. 15.4°11.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,∠COE=()°.A. 60B. 70C. 90D. 不能确定12.如果关于x的方程x−m+2=0(m为常数)的解是x=−1,那么m的值是()A. m=3B. m=−3C. m=1D. m=−1二、填空题(本大题共8小题,共24.0分)13.数轴上表示3和7的两点之间的距离是______ ,数轴上表示−3和5的两点之间的距离是______.14.若|a−3|+(b+1)2=0,则2a−b的值是______.15.若2a−3b2=5,则10−4a+6b2的值是______.16.若关于x,y的多项式4xy3–2ax2–3xy+2x2–1不含x2项,则a=__________.17.一件商品标价121元,若九折出售,仍可获利10%,则这件商品的进价为_______元.18.某地中学生校园足球联赛,共赛17轮(即每对均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次校园足球联赛中,光明足球队得16分,且踢平场数是所负场数的k倍(k为正整数),则k的所有可能值之和为______ .19.线段AB=12cm,点C是AB的中点,点D在直线AB上,若AB=3AD,则CD的长为______cm.20.如图所示,直线AB与直线CD相交于点O,OC平分∠AOE,∠BOD:∠EOB=2:1,则∠AOC=.三、计算题(本大题共1小题,共5.0分)21.计算:(−5)×(−2)+(−2)2÷4.四、解答题(本大题共5小题,共55.0分)22.解方程:(1)2(x+1)+3=1−(x−1);(2)1−2x5=2−3−x2.23.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?24.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.25.代数式(x3−1)−2(x3−3)+x3的值与x的值有关吗?请说明理由26.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON 的数量关系,并说明理由.-------- 答案与解析 --------1.答案:B.解析:解:−2018的倒数是:−12018故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.答案:B解析:此题主要考查正负数在实际生活中的应用,上升用正数表示,下降用负数表示,学生在学这一部分时一定要联系实际.上升用加,下降用减,列出算式后利用有理数的加法和减法法则计算.解:根据题意可列算式:10+2−15=12−15=−3(℃).故选B.3.答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.解:将403,200,000,000用科学记数法可表示为4.032×1011.故选C.解析:本题考查了同类项的知识,解答本题的关键是掌握同类项的定义,属于基础题.解题时,根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,结合选项逐一判断即可.解:A.12a2b与12ab2所含字母相同,但相同字母的指数不相同,不是同类项,故此选项错误;B.3ab与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误;C.−5ab2与12ab2所含字母相同,且相同字母的指数也相同,是同类项,故此选项正确;D.−ab3与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误.故选C.5.答案:B解析:本题主要考查了整式的加减,由于一整式与(2x2+5x−2)的和为(2x2+5x+4),那么把(2x2+ 5x+4)减去(2x2+5x−2)即可得到所求整式.解:依题意得(2x2+5x+4)−(2x2+5x−2)=2x2+5x+4−2x2−5x+2=6.6.答案:C解析:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.由x=2为方程的解,将x=2代入方程即可求出m的值.m+4,解:将x=2代入方程得:6+1=12解得:m=6.故选:C.7.答案:B解析:解:方程x+2=2x+1,解得:x=1,把x=1代入得:3+2m=−1,解得:m=−2,故选:B.求出第二个方程的解得到x的值,代入第一个方程计算即可求出m的值.此题考查了同解方程,同解方程即为两个方程解相同的方程.8.答案:D解析:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.利用题中的新定义化简所求方程,即可求出k的值.解:根据题中的新定义得:(−1)※k=1+k,所求方程化为1+k=6,解得:k=5.故选D.9.答案:B解析:这是一道考查两点间的距离的题目,解题关键在于根据中点的定义求出BM的长度,即可求出答案.解:∵AB=12cm,M是AB的中点,∴BM=6cm,∵NB=2cm,∴MN=BM−NB=4cm.故选B.10.答案:B解析:本题主要考查度分秒化度的方法,记住度分秒之间的换算进率是解决问题的关键.先把秒除以60化成分,再分除以60化成度即可.解:∵36′′÷60=0.6′,48.6′÷60=0.81°,∴15°48′36″用度表示为15.81°.故选B.11.答案:C解析:解:∵射线OC、OE分别是∠AOB、∠BOD的平分线,∴∠BOC=12∠AOB,∠BOE=12∠BOD,∵∠AOD=∠AOB+∠BOD=180°,∴12(∠AOB+∠BOD)=90°,即∠BOC+∠BOE=90°,∴∠COE=90°.故选C.根据角平分线定义得出∠BOC=12∠AOB,∠BOE=12∠BOD,根据∠AOD=∠AOB+∠BOD=180°,求出∠BOC+∠BOE=90°,即可得出答案.本题考查了角的平分线定义的应用,主要考查学生的计算能力.12.答案:C解析:理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.13.答案:4;8解析:本题考查的是数轴,熟知数轴上两点间的距离等于两点所表示数的差的绝对值是解答此题的关键.直接根据数轴上两点间的距离公式求解即可.解:数轴上表示3和7的两点之间的距离是|3−7|=4,数轴上表示−3和5的两点之间的距离是|−3−5|=8.故答案为4,8.14.答案:7解析:解:∵|a−3|+(b+1)2=0,∴a−3=0且b+1=0,则a=3、b=−1,∴2a−b=2×3−(−1)=6+1=7,故答案为:7.根据非负数的性质,可求出a、b的值,然后将代数式化简再代值计算.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.答案:0解析:解:∵2a−3b2=5,∴10−4a+6b2=10−2(2a−3b2)=10−2×5=0;故答案为:0.把2a−3b2=5看作一个整体,代入代数式进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.16.答案:1解析:此题主要考查了多项式的定义,正确把握定义是解题关键.多项式中不含哪一项,就是整理后令该项的系数为0即可求出代数式中待定字母的值.解:4xy3–2ax2–3xy+2x2–1=4xy3+(2−2a)x2–3xy–1∵关于x,y的多项式4xy3−2ax2−3xy+2x2−1不含x2的项,∴2−2a=0,解得:a=1,故答案为1.17.答案:99解析:本题主要考查一元一次方程的应用.此题的等量关系:实际售价=标价的九折=进价×(1+利润率),设未知数,列方程求解即可.解:设这件商品的进价为x元,根据题意得(1+10%)x=121×0.9解得x=99则这件商品的进价为99元.故答案为99.18.答案:3解析:解:设所负场数为x场,胜(17−x−kx)场,平kx场,可得:3(17−x−kx)+kx=16,,解得:x=352k+3所以k的所有可能值为:1或2,所以k的所有可能值之和为1+2=3,故答案为:3.设所负场数为x场,胜(17−x−kx)场,平kx场,等量关系为:负的场数的得分+胜的场数的得分+平的场数的得分=16,把相关数值代入求解即可.此题主要考查了一元一次方程的应用,根据已知表示出胜、负、平所得总分是解题关键.19.答案:2或10解析:解:∵AB=12cm,AB=3AD,∴AD=4cm,∵点C是AB的中点,∴AC=6cm,①当点D在线段AB上时,CD=AC−AD=2cm;②当点D在线段BA的延长线上时,CD=AC+AD=10cm.故答案为:2或10.此题需要分类讨论,①当点D在线段AB上时,②当点D在线段BA的延长线上时,分别画出图形,计算即可得出答案.此题考查了两点间的距离求解,解答本题的关键是分类讨论点D的位置,有一定难度,注意不要遗漏.20.答案:72°解析:此题主要考查了角平分线的性质、对顶角、以及邻补角的性质和应用,解答此题的关键是要明确邻补角的性质:邻补角互补,即和为180°.首先根据邻补角的性质:邻补角互补,即和为180°,求出∠BOD 的大小即可.解:∵直线AB与直线CD相交于点O,OC平分∠AOE,∴∠AOC=∠EOC=∠BOD,∵∠BOD:∠EOB=2:1∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD+12∠BOD+∠BOD=180°∴∠BOD=72°即∠AOC=72°故答案为72°.21.答案:解:(−5)×(−2)+(−2)2÷4=10+4+4=18.解析:根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.答案:解:(1)去括号,得2x+2+3=1−x+1,移项、合并同类项,得3x=−3,方程两边同时除以3,得x=−1;(2)去分母,得2(1−2x)=20−5(3−x),去括号,得2−4x=20−15+5x,移项、合并同类项,得−9x=3,方程两边同时除以−9,得x=−13.解析:此题考查了解一元一次方程的解法,熟练掌握解一元一次方程的法则是解本题的关键.(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.23.答案:解:设应分配x名工人生产螺钉,则有(20−x)名工人生产螺母,由题意得,800(20−x)=2×600x,解得:x=8.答:应分配8人生产螺钉.解析:设应分配x名工人生产螺钉,根据一个螺钉要配2个螺母,每天的产品刚好配套,可得生产的螺母数是螺钉的2倍,由此可得出方程,解出即可.本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.24.答案:解:(1)∵M是AC的中点,AC=6cm,∴MC=12AC=6×12=3cm,又因为CN:NB=1:2,BC=15cm,∴CN=15×13=5cm,∴MN=MC+CN=3+5=8cm,∴MN的长为8cm;(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=23∠AOB,∵OF平分∠AOB,∴∠BOF=12∠AOB,∴∠EOF=∠BOE−∠BOF=16∠AOF,∵∠EOF=20°,∴∠AOB=120°.解析:(1)直接利用两点之间距离分别得出CN,MC的长进而得出答案;(2)直接利用角平分线的性质以及结合已知角的关系求出答案.此题主要考查了角平分线的定义以及两点之间距离,正确把握相关定义是解题关键.25.答案:解:该代数式的值与x的值无关.理由:∵(x3−1)−2(x3−3)+x3=x3−1−2x3+6+x3=5,故该代数式的值与x的值无关.解析:直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.答案:解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°,(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM=60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15.③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24,综上所述,得知t的值为6或15或24,(3)当ON在∠AOC内部时,∠AOM−∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON−∠AON=(90−x)°,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.解析:本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.(1)根据已知及角的计算,求出∠CON的值,(2)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分三种情况讨论,即可求出t的值;(3)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109 4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an25.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.37.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣268.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8B.﹣8C.6D.﹣69.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.1810.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是.15.(3分)若a﹣5b=3,则17﹣3a+15b=.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =°.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC 都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣【分析】直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:2019的倒数是:.故选:C.【点评】此题主要考查了倒数,正确把握相关定义是解题关键.2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃【分析】根据有理数的加减混合运算的运算方法,用早上的温度加上中午上升的温度,再减去半夜又下降的温度,求出半夜的气温是多少即可.【解答】解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:460 000 000=4.6×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an2【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:A.所含的字母相同,并且相同字母的指数也分别相同,是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.【点评】本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.5.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>1,则B>A,故选:A.【点评】此题主要考查了整式的加减,关键是掌握求差法比较大小.6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.3【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:=1,解得:m=1,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣26【分析】根据同解方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由7x+2=3x﹣6,得x=﹣2,由7x+2=3x﹣6与x﹣1=k的解相同,得﹣2﹣1=k,解得k=﹣3.则3k2﹣1=3×(﹣3)2﹣1=27﹣1=26,故选:C.【点评】本题考查了同解方程,利用同解方程的出关于k的方程是解题关键.8.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8B.﹣8C.6D.﹣6【分析】利用题中的新定义化简所求方程,求出方程的解即可得到m的值.【解答】解:根据题中的新定义得:2△m=2m+2+m=﹣16,移项合并得:3m=﹣18,解得:m=﹣6.故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.18【分析】根据线段的中点的定义得出ED=(AC+BC)=AB,即可求出AB的长.【解答】解:∵点E是AC中点,点D是BC中点,∴AE=CE=AC,CD=BD=BC,∴CE+CD=AC+BC,即ED=(AC+BC)=AB,∴AB=2ED=12;故选:C.【点评】本题考查了两点间的距离、线段的中点的定义;由线段中点的定义得出ED=AB 是解决问题的关键.10.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°【分析】利用度分秒之间的换算关系进行计算即可.【解答】解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.【点评】此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°【分析】根据平角和角平分线的定义求得.【解答】解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故选:B.【点评】本题考查了角平分线的定义.由角平分线的定义,结合补角的性质,易求该角的度数.12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.【分析】把x=1代入得出(b+4)k=7﹣2a,根据方程总有根x=1,推出b+4=0,7﹣2a=0,求出即可.【解答】解:把x=1代入得:﹣=1,去分母得:4k+2a﹣1+kb﹣6=0,即(b+4)k=7﹣2a,∵不论k取什么实数,关于x的方程﹣=1的根总是x=1,∴,解得:a=,b=﹣4,∴a+b=﹣,故选:C.【点评】本题考查了解二元一次方程组和一元一次方程的解的应用,能根据题意得出关于a、b的方程组是解此题的关键,此题是一道比较好的题目,但有一点难度.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是3.【分析】直接根据数轴上两点间的距离公式求解即可.【解答】解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是﹣1.【分析】根据非负数的性质,可求出a、b的值,然后将代数式化简再代值计算.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2019=(1﹣2)2019=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(3分)若a﹣5b=3,则17﹣3a+15b=8.【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=﹣2.【分析】多项式中不含二次项和三次项,则说明这两项的系数为0,列出关于a,b等式,求出后再求代数式值.【解答】解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.故答案为:﹣2.【点评】本题考查了多项式不含某一项就是这一项的系数等于0,列式求解a、b的值是解题的关键.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为100元.【分析】该商品每件的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜4场.【分析】根据分数可得等量关系为:甲胜场的得分+平场的得分=14,把相关数值代入求解即可.【解答】解:设甲队胜了x场,则平了(6﹣x)场,3x+(6﹣x)=14,解得:x=4,答:甲队胜了4场.【点评】本题考查用一元一次方程解决实际问题,得到总得分的等量关系是解决本题的关键.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是3或13cm.【分析】可分两种情况:当C点在线段AB上时;当C点在线段BA的延长线上时,利用线段的和差可计算求解.【解答】解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.【点评】本题主要考查两点间的距离,注意分类讨论.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=40°.【分析】利用邻补角性质可得∠EOD的度数,再利用角平分线定义核对顶角相等可得答案.【解答】解:∵∠COE=100°,∴∠DOE=80°,∵OB平分∠EOD,∴∠BOD=40°,∴∠AOC=40°,故答案为:40.【点评】此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).【分析】根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:﹣10+8÷(﹣2)2+(﹣4)×(﹣3)=﹣10+8÷4+12=﹣10+2+12=4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:50张以上购买贺卡数不超过30张30张以上不超过50张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?【分析】(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,根据生产的螺栓和螺母正好配套,即可得出关于x的一元一次方程,解之即可得出结论;(2)(i)根据总价=单价×数量,分别求出两班购买贺卡所需费用,比较做差后即可得出结论;(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张,分0<m<20,20<m ≤30及30<m<35三种情况,根据购买贺卡的总费用为150元,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.【分析】(1)先根据题意得出BC及AB的长,再根据中点的定义得出AE和AD的长,进而可得出结论;(2)根据题意设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,再根据角平分线的定义以及∠MON=90°,即可求出∠AOB的度数.【解答】解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.【点评】本题考查了角的定义以及角平分线的定义,熟练掌握定义是解答此题的关键.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.【分析】(1)直接合并同类项进而得出x的次数为零进而得出答案;(2)直接利用y=1时得出t﹣5m=6,进而得出答案.【解答】解:(1)∵多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关,∴(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)=(2﹣2b)x2+(a+3)x+ty3﹣5my﹣3,则2﹣2b=0,a+3=0,解得:b=1,a=﹣3;(2)∵当y=1时,代数式的值3,则t﹣5m﹣3=3,故t﹣5m=6,∴当y=﹣1时,原式=﹣t+5m﹣3=﹣6﹣3=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC 都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为3;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.【分析】(1)根据:时间=进行计算.通过计算,证明OE平分∠AOC.(2)由于OC的旋转速度快,需要考虑三种情形.(3)通过计算分析,OC,OD的位置,然后列方程解决.【解答】解:(1)①∵∠AOC=30°,∠AOB=180°,∴∠BOC=∠AOB﹣∠AOC=150°,∵OD平分∠BOC,∴∠BOD=BOC=75°,∴t==3.②是,理由如下:∵转动3秒,∴∠AOE=15°,∴∠COE=∠AOC﹣∠AOE=15°,∴∠COE=∠AOE,即OE平分∠AOC.(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),设经过x秒时,OC平分∠DOE,由题意:①8x﹣5x=45﹣30,解得:x=5,②8x﹣5x=360﹣30+45,解得:x=125>45,不合题意,③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,∴OE旋转345°时,OC平分∠DOE,∴t==69(秒),综上所述,t=5秒或69秒时,OC平分∠DOE.(3)如图3中,由题意可知,OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=18(秒),所以OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,由题意:8x﹣(180﹣30)=(5x﹣90),解得:x=,所以经秒时,OC平分∠DOB.【点评】本题目考查了角平分线的定义,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键,还需要通过计算进行初步估计位置,掌握分类思想,注意不能漏解.。