管网智能监控系统,管线在线监测系统
- 格式:ppt
- 大小:5.73 MB
- 文档页数:17
给排水管网运行安全智能监管系统设计指南目次1 总则 (2)2 术语 (3)3 基本规定 (4)4 总体设计 (5)4.1系统总体框架 (5)4.2供水管网运行安全智能监管系统 (6)4.3排水管网运行安全智能监管系统 (7)5 给排水管网数据采集与监测 (8)5.1监测内容与方案 (8)5.2供水管网数据采集与监测 (8)5.3排水管网数据采集与监测 (9)5.4监测设备 (10)6 给排水管网一张图 (11)6.1一般规定 (11)6.2供水管网一张图 (11)6.3排水管网一张图 (12)7 供水管网运行安全管理 (13)7.1供水管网优化调度 (13)7.2 供水管网巡检养护 (13)7.3 供水管网漏损控制 (13)7.4 供水管网数学模型 (14)7.5 供水管网安全 (14)8 排水管网运行安全管理 (15)8.1排水管网巡检养护 (15)8.2 排水管网数学模型 (15)8.3 供水管网漏损控制 (15)8.4 应急指挥调度 (16)9 系统安全设计与维护 (17)9.1安全设计 (17)9.2 运行维护 (17)1.0.1 为保障城市给排水管网运行安全,规范城市给排水管网运行安全智能监管系统设计,促进城市给排水管网运行安全监管信息化和智能化,提高业务效率,增强决策科学性,特制定本指南。
1.0.2 本指南适用于给排水管网运行安全智能监管系统的设计。
1.0.3 给排水管网运行安全智能监管系统的设计除应符合本指南外,尚应符合国家现行有关标准、规范的规定。
2.0.1 供水管网water supply networks供水单位供水区域范围内自出厂干管至用户进水管之间的公共供水管道及其附属设施和设备,又称市政供水管网。
2.0.2 排水管网drainage networks收集、输送径流雨水、污水的管渠及其附属设施所组成的系统。
2.0.3 智能监管系统intelligent supervision system基于物联网、云计算、大数据、移动互联等信息技术,融合给排水管网系统多源数据,实现给排水管网智能监管一张图,构建集管网动态监测、预警预报、数字化巡检养护、应急指挥与优化调度为一体的智能化城市给排水管网运行安全监管系统平台,实现信息数字化、控制自动化、决策智能化。
城镇智慧水务术语一、智慧水务概述智慧水务是指利用现代信息技术手段和智能设备,对城镇水务系统进行综合管理和优化运营的一种技术和管理模式。
其目的是提高水资源的利用效率、减少水污染、改善供水质量和供水服务,实现水资源的可持续利用。
二、物联网技术物联网技术是智慧水务的核心支撑技术之一。
通过物联网技术,可以实现对水务设备的实时监测、数据采集和远程控制。
同时,物联网技术还可以实现水表抄表自动化、水质监测和泄漏检测等功能,提高水务系统的智能化水平。
三、远程监控系统远程监控系统是智慧水务中的重要组成部分,通过该系统可以对水源、水厂、管网和用户的用水行为进行实时监测。
远程监控系统可以通过传感器、监测设备和通信网络等手段,实现对水务系统的全面监控和远程管理,提高对水务系统的响应速度和管理效率。
四、水质监测与预警系统水质监测与预警系统是保障供水质量的重要手段。
该系统通过设置水质监测点,实时监测水源、水厂和供水管网的水质参数,并通过预警系统及时发现水质异常情况。
在水质异常情况发生时,预警系统可以及时报警,以便采取相应的措施,保证供水质量。
五、供水管网管理系统供水管网管理系统是智慧水务的关键环节之一。
通过该系统,可以实现对供水管网的在线监测和远程控制。
供水管网管理系统可以监测供水管网的压力、流量和水质等参数,并根据实时数据进行调控,实现对供水管网的高效管理和运营。
六、用户用水行为分析用户用水行为分析是智慧水务的重要应用之一。
通过分析用户的用水行为,可以了解用户的用水习惯和用水需求,进而对供水计划进行合理调整。
同时,用户用水行为分析还可以发现和预测用水异常情况,提供用户用水节约的建议,促使用户形成合理的用水行为。
七、智能水表智能水表是智慧水务的基础设施之一。
智能水表可以实现自动抄表、远程抄表和计量计费等功能。
通过智能水表,可以实时监测用户的用水情况,提供用水数据支持给供水管理部门,促使用户合理用水,实现节水目标。
八、水资源管理系统水资源管理系统是智慧水务的重要组成部分。
城市管网流量监测系统一、概述实时采集城市管网的流量、流速、液位等数据,通过指挥中心的城市内涝智慧平台实现雨污水管道流量、液位、流速的实时采集和集中管理,实现实时监测预警、精准快速定位报警管道,并通过数据传输网络将采集到的数据接入到各个应用系统中,为城市排水精细化管理、应急决策指挥以及行业应用等方面提供科学有效的数据支撑,实现经济效益和社会效益的不断增长。
二、系统架构三、系统特点排放口液位流量在线监测系统由中心站和遥测站组成,采用无线通信方式组网。
系统采用先进的传感器技术、数据采集技术、计算机测控技术及网络通信技术,数据由遥测站遥测终端采集,通过无线通信方式发送到中心站,写入中心数据库,中心站对数据进行管理、分析、发布预警信息等。
供电方式采用锂电池供电。
排放管道液位流量在线监测系统主要是在排放口关键节点安装流速流量监测装置,并与监控系统通信,实时监测观测区域内流速、水位、流量变化情况,实时在线获取数据为整体溢流风险的判断提供数据支撑。
包括遥测站点及中心站的建设。
监测站主要是由水位流量站,主要由多普勒流速流量仪、遥测终端机集成GPRS 传输、电池供电,采用无线GPRS 通信方式将测站数据发往中心站,由中心站采集软件接收实时数据并入库。
采用地图可视化管理的方式实现监测信息查询和展示,液位、流量数据曲线分析,数据查询及报表打印等功能。
主要是对窖井、雨水口、污水排水口进行的监测,自动化监控是实现水利、水务信息化的重要环节之一。
自动化监控系统能完成所管辖区内所有雨水口、河道排水口处的实时水位、流量过程。
实现管理部门对所辖范围内的雨水口、河道排水口的实时监视、控制、管理、调度,提高管理部门对各种环境下的快速反应和处置能力。
可测量并记录水位、流速、流量、水温等要求,并可配置为实时模式(实时自动发送、接收监测数据)或者定时模式(定时采样和发送)。
体积小安装灵活:主机一体式设计结构,传感器无机械转动部件,不存在泥沙堵塞或水草、杂物缠绕等问题,最适用于泥沙悬浮物含量高,水草等漂浮物多的环境中测量。
SCADA系统一、 SCADA系统的定义简单地讲,SCADA系统就是对整个城市燃气输配管网进行数据采集和监控的系统,是英文“Supervisory Control And Data Acquisition”的缩写。
具体地讲,SCADA系统是一项综合性的系统工程,它集测量技术、计算机技术、通讯技术于一体的综合性的集成控制系统工程,并融合了先进的RTU技术、现场总线技术、网络通信技术、无线网络技术、数据库技术、SCADA/HMI技术及客户/服务器技术等的一体化交钥匙工程,其主要目标是对城市燃气系统的进气、计量、输配、调压的全过程进行监控和管理调度,实现生产信息、管网状况的自动化收集、分类、传送、整理、分析、存储以及燃气公司内部管理、安全抢险、市场信息、对外协调交流信息的自动传递和共享。
二、 SCADA系统的目的SCADA系统的目的就是给燃气调度控制中心提供数据、资料等,以使调度控制中心能够对天然气输配管网和各远程站点进行遥控、遥测和遥调。
三、 SCADA系统的主要组成部分SCADA系统主要由四部分组成,实现管网的实时中央监控和管理操作的功能。
1、第一部分:调度控制中心。
调度控制中心是整个城市燃气输配管网SCADA系统的调度指挥中心,在正常情况下操作人员在调度控制中心通过计算机系统即可完成对整个城市燃气输配管网的监控和运行管理等任务。
2、第二部分:场站。
为了方便,我们将所有非调度控制中心的远程终端RTU所属的控制区域统一称为场站。
它主要包括门站、管网调压站、重点工业用户专用调压站以及管网监测点,根据重要性分为有人值守场站和无人值守场站。
3、第三部分:现场仪表。
现场仪表主要包括传感器、变送器、就地显示仪表、智能仪表及执行机构,主要负责检测、测量现场站点的运行参数并控制现场设备。
4、第四部分:通讯系统。
SCADA系统运行是否良好,通讯系统起到至关重要的作用。
通常的通讯分有线(如DDN、ADSL、ISDN、PSTN以及自建光缆等)和无线(如电台、微波、GSM、GPRS等),具体项目采用何种通讯方式根据实际情况确定。
科技成果——智慧型市政排水管网水体在线监
测分析系统
成果简介
该系统包括感知层(硬件设备安装)、网络层(数据的收集、回传和交互)、应用层(服务平台搭建和数据分析、处理)和信息发布层(客户端),通过在高密度聚乙烯缠绕结构壁B型管内安装各种在线监测设备、视频监控设备,在管道下方铺设感温光缆,收集管道设备运行信息、雨污水水体数据及排水视频图像,并监测管道泄漏情况。
水质监测数据采集器,泄漏监测数据采集器和视频信号采集模块将以上数据通过4G网络上传到网络层,再由网络层传输到智慧排水管网监控平台。
智慧管网监控平台的数据库服务器和业务应用模块对数据进行分析,并存储到云平台,通过对数据进行真伪筛选、模式识别、建模分析等相关操作,实现移动终端应用、动态报警管控、排水管网水体监测和数据统计分析等。
该系统可克服管道恶劣环境条件,实现市政排水管道密闭空间COD、氨氮、总磷、悬浮物(SS)、溶解氧(DO)、电导率、浊度、pH、流量、液位、温度等雨污水指标在线监测。
应用情况
河北省辛集市辛兴街黑臭水体改造段,监测总长度为2公里,在线监测指标包括COD Cr、氨氮、悬浮物(SS)、浊度、溶解氧(DO)、pH、流量、电导率、液位、温度等,而且能实时视频监控管道雨污水排放情况,形成城市排水一张网、一张图。
管网压力监测、管网压力监控系统管网压力监测系统概述管网压力监测系统适用于供水企业远程监测供水管网。
供水调度人员在管网监测中心即可远程监测全市供水管网的压力状况,以科学指挥各水厂启停供水设备、保障供水压力平衡,并及时发现和预测爆管事故。
1、管网压力监测系统示意图2、系统功能◆测点分布总览◆最新数据监测◆超限自动报警◆压力曲线分析◆智能数据统计◆历史数据查询◆用户信息管理◆测点信息设置电脑版—平升管网压力监测系统软件界面手机APP—平升管网压力监测系统软件界面3、系统特点4、监测方式和监测设备的选择提问1:水厂、泵站内的测压点怎么监测?解决方案:●采用市电供电一体式监测设备提问2:表井内的测压点怎么监测?解决方案:情况1——表井周边可破路、可供电,井外可安装设备时:●采用太阳能/市电供电一体式监测设备情况2——表井周边不可破路、不可供电,井外可安装设备时:●采用电池+太阳能/市电供电一体式监测设备●采用电池供电一体式监测设备5、应用案例案例1—山东某县级水司管网压力、流量监测系统山东某县自来水公司在管网主要节点布设了20个管网压力和流量监测点,以掌握整个管网的实时运行状态和运行数据,及时调度多个水厂对外供水,保障区域内的用水供应。
通信网络:水司内具备可上外网的固定IP,系统选用了公网专线的组网方式。
监控中心服务器上安装了我公司提供的网页版监控软件,水司管理人员可随时随地通过INTERNET登入该系统,查看管网运行状况。
监测设备:为保障数据的实时性,管网监测设备全部采用了太阳能供电一体式监测设备DATA-9201,安装于表井附近,数据更新频率设定为1分钟。
压力检测设备选用了DC12V供电、4~20mA输出的压力变送器。
流量检测设备选用了RS485输出的分体式超声波流量计。
设备安装现场:管网压力、流量监测现场案例2—甘肃兰州新区管网压力监测系统兰州新区给排水有限公司主要负责兰州新区范围内的供水管网、水厂的建设和生产运营工作。
有就是超声波测距模块的4个引脚,具体原理图如图3所示。
3.3 超声波测距的工作时序图有了系统框图及原理图和超声波的工作时序图(如图4),我们就很容易利用单片机来实时测距并实时显示。
以上时序图表明单片机在控制时只需要提供一个10uS以上的脉冲触发信号,该模块内部讲发出8个40Kz周期电平并检测回波。
一旦检测到有回波信号则输出回波信号。
回响信号的脉冲宽度与所测的距离成正比。
由此通过发射信号到收到的回响信号的时间间隔可以计算得到距离。
对于12864的显示原理及显示时序在此不再详述。
4.超声波测距原理及软件设计超声波测距的基本原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
由此可见,超声波测距原理与雷达原理是一样的。
首先给TRIG端触发测距,给至少10uS的高电平信号,以此来触发内部的发射器产生40KHz的超声波,同时单片机不断检测是否有回波,当一检测到回波信号是高电平,马上启动定时,开始计时,同时开中断,通过ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。
所以测量距离为:测量距离=(时间*声速(340M/S))/2具体流程图如图5。
建议测量周期在60ms以上。
计算是取出的值如何转换,首先把定时器的值取出合并,然后根据晶振值换算出距离公式,具体程序模块如下:注意事项:(1)在使用时,如果温度变化不大,则可认为声速是基本不变的。
(2)此模块不宜带电连接,若要带电连接,则先让模块的接地端接地。
(3)测距时,被测物体的面积不少于0.5平方米且平面尽量要求平整,否则影响测量结果。
(4)由于超声波有测量盲区的固有特性,因此,如果近距离测量时,当测量位置发生变化而接收到的数据不变时,说明进入了测量盲区。
(5)模块在测量远处物体时,如果没有测量数据返回,可能是超出测量范围,或是测量角度不对。
可以适当调整测量角度。
排水管网监测系统、排水管网在线监测系统案例分享
一、应用背景:
排水管网监测系统为某市“智慧城市”建设的一部分。
通过该系统,有关部门能够第一时间掌握道路是否积水、排水是否正常、管道是否堵塞等情况,对城市排水管网的管理起到积极的作用。
在一定程度上,减少了险情的发生,避免了人民生命财产损失。
二、排水管网监测系统简介:
1、现场设备:
采集传输设备:采用平升DATA-6216电池供电型微功耗测控终端(RTU )。
传感器:美国哈希电磁流量计, RS485串口输出,modbus 协议。
和英国豪迈水位计,232串口输出,modbus 协议。
2、中心要求:
组网:现场有固定IP ,采用公网专线的组网方式。
监控软件:上位机软件采用研华组态。
3、现场供电情况:
无市电,采用锂电池供电,井下安装。
电池供电型液位监测终端
DATA-6216
三、排水管网监测系统管道流量监测现场:。
供水监控系统,供水管网在线监控方案供水监控系统,供水管网在线监控方案1.引言本文档旨在详细介绍供水监控系统的设计方案,包括供水管网在线监控的实施步骤、所需设备和技术支持等内容。
2.方案概述2.1 监控目标- 提高供水管网的稳定性和可靠性- 实时监测供水管网的运行状态- 预测和预防供水管网故障2.2 方案设计原则- 采用分布式监控系统,覆盖供水管网的关键部位- 选择合适的监控设备,包括传感器、数据采集器和监控主机等- 建立数据通信网络,实现实时数据传输和监控- 配备远程监控和故障报警系统3.设备选型3.1 传感器- 压力传感器:安装在关键节点,用于监测供水管网的压力变化- 流量传感器:安装在主要管道上,用于监测供水流量和流速- 液位传感器:安装在水箱、水池等容器上,用于监测水位变化- 温度传感器:安装在重要设备上,用于监测温度变化3.2 数据采集器- 基于物联网技术的数据采集器:将传感器采集到的数据进行处理和存储,并通过通信网络传输给监控主机3.3 监控主机- 配备监控软件:用于实时显示和分析传感器采集的数据- 支持远程监控:可通过互联网远程访问监控界面4.实施步骤4.1 系统规划- 根据供水管网的结构和特点,确定监控节点的数量和位置- 绘制供水管网的地理信息系统(GIS)图4.2 设备安装- 按照设计方案,安装传感器和数据采集器等设备- 进行设备校准和测试,确保其正常运行4.3 网络建设- 建立供水管网的数据通信网络,包括有线和无线网络- 配置网络设备,确保流畅的数据传输和通信4.4 软件配置- 安装监控主机,并配置监控软件- 连接采集器和主机,确保数据能够正常传输和显示4.5 远程监控和故障报警系统设置- 配置远程监控系统,实现对供水管网的远程访问和监控- 设置故障报警系统,对供水管网的异常情况进行实时报警5.附件本文档涉及的附件如下:- 供水监控系统设计图纸- 设备选型表- 系统规划和网络布局图6.法律名词及注释- 本文档中所涉及的法律名词及注释请参考相关法律文件。
自来水管网漏损监测、城市供水管网漏失率监测系统一、系统概述自来水管网漏损监测(城市供水管网漏失率监测系统)是破解供水企业发展难题,降低管网漏损率和产销差率的有效手段。
自来水管网漏损监测(城市供水管网漏失率监测系统)通过对各DMA(独立计量区域)内的流量和压力节点实施远程实时监测,既可及时发现管网供水异常,又可测算出区域的漏损情况、并辅助查找漏点,有效降低管网漏损率和产销差率。
二、系统构成自来水管网漏损监测(城市供水管网漏失率监测系统)示意图区域流出节点区域流入节点 关键节点M关键节点N监控中心手机APP服务器三、系统功能在线监测重要节点的实时流量、压力,科学制订并执行调度方案,使管网流量、水压平稳运行。
微功耗测控终端DATA-6218及时发现DMA中的流量和压力变化,识别出发生爆管的可能性。
根据预判信息第一时间发布管网水量、水压调度指令和阀门远程控制要求,并迅速采取排查和检漏措施。
应用夜间最小流量原理,自动判断、分析各DMA是否泄漏以及当前泄漏水平,为制定检漏方案提供依据。
通过对各区域内流入、流出和实际销售水量的定期分析,有效统计各分区内的供水量、需水量、漏失量等数据,核算产销差。
结合管网长期运行数据,在确保充分、有效满足用户需求的前提下,适当降低并逐步确立常设供水压力,既可降低当前的泄漏水平,又可减少老化管网的爆管几率。
对各监测点的水表口径和实际用水量进行智能分析,综合判断当前水表是否匹配,并给出配表的合理建议。
通过DATA-6218长期的监测、分析,可掌握各区域的用水规律,为水量分配、管网改造提供基础数据。
四、软件界面自来水管网漏损监测(城市供水管网漏失率监测系统)软件界面。
管网在线监测、城市管网在线监测系统---概述---管网在线监测(城市管网在线监测系统)适用于供水企业远程监测供水管网。
供水调度人员在管网监测中心即可远程监测全市供水管网的压力状况,以科学指挥各水厂启停供水设备、保障供水压力平衡,并及时发现和预测爆管事故。
---监测方式---【方式一:定时采集、集中上报】适应场合:监测现场无电源、有GPRS信号,对数据实时性要求不高。
工作模式:(1)GPRS电池供电无线测控终端DATA-6218定时采集(如:每5分钟)管网压力后将数据暂存,并一次性集中上报(如:每30分钟)给管网监测中心。
(备注:数据采集、上报周期可任意设置。
)(2)在采集压力的同时对数据进行判断,一旦发现压力超过上、下限报警值,则不再等待上报间隔而立即上报,实现越限加报。
【方式二:实时在线监测】433M/GPRS双模无线网关◆市电供电适应场合:现场有市电、有GPRS信号,对数据实时性要求高。
工作模式:监测设备(RTU)自动采集管网压力并通过GPRS实时传送给管网监测中心。
◆电池/太阳能适应场合:现场无市电、无GPRS信号,对数据实时性要求高。
工作模式:(1)表井内的433M电池供电无线测控终端DATA-7601实时采集管网压力并通过433MHz向表井外发送。
(2)表井外的433M/GPRS双模无线网关DATA-6125(可安装在表井周边150米范围内)接收到压力数据后再通过GPRS网络远传给管网监测中心。
---监测方式性能对比------管网在线监测(城市管网在线监测系统)相关终端------安装现场展示---DATA-6218GPRS 电池供电无线测控终端DATA-7601 DATA-9201分体式管网监测设备压力变送器北京市管网监测设备安装现场 兰州市管网监测设备安装现场---管网在线监测(城市管网在线监测系统)软件主要功能---◆测点分布总览◆最新数据监测◆超限自动报警◆压力曲线分析◆智能数据统计◆历史数据查询◆用户信息管理◆测点信息设置。
排水管网在线监测布点数量的确定排水管网在线监测布点数量的确定一、引言排水管网是城市基础设施中至关重要的一部分,它的良好运行对于城市环境和市民的生活质量至关重要。
然而,由于管网系统的复杂性和操作难度,排水管网的堵塞、漏密等问题时有发生。
为了及时了解管网的运行状况,提早发现和解决问题,确保排水管网的稳定运行,在线监测系统起到了关键作用。
而在线监测布点数量如何确定,是决定监测的有效性和经济性的重要因素。
二、在线监测布点的目的在线监测的目的是收集大量准确的数据,以分析管网系统的运行状况,并发现问题。
布点的数量直接影响着数据采集的全面性和精确性,因此,布点数量的确定需要考虑以下几个方面。
三、管网系统特点排水管网系统通常由主管道、分支管道和排水口等组成,其结构复杂,水流情况多变。
在确定布点数量时,需要充分考虑管道的种类、长度、直径和水流速度等因素。
四、管网问题类型排水管网在运行过程中可能面临多种问题,如堵塞、破损、腐蚀等。
不同类型的问题在管网不同位置发生的概率可能有所不同,因此,布点数量应根据问题类型进行合理分配,以便尽早发现和解决问题。
五、数据采集频率在线监测系统需要实时收集管网的运行数据,对于不同类型的问题,数据采集的频率也有所不同。
一般而言,问题越严重,数据采集的频率越高,因此,布点数量的确定需要考虑不同问题类型的数据采集需求。
六、监测系统成本在线监测系统的建设和维护都需要投入大量的人力、物力和财力。
布点数量的增加会带来成本上的增加,因此,考虑到经济性,不能将布点数量设置过多。
七、布点数量的确定方法布点数量的确定应综合考虑上述因素。
可以采用一种基于风险的方法,即将不同位置的风险程度作为确定布点数量的依据。
对于管网系统中风险程度较高的区域,应增加布点数量,以确保问题的及时发现和解决。
八、案例分析以某城市排水管网为例,利用上述方法确定了在线监测布点数量。
通过对历年来发生的问题类型、频率和位置进行统计和分析,将排水管网分为高风险、中风险和低风险三个区域,并根据风险程度设置了不同的布点数量和数据采集频率。