第19章 量子力学简介(1)作业答案
- 格式:doc
- 大小:292.01 KB
- 文档页数:5
量子力学概论习题答案胡行量子力学概论习题答案解析量子力学是一门极具挑战性的物理学科,其理论和应用涉及到许多复杂的概念和现象。
在学习量子力学的过程中,习题是一个重要的学习工具,通过解答习题可以帮助我们更好地理解和掌握这门学科的知识。
在这篇文章中,我们将对一些量子力学概论习题的答案进行解析,帮助读者更好地理解这些问题的解决方法和相关概念。
1. 问题:一个自旋为1/2的粒子处于一个外加磁场中,磁场方向与粒子自旋方向相反,求粒子在磁场中的能量。
答案:根据量子力学的基本原理,粒子在外加磁场中的能量可以用哈密顿算符来描述。
对于自旋为1/2的粒子,其哈密顿算符可以表示为H = -μBσ·B,其中μB为玻尔磁子,σ为泡利矩阵,B为磁场的大小。
根据量子力学的理论,粒子在磁场中的能量可以通过求解哈密顿算符的本征值得到。
具体来说,粒子在磁场中的能量可以表示为E = -μBσ·B,其中E为能量的本征值。
因此,粒子在磁场中的能量与磁场的大小和方向有关,当磁场方向与粒子自旋方向相反时,粒子在磁场中的能量为-E = μBσ·B。
2. 问题:一个自旋为1的粒子处于一个外加磁场中,磁场方向与粒子自旋方向相同,求粒子在磁场中的能量。
答案:对于自旋为1的粒子,其哈密顿算符可以表示为H = -μBσ·B,其中μB 为玻尔磁子,σ为泡利矩阵,B为磁场的大小。
根据量子力学的理论,粒子在磁场中的能量可以通过求解哈密顿算符的本征值得到。
具体来说,粒子在磁场中的能量可以表示为E = -μBσ·B,其中E为能量的本征值。
因此,当磁场方向与粒子自旋方向相同时,粒子在磁场中的能量为E = μBσ·B。
通过以上两个问题的解析,我们可以看到量子力学在描述粒子在外加磁场中的行为时,需要考虑到粒子的自旋和磁场的相互作用,这些概念和原理都是量子力学的基本内容。
通过解析这些习题,我们可以更好地理解量子力学的基本原理和应用,为进一步学习和研究量子力学打下坚实的基础。
量子力学概论习题答案胡行量子力学是现代物理学的重要分支,研究微观世界的规律和现象。
它在解释原子、分子和基本粒子的行为方面发挥着重要作用。
然而,学习量子力学并不容易,它涉及到许多抽象和数学概念。
在学习过程中,习题是一种非常重要的辅助工具,可以帮助我们巩固所学的知识,并提高问题解决能力。
在本文中,我将为大家提供一些量子力学概论习题的答案。
1. 什么是量子力学?量子力学是一种描述微观粒子行为的理论。
它通过波函数来描述粒子的状态,并通过算符来描述可观测量的测量结果。
量子力学的基本原理包括波粒二象性、不确定性原理和量子叠加原理等。
2. 什么是波函数?波函数是量子力学中描述粒子状态的数学函数。
它包含了粒子的位置和动量等信息。
波函数的平方表示了找到粒子在某个位置的概率。
3. 什么是量子叠加原理?量子叠加原理指出,当一个系统处于多个可能状态时,它可以同时处于这些状态的叠加态。
这种叠加态的系数称为叠加系数,它们的平方表示了系统处于不同状态的概率。
4. 什么是量子纠缠?量子纠缠是指两个或多个粒子之间存在一种特殊的关联关系,使得它们的状态无法被独立地描述。
当一个粒子的状态发生改变时,与之纠缠的粒子的状态也会发生相应的改变,即使它们之间存在很大的空间距离。
5. 什么是量子隧穿效应?量子隧穿效应是指粒子在经典物理学中无法通过的势垒,在量子力学中却有一定的概率通过的现象。
这是由于波粒二象性和不确定性原理导致的。
6. 什么是量子态?量子态是描述量子系统状态的数学概念。
它可以是一个波函数,也可以是一个密度矩阵。
量子态包含了系统的全部信息,可以用来计算系统的性质和预测测量结果。
7. 什么是量子测量?量子测量是指对量子系统进行观测,以获取系统的某个性质的过程。
量子测量的结果是一个确定的值,但在测量之前,我们只能知道其可能的取值和对应的概率。
8. 什么是量子力学中的算符?算符是量子力学中描述可观测量的数学对象。
它们作用于波函数上,得到测量结果的平均值和可能的取值。
1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。
解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。
( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。
又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。
可编辑修改精选全文完整版填空题答案1.量子力学的最早创始人是 普朗克 ,他的主要贡献是于 1900 年提出了 能量量子化 假设,解决了黑体辐射 的问题。
2.按照德布罗意公式λνεh p h ==,,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1 ;能量比E 1:E 2=12:μμ;若粒子速度为v=0.9c ,按相对论公式计算,其德布罗意波长'λ=24202//p c c μλ+。
3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E=kT 23(k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max =K h k 221031-≈⎪⎭⎫ ⎝⎛λμ。
4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) 缩小1倍;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n =3,2,12/2222=n a n μπ,相应的波函数=)(x n ψ()a x ax n a n <<=0sin 2πψ和()a x x n≥≤=,00ψ。
5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E=eV eV 51.136.132-=;L= 2;L z = ,轨道磁矩M z =B M 。
6.两个全同粒子组成的体系,单粒子量子态为)(q k ϕ,当它们是玻色子时波函数为),(21q q s ψ=()()()()[]玻色体系1221221121q q q q k k k k ϕϕϕϕ+;为费米子时),(21q q A ψ()()()()]费米体系12212211q q q q k k k k ϕϕϕϕ-7.非简并定态微扰理论中求能量和波函数近似值的公式是E n =()()+-'+'+∑≠020m nn m mn mnnE EH H E ,)(x n ψ = ()()() +-'+∑≠00020m m nnm mnn E EH ψψ,其中微扰矩阵元'mn H =()()⎰'τψψd H n m 00ˆ;而'nn H 表示的物理意义是 在未受微扰体系中,H '的平均值 。
量子力学习题答案量子力学习题答案量子力学是一门研究微观世界的基础物理学科,它解释了微观粒子的行为和性质。
在学习量子力学的过程中,我们经常会遇到各种各样的习题。
这些习题不仅考察我们对量子力学理论的理解,还能帮助我们加深对量子力学的认识。
在本文中,我将为你提供一些常见的量子力学习题的答案,希望能对你的学习有所帮助。
1. 什么是波粒二象性?请举一个例子加以说明。
答案:波粒二象性是指微观粒子既具有粒子的离散性质,又具有波动的连续性质。
一个典型的例子是电子的双缝干涉实验。
在这个实验中,电子通过两个狭缝后,会产生干涉图样,表现出波动性质。
然而,当我们尝试观察电子通过哪个狭缝时,电子却表现出了粒子性质,只通过其中一个狭缝。
这个实验说明了电子既可以表现出粒子性质,也可以表现出波动性质。
2. 什么是量子纠缠?请简要解释。
答案:量子纠缠是指两个或多个粒子之间存在一种特殊的关联,使得它们的状态无论远离多远,都会互相影响。
这种关联是在粒子之间建立的,而不是通过传统的物质交换或信息传递实现的。
量子纠缠是量子力学的核心概念之一,它在量子通信和量子计算等领域有着重要的应用。
3. 什么是量子隧穿效应?请举一个例子加以说明。
答案:量子隧穿效应是指微观粒子在经典力学中不可能穿越的势垒,在量子力学中却有一定概率穿越的现象。
一个典型的例子是α衰变。
在α衰变中,一个α粒子从原子核中逃逸,穿越了原子核周围的势垒。
根据经典力学,α粒子没有足够的能量克服势垒,因此无法逃逸。
然而,在量子力学中,α粒子可以通过量子隧穿效应,以一定的概率穿越势垒,实现衰变。
4. 什么是量子态的叠加和坍缩?请简要解释。
答案:量子态的叠加是指一个量子系统可以处于多个状态的叠加态,这些状态以一定的概率同时存在。
量子态的坍缩是指当我们对量子系统进行观测时,系统会选择其中一个状态,并坍缩到该状态上。
这个选择是随机的,并且由概率决定。
量子态的叠加和坍缩是量子力学中的核心概念,它们解释了量子系统的测量结果和概率性质。
WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。
量子力学习题答案1.2在0k附近,钠的价电子能量约为3eV,求其德布罗意波长。
解:由德布罗意波粒二象性的关系知:Eh;ph/由于所考虑的电子是非相对论的电子(Ek(3eV)ec2(0.51106)),故:EP2/(2e)h/ph/2eEhc/692ecE621.24100.7110/20.51103m0.71nm1.3氦原子的动能是E=1.5kT,求T=1K时,氦原子的德布罗意波长。
解:对于氦原子而言,当T1K时,其能量为E于是有h/ph/2HeE3432kT321.3811023JK11K2.071023J6.6261026.6901027J231.26nmJkg2.0710一维谐振子处于(某)Ae2某/22状态中,其中为实常数,求:1.归一化系数;2.动能平均值。
(解:1.由归一化条件可知:e某22d某/)(某)(某)d某A2某Ae2某22d某1/1取相因子为零,则归一化系数A1/2/1/42.T222某(某)T(某)d某Ae某222/222某/2(P/2)ed某2A2e某/2(2222d2d某dd某)e某22/2d某222A22e某/2(某e2某22/2)d某2/2A{某e22某22(某e22某22)d某}22222A24某e1212222某22d某222A(241222)2某d(e某22)A(24){某e某e某d某}422=A(24())=A422=若=,则该态为谐振子的基态,T4解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。
一维谐振子的哈密顿量为:H22d2d某12某22它的基态能量E012选择为参量,则:dE0d12;dHdTd2d某2(2d22d某)2T0dHd020dHd02T12由F-H定理知:可得:dE0dT1422.2由下列定态波函数计算几率流密度:(1)11reikr(2)21reikr从所得结果说明1表示向外传播的球面波,2表示向内(即向原点)传播的球面波。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。
求人体热辐射的峰值波长(设体温为)。
解:,由题意,人体辐射峰值波长为:。
⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。
此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。
⒊波长为的X 射线光子与静止的电子发生碰撞。
在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。
解:电子速度远小于光速,故:;则:。
5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。
解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。
解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。
量子力学课后习题答案量子力学是物理学中一门重要的学科,它描述了微观粒子的行为和性质。
在学习量子力学的过程中,习题是不可或缺的一部分,通过解答习题可以巩固对该学科的理解和应用。
本文将为大家提供一些量子力学课后习题的答案,希望能对大家的学习有所帮助。
1. 请解释什么是量子力学中的“叠加态”?在量子力学中,叠加态是指一个量子系统处于多个可能状态的线性组合。
这意味着在特定的测量之前,量子系统可以同时处于多个不同的状态。
例如,一个电子可以处于自旋向上和自旋向下的叠加态。
只有在进行测量时,才会决定电子的自旋是向上还是向下。
2. 什么是量子力学中的“测量”?在量子力学中,测量是指对量子系统进行观察并获取其性质或状态的过程。
量子力学的基本原理之一是测量会导致量子系统的状态塌缩到一个确定的状态。
例如,在测量一个电子的自旋时,我们只能观察到它的自旋向上或自旋向下,而不是同时观察到两个状态。
3. 请解释什么是量子力学中的“不确定性原理”?不确定性原理是量子力学的一个基本原理,由海森堡提出。
它指出,在某些物理量(如位置和动量、能量和时间等)之间存在一种固有的不确定性关系,无法同时准确测量这些物理量的值。
换句话说,我们无法同时精确地知道一个粒子的位置和动量,或者一个系统的能量和时间。
4. 请解释什么是量子力学中的“波粒二象性”?波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。
根据波动性,微观粒子可以像波一样传播,并且存在干涉和衍射现象。
根据粒子性,微观粒子具有离散的能量和动量,并且在测量时表现出局部性。
5. 请解释什么是量子力学中的“量子纠缠”?量子纠缠是指两个或多个量子系统之间存在一种特殊的关联关系,使得它们的状态无法独立描述。
当两个量子系统纠缠在一起时,它们的状态会相互依赖,无论它们之间的距离有多远。
这种纠缠关系在量子通信和量子计算中具有重要的应用。
以上是对一些量子力学课后习题的简要答案。
通过解答这些习题,我们可以更好地理解和应用量子力学的概念和原理。
量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。
它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。
b) 什么是波函数?波函数是描述量子体系的数学函数。
它包含了关于粒子的位置、动量、能量等信息。
波函数通常用符号ψ表示,并且可用于计算概率分布。
c) 什么是量子态?量子态是描述量子系统的状态。
它包含了有关系统性质的完整信息,并且根据量子力学规则演化。
量子系统可以处于多个量子态的叠加态。
d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。
例如,一个量子比特可以处于0态和1态的叠加态。
2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。
基态能级对应的主量子数为n=1。
基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。
实验装置包括一道光源、两个狭缝和一个光屏。
当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。
实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。
这种实验结果说明了光具有波动性,同时也具有粒子性。
01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数(,,)x y z ψ称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。
自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。
可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。
解:t x U 与)(无关,是定态问题。
(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1.【提示】(1)黑体的辐射度(即曲线下的面积)满足:40()M T T σ=,所以0()M T 随温度的增高而迅速增加。
(2)单色辐出度最大值所对应的波长m λ满足:m T b λ=,所以,随着T 的升高,m λ向短波方向移动。
[ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K .【提示】设金属逸出功为A ;设频率为2ν 的单色光照射金属时,逸出光电子的最大动能为'K E ;则根据爱因斯坦光电效应方程,有:k h E A ν=+ 2'k h E A ν=+两式相减即可得出答案。
[ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV .【提示】赖曼系中最长波长的谱线,来自21E E →的跃迁,所以至少应使基态氢原子先吸收一个光子的能量h ν跃迁到E 2能级,然后向下跃迁发出谱线。
所以有212213.613.610.221eVeVh E E eV ν⎛⎫⎛⎫=-=---= ⎪ ⎪⎝⎭⎝⎭[ A ]4.(基础训练8)设粒子运动的波函数图线分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 【提示】根据动量的不确定关系:2x x p ∆⋅∆≥.[ D ]5.(自测提高2)已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å,那么入射光的波长是(A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. 【提示】根据爱因斯坦光电效应方程: 212m h m v A ν=+ ch hνλ=,00cA h hνλ==,0λ= 5400 Å21 1.22m mv eV = 联立求解出λ.[ B ]6.(自测提高3)具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?(A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV . 【提示】设氢原子吸收光子h ν后从2E 跃迁到m E ,则有22213.613.62m eVeVh E E m ν⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭,得m = 通过计算,发现四个选项中,仅当 1.89h eV ν=时,m 为整数(算得m=3),故选择(B ).二. 填空题1.(基础训练12)光子波长为λ,则其能量=chλ;动量的大小 =hλ;质量=hc λ. 【提示】光子能量cE h h νλ==,动量2E E h h p mc c c c c νλ=====; 质量22E h hm c c c νλ===2. (基础训练13)康普顿散射中,当散射光子与入射光子方向成夹角φ =π时,x (A) x (B) x (C) x(D)图 19-4姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十九章 散射光子的频率小得最多;当φ = 0 时,散射光子的频率与入射光子相同.【提示】202sin, 2c cϕλλλλλν∆=-==,当ϕπ=时,max 2c λλ∆=,波长增加最多,即频率小得最多;当0ϕ=时,min 0λ∆=,0λλ=,0νν=,即散射光子的频率与入射光子相同。
(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ C ]1.(基础训练2)下面四个图中,哪一个正确反映黑体单色辐出度M B λ(T )随λ 和T 的变化关系,已知T 2 > T 1.【提示】(1)黑体的辐射度(即曲线下的面积)满足:40()M T T σ=,所以0()M T 随温度的增高而迅速增加。
(2)单色辐出度最大值所对应的波长m λ满足:m T b λ=,所以,随着T 的升高,m λ向短波方向移动。
[ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K .【提示】设金属逸出功为A ;设频率为2ν 的单色光照射金属时,逸出光电子的最大动能为'K E ;则根据爱因斯坦光电效应方程,有:k h E A ν=+ 2'k h E A ν=+两式相减即可得出答案。
[ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV .【提示】赖曼系中最长波长的谱线,来自21E E →的跃迁,所以至少应使基态氢原子先吸收一个光子的能量h ν跃迁到E 2能级,然后向下跃迁发出谱线。
所以有212213.613.610.221eV eV h E E eV ν⎛⎫⎛⎫=-=---= ⎪ ⎪⎝⎭⎝⎭[ A ]4.(基础训练8)设粒子运动的波函数图线分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 【提示】根据动量的不确定关系:2x x p ∆⋅∆≥h .[ D ]5.(自测提高2)已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å,那么入射光的波长是(A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. 【提示】根据爱因斯坦光电效应方程: 212m h mv A ν=+ ch hνλ=,00cA h hνλ==,0λ= 5400 Å21 1.22m mv eV = 联立求解出λ.[ B ]6.(自测提高3)具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收?(A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV . 【提示】设氢原子吸收光子h ν后从2E 跃迁到m E ,则有22213.613.62m eV eVh E E m ν⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭,得m = 通过计算,发现四个选项中,仅当 1.89h eV ν=时,m 为整数(算得m=3),故选择(B ).二. 填空题1.(基础训练12)光子波长为λ,则其能量=chλ;动量的大小 =hλ;质量=h c λ.【提示】光子能量cE h h νλ==,动量2E E h hp mc c c c c νλ=====; 质量22E h hm c c c νλ===2. (基础训练13)康普顿散射中,当散射光子与入射光子方向成夹角φ = π时,x (A) x (B) x (C) x(D)图 19-4散射光子的频率小得最多;当φ = 0 时,散射光子的频率与入射光子相同.【提示】202sin, 2c cϕλλλλλν∆=-==,当ϕπ=时,max 2c λλ∆=,波长增加最多,即频率小得最多;当0ϕ=时,min 0λ∆=,0λλ=,0νν=,即散射光子的频率与入射光子相同。
3. (基础训练14)测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =7:11 .【提示】11755.035.0,1221===∴=m m m T T b T λλλ根据维恩位移定律:4.(基础训练15)欲使氢原子能发射巴耳末系中波长为4861.3 Å的谱线,最少要给基态氢原子提供12.75__eV 的能量。
(里德伯常量R =1.097×107 m -1 )【提示】从较高能级到n=2能级的跃迁形成的谱线称为巴耳末系。
设4861.3 Å的谱线对应于2n E E →,则2n ch hE E νλ==-,解得4n =。
所以至少应使基态氢原子吸收一个光子能量h ν从 E 1跃迁到E 4,所以有 412213.613.612.7541eVeVh E E eV ν⎛⎫⎛⎫=-=---= ⎪ ⎪⎝⎭⎝⎭5. (基础训练18) 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ=λc . 【提示】电子的动能:22k e E mc m c =-,电子的静止能量:2e m c依题意,22k e E mc m c =-=2c m e ,即:e e m c v m m 212=⎪⎭⎫ ⎝⎛-=得:2112=⎪⎭⎫⎝⎛-c v ,c v 23=,代入下式即可算出波长: c e e c m h c v v m h mv h p h λλ333312==⎪⎭⎫⎝⎛-===6. (自测提高12)若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的64 倍.【提示】644)2(4)2(P P )MS P 2424124=⋅⋅=∴==RT R T S T ππσ,(总辐射功率表面积表面积7. (自测提高14)氢原子基态的电离能是 13.6 eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =5 的轨道上运动.【提示】(1)基态电离能E 是指电子从基态激发到自由状态(E ∞=0)所需的能量。
∴E =1E E -∞=213.601eV⎛⎫--⎪⎝⎭; (2)+0.544 eV =n E E -∞=213.60eVn ⎛⎫--⎪⎝⎭=26.13n eV,可求出n=5三. 计算题1. (基础训练21)波长为λ0 = 0.500 Å的X 射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 Å,试求反冲电子的动能E K .解:根据能量守恒:2200mc h c m h +=+νν ,∴反冲电子获得动能:202c m mc E K -=ννh h -=0λλchch-=0161.6810J -=⨯2. (基础训练22)处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,问此外来光的频率为多少?(里德伯常量R =1.097×107 m -1)解:处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,则氢原子吸收该光子后最高将被激发到3n =的能级,从而发出31λ、21λ、32λ三条谱线,于是31h E E ν=-=2213.613.631eV eV⎛⎫--- ⎪⎝⎭=12. 09eV 1512.09 2.9210eVv Hz h==⨯3.(自测提高20)质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)解:考虑相对论效应:动能=22e mc m c -=12eU (1)22v 1cm m e -=(2)由(1)、(2)式,可求出2c v 1⎪⎭⎫⎝⎛-和v ,代入下式即可求出波长2v 1v v ⎪⎭⎫⎝⎛-===c m h m h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:则动能=21v 2e m =12eU v e m h p h =='λ=Ke E 2m h 122eU m h e ==3.88m 1210-⨯相对误差: λλλ-'=4.6﹪4. (自测提高25)一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:(1)根据不确定关系式:2η≥∆⋅∆t E 得:t E ∆≥∆2η3486.63102210π--⨯=⨯⨯J 2710276.5-⨯=eV 810297.3-⨯= (2)根据光子能量与波长的关系λνch h E ==,得波长为Ec h=λ=3.67m 710-⨯; 由E hc =λ,求导得:2d hc dE Eλ=- 所以,波长的最小不确定量为2hcE E λ∆=∆()34827152196.6310310 5.27610 3.56710()3.39 1.610m ----⨯⨯⨯=⨯⨯=⨯⨯⨯。