弗兰克赫兹含思考题
- 格式:docx
- 大小:241.38 KB
- 文档页数:11
弗兰克赫兹实验思考题
弗兰克-赫兹实验是由德国物理学家弗兰克和赫兹于1914年进行的实验。
他们在实验中观察到了电子的散射现象,从而验证了能量量子化的概念。
思考题:
1. 弗兰克-赫兹实验的目的是什么?
2. 实验中的主要装置是什么?
3. 实验中观察到的现象是什么?它是怎样验证能量量子化的?
4. 弗兰克-赫兹实验对于量子力学的发展有何重要意义?
答案:
1. 弗兰克-赫兹实验的目的是研究气体原子对电子的散射行为,验证能量的量子化假设。
2. 实验中的主要装置是一个真空管,其中包含有气体原子
和阴极阳极电极。
3. 实验中观察到的现象是电子在通过真空管时的能量损失。
当电子从阴极经过真空管时,它们会与气体原子发生碰撞,导致能量损失和方向改变。
弗兰克-赫兹实验中研究气体原
子的电离和激发过程,通过观察电流的变化,可以获得电
子在真空管中的能量损失情况。
这些能量损失的离散化现
象验证了能量的量子化假设。
4. 弗兰克-赫兹实验的成功验证了能量量子化的概念,为后续量子力学的发展奠定了基础。
实验结果表明,电子的能
量是离散的,只能取特定的能级。
这一发现对于理解原子
和分子的能级结构、光谱现象、电子行为等方面具有重要
意义,为量子力学的发展提供了重要的实验依据。
西安交通大学实验报告成绩第 1 页(共 9 页)课程:_______近代物理实验_______ 实验日期:年月日专业班号___ ___组别_______ 交报告日期:年月日姓名__Bigger __学号_ _ 报告退发:(订正、重做)同组者__ ________ 教师审批签字:实验名称:弗兰克-赫兹实验一、实验目的1)通过测氩原子第一激发电位,了解Franck和Hertz在研究原子内部能量量子化方面所采用的实验方法。
2)了解电子和原子碰撞和能量交换过程的微观图像。
二、实验仪器FH—1A、Franck-Hertz实验仪、示波器等。
三、实验原理图1是充氩四极Franck-Hertz实验原理图。
图1 Franck-Hertz实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆(2.1)式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。
按照波尔原子能级理论,ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值(E 1 - E 0)的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中(如图2所示),阴极K 被灯丝加热发射电子,第一栅极(G1)与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子。
电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I 。
2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么?答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了。
总的来说到达极板的电子数减小,因此极板电流减小。
3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么?答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大。
灯丝电压不能过高或过低。
因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力。
灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U -曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率。
但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了。
二、 塞曼效应1、什么叫塞曼效应,磁场为何可使谱线分裂?答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同。
后人称此现象为塞曼效应。
原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。
总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离2、叙述各光学器件在实验中各起什么作用答;略3、如何判断F-P 标准具已调好?答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P 标准具的两反射面平行了。
弗兰克赫兹实验思考题2弗兰克赫兹实验思考题一、解释伏安特性曲线的奇特性。
1(玻尔提出的量子理论指出:原子只能较长久地停留在一些稳定状态(简称定态),原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分立的,这些能量值称为能级,最低能级所对应的状态称为基态,其他高能级所对应的态称为激发态。
原子的能量不论通过什么方式发生改变,它只能使原子由一个定态跃迁到另一个定态。
原子从一个定态跃迁到另一个定态而发射或吸收辐射时,辐射频率是一定的。
如果用Em和En代表有关两定态的能量,辐射的频率ν确定于普朗克公式: h??Em?En (8-1)式(8-1)中的h为普朗克常数,其值为6.6260×10-34J?s。
为了使原子从低能级向高能级跃迁,可以通过具有一定频率ν的光子来实现,也可以通过具有一定能量的电子与原子碰撞(非弹性碰撞)进行能量交换的方法来实现。
后者为本实验采用的方法。
设初速度为零的电子在电势差为V的加速电场作用下,获得eV的能量。
在充氩气的夫兰克—赫兹管中,具有一定能量的电子将与氩原子发生碰撞。
如果以E0代表氩原子的基态能量,E1代表氩原子的第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是eV0=E1-E0 (8-2)则氩原子就会从基态跃迁到第一激发态,而相应的电势差V0称为氩原子的第一激发电位。
其他元素气体原子的第一激发电位也可以按此法测量得到。
1914年,夫兰克和赫兹首次用慢电子轰击汞蒸气中汞原子的实验方法,测定了汞原子的第一激发电位。
2(夫兰克—赫兹实验的物理过程本仪器采用的充氩四极夫兰克—赫兹管,实验原理如图8-1所示。
图8 -1 夫兰克—赫兹实验原理图管内有发射电子的阴极K,它由VF通电加热管中的灯丝K而产生热电子发射。
管中还有用于消除空间电荷对阴极电子发射的影响同时提高电子发射效率的第一栅极G1、用于加速电子的第二栅极G2和收集电子的板极P。
图8-2 F—H管空间电位分布在充氩气的管中,电子由热阴极K发出,阴极K和栅极G2之间的可调加速电压VG2使电子加速。
近代物理实验内容及思考题第一轮实验项目:一、 夫兰克—赫兹实验实验内容:1、 仪器的安装调试。
2、 逐点手动测量激发电位:在同一张坐标纸上作出I p ~V G2曲线,由曲线确定出各极值电位值。
求出氩原子第一激发态电位和测量误差。
3、 自动测量激发电位:在示波器上调出I p ~V G2曲线,直接读出氩原子第一激发态电位值。
4、 示波器观察分别改变减速电压V p 和灯丝电压V f 曲线I p -V G2应有何变化。
课后思考题:1、 解释曲线I p -V G2形成的原因。
2、 实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化?为什么?3、 实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化?为什么?二、塞曼效应实验内容:1、调整光路,从测量望远镜中可观察到清晰明亮的一组同心干涉圆环。
2、接通电磁铁稳流电源,缓慢地增大磁场B ,从测量望远镜中可观察到细锐的干涉圆环逐渐变粗,然后发生分裂。
旋转偏振片为00、450、900各不同位置时,观察偏振性质不同的π成分和σ成分。
3、选定干涉级K 和K-1的位置,测量干涉圆环直径,用特斯拉计测出磁场B ,根据下式求出电子的比荷(e/m )值。
(标准值m e /=1.76⨯1011C/kg ) dB c D D D D m e K K a b π422122⋅--=-(式中d=5mm ) 4、观察沿磁场方向的塞曼分裂,将电磁铁旋转900,并抽出铁芯,放上1/4波片与偏振片,以区分左旋和右旋偏振光。
课后思考题:1、什么叫塞曼效应,磁场为何可使谱线分裂?2、叙述各光学器件在实验中各起什么作用?3、如何判断F-P 标准具已调好?4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分?如何观察和分辨σ成分中的左旋和右旋偏振光? 三、核磁共振实验内容:1、 观察氢核1H 的NMR 现象(1)分别改变不同实验条件(射频场强度、扫场电压、样品在磁极间的位置)观察吸收信号的变化;(2)比较掺入顺磁物质浓度不同的水样品,观察吸收信号的差别。
西安交通大学实验报告第 1 页〔共 9 页〕课程:_______近代物理实验_______ 实 验 日 期 : 年 月 日 专业班号___ ___组别_______ 交报告日期: 年 月 日 姓 名__Bigger __学号_ _ 报 告 退 发 : 〔订正、重做〕 同 组 者__ ________ 教师审批签字:实验名称:弗兰克-赫兹实验一、 实验目的1) 通过测氩原子第一激发电位,了解Franck 和Hertz 在研究原子内部能量量子化方面所采用的实验方法。
2) 了解电子和原子碰撞和能量交换过程的微观图像。
二、 实验仪器FH—1A 、Franck-Hertz 实验仪、示波器等。
三、 实验原理图1是充氩四极Franck-Hertz 实验原理图。
图1 Franck-Hertz 实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆ (2.1) 式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。
按照波尔原子能级理论,ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值〔E 1 - E 0〕的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
弗兰克—赫兹实验弗兰克-赫兹实验是1914年由德国物理学家弗兰克和赫兹设计完成的。
该实验研究电子与原子碰撞前后能量的变化,能观测到汞原子的激发电势和电离电势,可以证明原子能级的存在,为波尔的原子结构理论假说提供有力的实验证据。
该实验的方法至今仍是探索原子结构的重要手段之一。
1913年丹麦物理学家玻尔(N?Bohr)提出了原子能级的概念并建立了原子模型理论。
该理论指出,原子处于稳定状态时不辐射能量,当原子从高能态(能量Em)向低能态(能量En)跃迁时才辐射。
辐射能量满足?E = Em?En (1)对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。
【实验目的】1、了解弗兰克-赫兹实验仪的结构、原理,学会它的调节和使用方法。
2、了解电子与原子之间的弹性碰撞和非弹性碰撞。
3、测量氩原子的第一激发电位;4、证实原子能级的存在,加深对原子结构的了解;【实验器材】智能型弗兰克-赫兹实验仪,计算机,示波器灯丝电压【实验原理】一、第二栅极。
UGK-G1-G2加正向电压,为电子提供能量。
1K图1弗兰克-赫兹实验原理图夫兰克一赫兹实验原理如图1所示,在真空管中充待测氩气,阴极K,阳极A,G1 、G2分别为第的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。
G2-A加反向电压,形成拒斥电场。
电子从K发出,在K-G2区间获得能量,在G2-A区间损失能量。
如果电子进入G2-A区域时动能大于或等于eUG2A,就能到达阳极形成阳极电流I.电子在不同区间的情况:1. K-G1区间电子迅速被电场加速而获得能量。
12. G1-G2区间电子与氩原子碰撞。
当其能量小于氩原子第一激发态与基态的能级差?E=E2?E1 时,氩原子基本不吸收电子的能量,碰撞属于弹性碰撞。
当电子的能量达到?E,则可能在碰撞中被氩原子吸收这部分能量,这时的碰撞属于非弹性碰撞。
?E称为临界能量。
3. G2-A区间电子受阻,被拒斥电场吸收能量。
弗兰克赫兹实验思考题2010211018 伍云天1、解释伏安特性曲线的奇特性?玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。
原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。
如果用Em和En分别代表原子的两个定态的能量,则发射或吸收辐射的频率由以下关系决定:hv=|Em-En|式中:h为普朗克常量。
原子从低能级向高能级跃迁,也可以通过具有一定能量的电子与原子相碰撞进行能量交换来实现。
本实验即让电子在真空中与氩蒸气原子相碰撞。
设氩原子的基态能量为E1,第一激发态的能量为E2,从基态跃迁到第一激发态所需的能量就是E2-E1。
初速度为零的电子在电位差为U的加速电场作用下具有能量eU,若eU小于E2-E1这份能量,则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。
当电子的能量eU≥E2-E1时,电子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于E2-E1的那一份,使自己从基态跃迁到第一激发态,而多余的部分仍留给电子。
设使电子具有E2-E1能量所需加速电场的电位差为U0,则eU0=E2-E1 式中:U0为氩原子的第一激发电位(或中肯电位),是本实验要测的物理量。
在充氩的F—H管中,电子由热阴极发出,阴极K和第二栅极G2之间的加速电压UG2K 使电子加速。
第一栅极对电子加速起缓冲作用,避免加速电压过高时将阴极损伤。
在板极P和G2间加反向拒斥电压UpG2 。
当电子通过KG2空间,如果具有较大的能量(≥eUpG2 )就能冲过反向拒斥电场而达到板极形成板流,被微电流计pA检测出来。
如果电子在KG2空间因与氩原子碰撞,部分能量给了氩原子,使其激发,本身所剩能量太小,以致通过栅极后不足以克服拒斥电场而折回,通过电流计pA的电流就将显著减小。
1.氩原子的特殊伏安特性曲线说明了什么?说明了原子存在能级,原子只能停留在一定的状态上,原子辐射是只能发射一定频率的光。
2.第一激发电位的物理含义是什么?如果以E0代表氩原子的基态能量,E1代表氩原子的第一激发态的能量,当电子与氩原子相碰撞时传递给氩原子的能量恰好是eV0=E1−E2则氩原子就会从基态跃迁到第一激发态,而相应的电势差V0称为氩原子的第一激发电位。
3.有没有第二,第三激发电位?有,从第一激发态跃迁到第二激发态相应的电势差就是第二激发电位。
4.弗兰克-赫兹实验的历史1913年,丹麦物理学家玻尔(N. Bohr)将量子概念应用于当时人们尚未接受的卢瑟福(E. Rutherfond)原子核结构模型上,并提出了原子结构的量子理论,成功地解释了氢光谱,为量子力学的创建起了巨大的推动作用。
但玻尔理论的定态假设与经典电动力学明显对立,而频率定则带有浓厚的人为因素,故当时很难为人们所接受。
正是在这样的历史背景下,1914年,两位德国的实验物理学家夫兰克(J. Frank)和赫兹(G. Hertz)采用慢电子与稀薄气体原子碰撞的方法,利用两者的非弹性碰撞将原子激发到较高能态,通过测量电子与原子碰撞时交换某一定值的能量,直接证明了原子能级的存在,并验证了频率定则,为玻尔理论提供了独立于光谱研究方法的直接的实验证明。
由于这项卓越的成就,这两位物理学家获得了1925年的诺贝尔物理学奖。
夫兰克—赫兹实验至今仍是探索原子内部结构的主要手段之一。
所以在近代物理实验中,仍把它作为传统的经典实验。
5.正确的实验&错误的解释弗兰克和G.赫兹最初是依据斯塔克的理论,斯塔克认为线光谱产生的原因是原子或分子的电离,光谱频率ν与电离电势V有如下的量子关系:hν=eV。
弗兰克和G.赫兹在 1914年以后有好几年仍然坚持斯塔克的观点,他们相信自己的实验无可辩驳地证实了斯塔克的观点,认为4.9V电势差引起了汞原子的电离。
他们也许因为战争期间信息不通,对玻尔的原子理论不甚了解,所以还在论文中表示他们的实验结果不符合玻尔的理论。
交通大学实验报告第 1 页〔共 9 页〕课程:_______近代物理实验_______实 验 日 期 :年月日 专业班号______组别_______交报告日期:年月日姓 名__Bigger__学号__报 告 退 发 : 〔订正、重做〕 同 组 者__________教师审批签字:实验名称:弗兰克-赫兹实验一、 实验目的1) 通过测氩原子第一激发电位,了解Franck 和Hertz 在研究原子部能量量子化方面所采用的实验方法。
2) 了解电子和原子碰撞和能量交换过程的微观图像。
二、 实验仪器FH —1A 、Franck-Hertz 实验仪、示波器等。
三、 实验原理图1是充氩四极Franck-Hertz 实验原理图。
图1Franck-Hertz 实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆(2.1) 式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后能的变化量。
按照波尔原子能级理论,ΔE =0 弹性碰撞; ΔE =E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1-E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE=0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥E 1-E 0,才能在电子产生非弹性碰撞,使得电子获得某一值〔E 1 - E 0〕的能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中〔如图2所示〕,阴极K 被灯丝加热发射电子,第一栅极〔G1〕与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
西安交通大学实验报告成绩第 1 页(共 9 页)课程:_______近代物理实验_______ 实验日期:年月日专业班号___ ___组别_______ 交报告日期:年月日姓名__Bigger __学号_ _ 报告退发:(订正、重做)同组者__ ________ 教师审批签字:实验名称:弗兰克-赫兹实验一、实验目的1)通过测氩原子第一激发电位,了解Franck和Hertz在研究原子内部能量量子化方面所采用的实验方法。
2)了解电子和原子碰撞和能量交换过程的微观图像。
二、实验仪器FH—1A、Franck-Hertz实验仪、示波器等。
三、实验原理图1是充氩四极Franck-Hertz实验原理图。
图1 Franck-Hertz实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆(2.1)式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。
按照波尔原子能级理论,ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值(E 1 - E 0)的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中(如图2所示),阴极K 被灯丝加热发射电子,第一栅极(G1)与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
弗兰克赫兹实验思考题
弗兰克赫兹实验思考题是现代心理学界非常重要的一项心理实验,它影响了对记忆和思考过程的理解以及认知心理学后来的发展和研究。
它是美国心理学家弗兰克赫兹在四十年代初期提出的,它的目的是探索人类记忆和思维的机制。
实验的具体内容是,实验者要求记忆一组字母,然后再陆续地添加新的字母,要求实验者只记住最新添加的字母,而不要混淆它们与之前的字母。
实验结果发现,实验者多半能够准确地记住每一个新添加的字母,但是却无法记住之前曾经记住过的字母。
弗兰克赫兹实验思考题所表明的现象被称为“赫兹效应”,即人们存在着一种有限的记忆容量,只能记住最新获得的记忆,而无法记住较早以前的记忆。
实验表明,当记忆容量被足够多的信息填充时,较早的记忆会被淡忘,新的记忆才能得到传递。
赫兹实验思考题的发现给认知心理学带来了重要的突破,它首先改变了人们对记忆的理解,即记忆是有限的,记忆可以被新的信息替换掉,而不是一成不变的。
此外,赫兹实验思考题还为研究多因素作用于记忆的影响提供了重要的科学发现,比如人们可以通过增强感知的方式来提高记忆的效率,还可以通过多种手段来减少记忆负荷。
另外,研究还提出,人们不仅可以通过记忆来获取当前的信息,还可以通过思维来模拟已知的现象,或者进一步的思考来探究一个概念,从而演绎出新的现象。
同时,赫兹实验思考题也为人类思维提供了重要的实证,为人类思维尤其是智能算法提供了参考依据。
总而言之,弗兰克赫兹实验思考题对当今心理学研究和认知心理学的发展具有重要的意义,这项实验的发现可以指导我们对认知心理学中记忆和思维过程的理解,从而开展更深入的研究,为社会发展做出贡献。
一、夫兰克-赫兹管的伏安特性曲线的奇异性的来源玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态对应于一定的能量(1,2,3,)i E i = 。
2.当一个原子从某定态m E 跃迁到另一定态n E 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差m n E E -,并满足以下关系:m n hv E E =-式中普朗克常数346.62610h J s -=⨯⋅。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子能量大于临界能量,则发生非弹性碰撞,这时电子可把数值为21E E E ∆=-的能量传递给原子(2E 是原子第一激发态能量,1E 是基态能量),其余能量仍由电子保留。
在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极1G 之间的加速电压1G K V 及与第二栅极2G 之间的加速电压2G K V 使电子加速。
在板极A 和第二栅极2G 之间可设置拒斥电压2G A V ,管内空间电压分布如图2所示。
当灯丝加热时,阴极的外层即发射电子,电子在1G 和2G 间的电场图 1 夫兰克-赫兹实验原理图 作用下被加速而取得越来越大的能量。
但在起始阶段,由于电压2G K V 较低,电子的能量较小,即使在运动过程中,它与原子相碰撞(弹性碰撞)也只有微小的能量交换。
这样,穿过图 2 夫兰克-赫兹管内空间电位分布原理图 第二栅极的电子所形成的电流A I 随第二栅极电压2G K V 的增加而增大(图 3 oa 段)。
当2G K V 达到氩原子的第一激发电位时,电子在第二栅极附近与氩原子相碰撞(非弹性碰撞)。
电子把从加图 3 夫兰克-赫兹管的伏安特性曲线 速电场中获得的全部能量传递给氩原子,使氩原子从基态激发到第一激发态,而电子本身由于把全部能量传递给了氩原子,即使它穿过第二栅极,也不能克服拒斥电压2G A V 从而被折回第二栅极,所以板极电流A I 将显著减小(图3 a b 段)。
1、夫兰克-赫兹实验中,发生什么过程导致U-I 曲线?玻尔原子模型理论指出:1. 原子只能处在一些不连续的稳定状态(定态)中,其中每一定态相应于一定的能量Ei(i=1, 2, 3, …m …n)。
2.当一个原子从某定态Em 跃迁到另一定态En 时,就吸收或辐射一定频率的电磁波,频率的大小决定于两定态之间的能量差En —Em ,并满足以下关系:h ν=En —Em式中普朗克常数h=6.63×10-34J ·s 。
原子在正常情况下处于基态,当原子吸收电磁波或受到其他有足够能量的粒子碰撞而交换能量时,可由基态跃迁到能量较高的激发态。
从基态跃迁到第一激发态所需要的能量称为临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞,电子碰撞前后能量不变,只改变运动方向。
如果电子动能大于临界能量,则发生非弹性碰撞,这时电子可把数值为△E=En —E1的能量交给原子(En 是原子激发态能量,E1是基态能量),其余能量仍由电子保留。
如初始能量为零的电子在电位差为U0的加速电场中运动,则电子可获得的能量为eU0;如果加速电压U0恰好使电子能量eU0等于原子的临界能量,即eU0=E2—E1,则U0称为第一激发电位,或临界电位。
测出这个电位差U0,就可求出原子的基态与第一激发态之间的能量差E 2—E 1。
原子处于激发态是不稳定的。
不久就会自动回到基态,并以电磁辐射的形式放出以前所获得的能量,其频率可由关系式h ν=eU0求得。
在玻尔发表原子模型理论的第二年(1914),夫兰克(James Franck,1882—1964)和赫兹(Gustav Hertz,1887—1975)参照勒纳德创造反向电压法,用慢电子与稀薄气体原子(Hg ;He )碰撞,经过反复试验,获得了图2的曲线。
实验原理如图3所示,在充氩的夫兰克-赫兹管中,电子由阴极K 发出,阴极K 和第一栅极G1之间的加速电压K G V 1 及与第二栅极G2之间的加速电压K G V 2使电图3 夫兰克-赫兹原理图子加速。
弗兰克—赫兹实验思考题答案之欧侯瑞魂创作[预习思考题]1、什么是能级?玻尔的能级跃迁理论是如何描述的?答:在玻尔的原子模型中,原子是由原子核和核外电子所组成,原子核位于原子的中心,电子沿着以核为中心的各种分歧直径的轨道运动。
在一定轨道上运动的电子,具有对应的能量,轨道分歧,能量的大小也不相同。
这些与轨道相联系、大小不连续的能量构成了能级。
当原子状态改变时,陪伴着能量的变更。
若原子从低能级En跃迁到高能级Em,则原子需吸收一定的能量,该能量的大小为△E:△E=Em-En若电子从高能级Em跃迁到低能级En,则原子将放出能量△E。
2、为什么I G2A-U G2K曲线上的各谷点电流随U G2K的增大而增大?答:电子与汞原子的碰撞有一定的几率,总会有一些电子逃避了碰撞,穿过栅极而到达板极。
随着U G2K 的增大,这些电子的能量增大,因此在I G2A-U G2K曲线上的各谷点电流也随着增大。
[实验后思考题]1、温度对充汞F-H管的I G2A-U G2K曲线有什么影响?答:当温度过大时,单位体积内的汞原子数增加,电子的平均自由程减小,电子与汞原子的碰撞次数增加,因此,在整个加速过程中,弹性碰撞的总能量损失相应增大,其I G2A 电流减小。
2、在I G2A-U G2K曲线上,为什么对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V?答:对应板极电流I G2K第一个峰的加速电压U G2K不等于4.9V的主要原因是:由于阴极与栅极不是由同一种资料组成,其间存在接触电势差。
如何利用该套实验设备测出汞原子的电离电势?答:利用该套实验设备丈量汞原子的电离电势的方法是:降低炉温,重新选择U G1K、U G2A,谨慎地选择灯丝电压,使得在第二个第一激发电位峰出现后即出现电离峰,以电离曲线中的第一个峰(对应 4.9V)为定标尺度,求出电离峰与第一峰的距离,即可知电离电位。
或在不改变温度的情况下,选择合适的U G1K、U G2A,遏止全部电子,将全部离子拉向板极,丈量离子电流与U G2K的曲线,则该曲线拐点处即为电离电位。
弗兰克赫兹含思考题西安交通大学实验报告成绩第1 页(共9 页)课程:_______近代物理实验_______ 实验日期:年月日专业班号______组别_______交报告日期:年月日姓名__Bigger__学号__报告退发:(订正、重做)同组者__ ________教师审批签字:实验名称:弗兰克-赫兹实验一、实验目的1)通过测氩原子第一激发电位,了解Franck和Hertz在研究原子内部能量量子化方面所采用的实验方法。
2)了解电子和原子碰撞和能量交换过程的微观图像。
二、实验仪器FH—1A、Franck-Hertz实验仪、示波器等。
三、实验原理图1是充氩四极Franck-Hertz实验原理图。
图1 Franck-Hertz 实验原理图电子与原子的碰撞过程可以用一下方程描述:22221111''2222e e m v MV m v MV E +=++∆ (2.1) 式中:m e ——原子质量; M ——电子质量; v ——电子碰撞前的速度; v ’——电子碰撞后的速度; V ——原子碰撞前的速度; V ’——原子碰撞后的速度; ΔE ——原子碰撞后内能的变化量。
按照波尔原子能级理论,ΔE = 0 弹性碰撞; ΔE = E 1 - E 0 非弹性碰撞;式中:E 0——原子基态能量; E 1——原子第一激发态能量。
电子碰撞前的动能1/2m e v 2 < E 1 - E 0时,电子与原子的碰撞为完全弹性碰撞,ΔE = 0,原子仍然停留在基态。
电子只有在加速电场的作用下碰撞前获得的动能1/2m e v 2 ≥ E 1 - E 0,才能在电子产生非弹性碰撞,使得电子获得某一值(E 1 - E 0)的内能从基态跃迁到第一激发态,调整加速电场的强度,电子与原子由弹性碰撞到非弹性碰撞的变化过程将在电流上显现出来。
Franck-Hertz 管即是为此目的而专门设计的。
在充入氩气的F-H 管中(如图2所示),阴极K 被灯丝加热发射电子,第一栅极(G1)与阴K 之间的电压V G1K 约为1.5V ,其作用是消除空间电荷对阴极K 的影响。
当灯丝加热时,热阴极K 发射的电子在阴极K 与第二栅极(G2)之间正电压形成的加速电场作用下被加速而取得越来越大的动能,并与V G2K 空间分布的气体氩原子发生如(2.1)式所描述的碰撞而进行能量交换。
第二栅极(G2)和A 极之间的电压称为拒斥电压,起作用是使能量损失较大的电子无法达到A极。
阴极K发射的电子经第一栅极(G1)选择后部分电子进入G1G2空间,这些电子在加速下与氩原子发生碰撞。
初始阶段,V G2K较低,电子动能较小,在运动过程中与氩原子作弹性碰撞,不损失能量。
碰撞后到达第二栅极(G2)的电子具有动能1/2m e v’2,穿过G2后将受到V G2K形成的减速电场的作用。
只有动能1/2m e v’2大于e V G2A的电子才能到达阳极A形成阳极电流I A,这样,I A将随着V G2K的增加而增大,如图I A—V G2K曲线Oa段所示。
当V G2K达到氩原子的第一激发电位13.1V时,电子与氩原子在第二栅极附近产生非弹性碰撞,电子把从加速电场中获得的全部能量传给氩原子,使氩原子从较低能级的基态跃迁到较高能级的第一激发态。
而电子本身由于把全部能量给了氩原子,即使他能穿过第二栅极也不能克服V G2A形成的减速电场的拒斥作用而被拆回到第二栅极,所以阳极电流将显著减少,随着V G2A的继续增加,产生非弹性碰撞的电子越来越多,I A将越来越小,如图2.2曲线ab段所示,直到b点形成I A的谷值。
图2 I A—V G2K曲线b点以后继续增加V G2K,电子在G2K空间与氩原子碰撞后到达G2时的动能足以克服V G2A加速电场的拒斥作用而到达阳极(A)形成阳极的电流I A,与Oa段类似,形成图2.2曲线bc段。
直到V G2K为2倍氩原子的第一激发电位时,电子在G2K空间有回音第二次非弹性碰撞而失去能量,因此又形成第二次阳极电流I A的下降,如图2.2曲线cd段,以此类推,I A随着V G2K的增加而呈周期性的变化。
相邻两峰(或谷),对应的V G2K的值之差即为氩原子的第一激发电位值。
四、实验步骤1)熟悉夫兰克——赫兹实验仪各开关按钮的作用及示波器的使用方法。
2)不要急于按入电源开关④,应先将⑩—⑬四个电压调节旋钮逆时针旋到底,并把I A量程切换开关①置于“×10-7(100nA)”,V G2K输出端口⑤和I A输出端口⑧分别用带Q9连接头的电缆连接至示波器或其他设备X轴输入端口和Y轴输入端口。
3)如果输出端口⑤和⑧连接的是示波器,自动/手动切换开关⑥置于“自动”,快速/慢速切换开关⑦置于“快速”,否则切换开关⑦置于“慢速”。
4)按入电源开关④,接通仪器电源,配合使用电压指示切换开关⑨调节电压调节旋钮⑩—⑫,使V H约为5V(数值不可太小,以免逸出电子数量少、能量低),并重复操作依次调节电压调节旋钮⑾和⑿,分别使V G1K约为1.7V,V G2A约为8V(数值过高易使拒斥电压过高,能量损失较大的电子无法到达A极)。
5)逐渐调节⒀,改变电压V G2K,调节示波器X和Y各相关旋钮,使波形正向,清晰稳定,无重叠,并要求X轴满屏显示,Y轴幅度适中。
6)再次调节电压调节旋钮⑩—⒀,使波形如图2所示的,并保证可观察到6个以上的I A峰值(或谷值),且峰谷幅度适中,无上端切顶现象,从左至右,I A 各谷值逐个抬高。
7)测量示波器上所示波形图中相邻I A谷值(或峰值)所对应的V G2K之差(即显示屏上相邻谷值或峰值的水平距离)求出氩原子的第一激发电位。
8)选择手动,慢速测量(此内容可以不使用示波器),使V G2K从最小开始,每间隔5V逐渐增大,在随着V G2K的值改变I A剧烈变化时,应该减少采样点之间的电压值间距,使所采样的点值能够尽量反映出电流与电压的波形曲线轮廓,在极值点附近进行密集采样。
记录I A与V值,测量至少包括6个峰值(5个谷值),按记录数据画出图形。
9)根据图形计算出相邻I A谷值(或峰值)所对应的V G2K之差(求出6个峰值之间的5个V G2K之差,再求取平均值,以使测量结果更精确。
)求出氩原子的第一激发电位。
五、实验数据记录与处理第一组:V HH = 3.3V V AG2 = 4.2V V G1K = 2.5V0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0I A/10-9A 0.0 0.0 0.1 3.8 4.5 5.2 5.7 6.2 6.5 V G2K/V 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 I A/10-9A 6.6 6.9 7.7 8.6 9.4 9.7 9.1 9.5 11.6 V G2K/V 36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0 I A/10-9A 13.5 14.6 14.6 12.8 14.6 18.2 21.2 22.1 21.6 V G2K/V 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 I A/10-9A 19.2 22.1 27.4 30.8 32.5 31.1 29.1 32.7 38.6 V G2K/V 72.0 74.0 76.0 78.0 80.0 82.0 84.0 86.0 88.0 I A/10-9A 43.5 46.2 45.6 42.4 44.8 51.5 57.3 60.0 58.8 V G2K/V 90.0 92.0 94.0 96.0 98.0 99.6I A/10-9A 56.4 58.7 63.9 69.8 75.9 76.3根据图形计算出相邻I A峰值所对应的V G2K之差得:△V1 = 39.13 - 27.76 = 11.37V△V2 = 50.67 - 39.13 = 11.54V△V3 = 62.21 - 50.67 = 11.54V△V4 = 74.75 - 62.21 = 12.54V△V5 = 86.29 - 74.75 = 11.54V△V G2K = (△V1 + △V1 + △V1 + △V1 + △V1) / 5 ≈ 11.71V故氩原子的第一激发电位实验值为11.71V,相对误差11.71-13.110.6%13.1δ=≈。
第二组:V HH = 3.3V V AG2 = 4.2V V G1K = 2.8VV G2K/V 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 I A/10-9A 0.0 0.0 0.1 3.9 4.7 5.3 5.8 6.1 6.4 V G2K/V 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 I A/10-9A 6.5 6.7 7.4 8.2 9.0 9.2 8.4 9.1 11.0 V G2K/V 36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0 I A/10-9A 12.9 13.8 13.7 12.0 13.4 17.1 19.5 20.8 19.8 V G2K/V 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 I A/10-9A 18.6 21.1 26.0 30.0 31.8 30.9 28.4 31.3 37.6 V G2K/V 72.0 74.0 76.0 78.0 80.0 82.0 84.0 86.0 88.0 I A/10-9A 43.5 45.3 44.5 42.2 44.2 50.3 56.4 60.3 61.1 V G2K/V 90.0 92.0 94.0 96.0 98.0 99.8I A/10-9A 58.9 59.8 65.7 72.9 78.0 79.8根据图形计算出相邻I A峰值所对应的V G2K之差得:△V1 = 39.13 - 27.42 = 11.71V△V2 = 50.17 - 39.13 = 11.04V△V3 = 62.88 - 50.17 = 12.71V△V4 = 74.25 - 62.88 = 11.37V△V5 = 87.29 - 74.25 = 13.04V△V G2K = (△V1 + △V1 + △V1 + △V1 + △V1) / 5 ≈ 11.97V故氩原子的第一激发电位实验值为11.97V,相对误差11.97-13.18.6%13.1δ=≈。
由于V G1K值改变的较小,所以上下差异较小,但还是能看出变化规律:曲线随着V G1K增大而上升。