当前位置:文档之家› 蒸馏塔的设计-

蒸馏塔的设计-

蒸馏塔的设计-
蒸馏塔的设计-

1.二.设计任务及操作条件

1.设计任务:

生产能力(进料量) : 2万

吨/年

操作周期: 300*24=7200 h

进料组成: 41%

塔顶产品组成: >96%

塔底产品组成: >1%

2.操作条件:

操作压力: 4kpa (塔顶表

压)

进料热状态: 泡点进料

单板压降: 不大于0.7kpa

3.设备形式: 板式精馏塔,塔

顶为全凝器,中

间泡点进料,塔

底间接蒸汽加

热,连续精馏。

4.厂址: 齐齐哈尔市

(二)设计内容

二)设计内容

1.概述:

本次设计一筛板设计为例,筛板是在塔板上钻有均布的筛孔,上升气流经筛孔分散,鼓泡通过板上液层,形成气液密切接触的泡沫层.筛板塔的优点是结构简单,制造、维修方便,造价低,相同的条件下生产能力高于浮阀塔,塔板效率接近浮阀塔.他的缺点是操作范围小,小孔径筛板易堵噻不适宜

处理粘性大的,脏的和带固体粒子的料液.但设计良好的筛板具有足够的造作弹性,对易引起堵塞的物系可采用大孔径筛板,故近年来我国对筛板的应用日益增多.

2.设计流程的说明:

精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。釜液冷却器和产品冷凝器等设备。热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免

受泵操作波动的影响

塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用全分凝器。总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。

连续精馏操作流程图

冷凝器

再沸器

3.操作条件:

(1)操作条件

精馏操作可在常压,减压和加压下进行,操作压强常取决于冷凝温度。一般,性物以外,凡通过常压蒸馏不难实现分离要求,并能用江河或循环水将冷凝下来的系统,都应采用常压蒸馏,对热敏性物料或混合液沸点的系统则宜采用减压蒸馏;对常压下的馏出物的冷凝温度过低的系统,需要高塔压或采用深井水,冷冻盐水作为冷却剂;常压下呈现气态的物料必须采用加压蒸馏。本次设计采用常压蒸馏。

(2)进料液状态的选择

进料热状态以进料热状态参数q 表达,即

q=每摩尔进料变成饱和蒸汽所需热量/每摩尔进料的汽化潜热有五种进

料状态,当q>1时为低于泡点温度的冷凝进料进料;q=1时为泡点下的饱和液体进料;q=0为露点下的饱和蒸汽进料;1>q>0为介于泡点与露点间的汽液混合物进料;q<0为高于露点的过热蒸汽进料。

原则上,在供热量一定情况下,热量应尽可能的由塔底输入,使产生的气相回流在全塔发挥作用,即宜冷进料。但为使塔的操作稳定,免受季节气温影响,精、提馏段采用相同的塔径以便于制造,则采用饱和液体(泡点)进料,但需增设原料预热器,若工艺要求减少塔釜加热避免釜温过高,料液产生聚合或结焦,则易采用气态进料。本次设计采用泡点进料。

(3)加热方式

蒸馏大多采用间接蒸汽加热,设置再沸器。有时也采用直接蒸汽,例如蒸馏釜残主要组分是水,切在低浓度下轻组分的相对挥发较大时宜采用直接加热,其优点是可以利用压强较低的加热蒸汽以节省操作费用,并省掉间接加热设备。但由于直接蒸汽的加入,对釜内溶液起一定稀释作用,在进料条件和产品纯度,轻组分收率一定的前提下,釜液浓度相应降低,故需在提馏段增加塔板以达到生产要求。本次设计采用间接蒸汽加热。

(4)回流比的选择

选择回流比,主要从经济观点出发,力求使设备操作费用之和最低。

一般经验值R=(1.1~2.0) Rmin

其中R---操作回流比,Rmin-----最小回流比对特殊物系和与场合,则应根据实际需要选定回流比。在进行课程设计时,也可以参同类生产的R经验值选定。必要时选若干个R值,利用吉利兰图求出对应理论板数N,作出N---R曲线或N(R+1)---R曲线,从中找出适宜操作的回流比R。也可以做出R对精馏塔操作费用的关系线,从中确定适宜回流比R。本次设计因Rmin较小,故取R=2R。

4.操作方案说明:

本设计任务为分离苯—甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,降原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸汽采用

全凝器冷凝。冷凝器在泡点下一部分回流到塔内,其余部分经产品冷却器冷却后送入储罐。该物系属于易分离物系,最小回流比较小,故操作回流比去最小回流比的两倍。塔釜采用间接蒸汽加热,塔底产品冷却送到储罐。

设计操作流程图

(三)本设计中符

号说明

英文字母:

A0筛孔面积,㎡h0

降液管底高度,m

A a塔板开孔面积,㎡hσ相克服度

m

A f降液管面积,㎡k筛板的稳定系

A T 塔截面积,㎡L塔内下降液

体流量,kmol/h

C计算时u max的负荷因数

l W溢流堰高度,m

C O流量系数L S下降液

体流率,m3/s

D塔径,m N 理论板数

d0 筛孔直径,mm N P实际塔板数

E液流收缩系数N T理论塔板数

E T 全塔效率n筛孔数

e v 雾沫夹带量,kg液/kg气P操作压强,p a或kp a

F 进料流量, kmol/h △P压强降,p a或kp a

F a气相动能因数q 进料热状态承参数

H 板间距,mm R回流比

h c 与干板压降相当液柱高度,m

S直接蒸汽量,kmol/h

h1 进口堰与降液管的水平距离,m t筛孔中心距,mm

h l 与气流穿过液层的压降

相当液柱高度m u 空塔气速,m/s

h f 板上鼓泡层高度,m u0 筛孔气速,m/s

h L 板上液曾高度,m u′0降液管底隙处液体流速,m/s

h d,与液体流经降液管压降相当液柱高度,m

D F进料管直径, m

D l回流管直径, m

D W 釜液出口管直径, m

D T 塔顶蒸汽管直径, m

下标:

h p 与单板压降相当液层高度,m A易挥发组分

B难挥发组分

h ow 堰上液层高度,m D馏出液

h w 溢流堰长度,m L液相

W釜残液流量,kmol/h h小时

W C 无效区块度,m

i组分序号

W d 弓形降液管高度,m m平均

w s安定区宽度,m F原料液

X液相中易挥发组分摩尔分率min最小

Y气相中易挥发组分摩尔分率max最大

Z塔的有效高度,m n塔板序号

v s塔内上升蒸汽流量,m3/s

希腊字母:

α相对挥发度,无因次

β干筛孔流量系数的修正系数,无因次

σ液体表面张力,mN/m

δ筛板厚度,mm

μ粘度,mP a.s

ψ液体密度校正系数

φ开孔率

t时间,s

ρL液相密度,kg/m3

ρV液相密度,kg/m3

(五)板数的确定

1.苯甲苯属于理想物系,可以采用图解法求理论板层数。

1)由手册查得苯--甲苯物系的气液平衡数据,绘制图。

2)求最小回流比及操作回流比。采用做图法求最小回流比。在图中的对角线上,自点e(0.45,0.45)作垂线

ef即为进料线(q线),该线与平衡线的交点坐标y q=0.667 ,x q=0.450,故最小回流比为R min=(x D-y q)/(y q-x q)=(0.966-0.667)÷(0.667-0.45)=1.38

操作回流比为: R=2R min=2×1.38=2.76

3)求精馏塔的气,液相负荷

L=RD=14.86×2.76=41.01kmol/h

V=(R+1)D=(2.76+1)×14.86=55.8

7kmol/h

L1=L+F=41.01+32.37=73.38kmol

/h

V=V1=55.87kmol/h

4)求操作线方程

精馏段的操作线方程:

y=(L/V)x+(D/V)x D=(41.01/55.87)x+(1 4.86/55.87)0.966=0.734x+0.257

提馏段的操作线方程为:

y1=(L1/V1)X1+(W/V1)X W=(73.38/55.8 7)X1-(17.51/55.87)×0.012=1.131X1-0.004

图解法求求理论板层数:采用图解法求理论层板,如图所示。求解结果得为:

总理论板数层数:N T=12.5(包括再沸器)

进料板位置为:N F=6

2.实际板层数的求取

=5/0.52=9.6精馏段实际板层数: N

≈10

提馏段实际板层数: N

提=7.5/0.52-1=13.42≈14

(六)精馏塔的工艺条件及有关物性数据的计算

1.操作压力的计算

塔顶的操作压力:P D=101.3+4=105.3kp a

每层塔板压降:△p=0.7kp a

进料压力:P F=105.3+0.7×10=112.3kp a

精馏段平均压力:P m=(105.3+112.3)/2=108.8kp a

2.平均摩尔质量计算

塔顶平均摩尔质量计算:

由x D=y1=0.966,查平衡曲线如图所示可知:x1=0.916

M VDm=0.966×78.11+(1-0.966)×92.13=78.59kg/kmol

M LDm=0.916×78.11+(1-0.916)×92.13=79.29kg/kmol

进料板平均摩尔质量的计算:

由图解理论板如图所进料板平均摩尔质量计算示得:y F=0.604

查平衡曲线如图所示得:x F=0.388 M VFm=0.604×78.11+(1-0.604)×92.13=83.66kg/kmol

M LFm=0.388×78.11+(1-0.388)×92.13=86.69kg/kmol

精馏段平均摩尔质量的计算:

M Vm=(78.59+83.66)/2=81.13kg/kmol M Lm=(79.29+86.69)/2=82.99kg/kmol 3.操作温度得计算

依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯,甲苯的

饱和蒸汽压由安托尼方程计算可得:安托尼方程:㏒P*=A-(B/t+C) 【4】其中塔顶操作压力P D=105.3kp a 而进料板压力: P F=112.3kpa

泡点方程公式:x A=(P D-p B*)÷(P A*-P B*)【1】设t=83℃而A,B,C由下表中得数据所取:

A B C

苯 6.023 1206.

35

220.2

4

甲苯6.078

1343.

94

219.5

8

根据上述数据可以算出P A,*,P B*及因此可以求出塔顶温度和进料板温度精馏段平均温度:

塔顶温度:t D=83℃

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。 设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况 自选 ; 回流比 自选; 单板压降 ≤; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1. 原料液及塔顶、塔底产品的摩尔分率 乙醇的摩尔质量 A M =46.07kg/kmol 水的摩尔质量 B M =18.02kg/kmol F x =18.002 .1864.007.4636.007 .4636.0=+= D x =64.002.1818.007.4682.007 .4682.0=+= W x =024.002 .1894.007.4606.007 .4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =×+×=23.07kg/kmol D M =×+×=35.97kg/kmol W M =×+×=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.231000 2000=???kmol/h 总物料衡算 =W D + 水物料衡算 ×=+W

丙酮蒸馏塔设计

丙酮蒸馏塔设计 1、设计基本参数 进塔稀丙酮浓度25%,整出浓丙酮浓度95%, 残液中丙酮浓度0.5%,蒸馏塔进料量2436.5Kg/h;2、全塔物料衡算 计算公式:F=D+W 2-1; F x F=D X D + W x w 2-2; 式中:F 进塔流量Kg/h ; D 塔顶馏出液流量Kg/h ; w 塔底流量Kg/h ; x F 物料中丙酮浓度%; x D 塔顶物料中丙酮浓度%; x w 塔底物料中丙酮浓度%; 其中:F=2436.5 Kg/h, x F =25%, x°=95%, x w=0.5%,带入式2-1,2-2 中得: 2436.5二D+W 2436.5 X 25%=氐95%+W 0.5% 得:D=631.7 Kg/h, w=1804.8 Kg/h 3、塔径计算 气相质量流量:G=D X( R+1),式中R为回流比,选回流比R=3,得 G=631.7 X (3+1)=2526.8 Kg/h ; 混合气体的摩尔数:2526.8 - 56.08=45.1 Kmol/h

混合气体的体积流量:V=32.93 X 45.仁1485.1 m 3/h ; 混合气体的密度:丫V =2526.8 -1485.1=1.7 Kg/m 3 95初酮液体体积流量:L=2526.8 - 802=3.15 m /h ; m/s; 3.15 802 1485.1 :=0.046 有效空塔速度:v = 0.044 8。2;.7 =0.955 二V

查图得 C 20=0.044 取 C=C 20 空塔速度 V 空=(0.6~0.8) V ,取 0.75,则 V =0.75X 0.955=0.716 m/s ; 塔径圆整取D=①900 4、 理论板数计算 5、 全塔热量衡算 5.1加料液带入的热量 Q j 25%的稀丙酮水溶液由室温12C 加热到70C 纯丙酮 70C 比热为 G=0.558 Kcal/(KgK) 水 70C 比热为 C 2=1 Kcal/(KgK) 25%丙酮溶液的混合比热为: Cp=0.558 X .0936+1 X( 1-0.0936) =0.959 Kcal/(KgK) Q j =Cpm A t=0.959X 2436.5 X( 70-12 ) =135523 Kcal/h 初估塔径D = 1485.1 0.785 3600 = 0.856 0.785 0.716 3600 m ;

蒸馏塔的设计-

1.二.设计任务及操作条件 1.设计任务: 生产能力(进料量) : 2万 吨/年 操作周期: 300*24=7200 h 进料组成: 41% 塔顶产品组成: >96% 塔底产品组成: >1% 2.操作条件: 操作压力: 4kpa (塔顶表 压) 进料热状态: 泡点进料 单板压降: 不大于0.7kpa

3.设备形式: 板式精馏塔,塔 顶为全凝器,中 间泡点进料,塔 底间接蒸汽加 热,连续精馏。 4.厂址: 齐齐哈尔市 (二)设计内容 二)设计内容 1.概述: 本次设计一筛板设计为例,筛板是在塔板上钻有均布的筛孔,上升气流经筛孔分散,鼓泡通过板上液层,形成气液密切接触的泡沫层.筛板塔的优点是结构简单,制造、维修方便,造价低,相同的条件下生产能力高于浮阀塔,塔板效率接近浮阀塔.他的缺点是操作范围小,小孔径筛板易堵噻不适宜

处理粘性大的,脏的和带固体粒子的料液.但设计良好的筛板具有足够的造作弹性,对易引起堵塞的物系可采用大孔径筛板,故近年来我国对筛板的应用日益增多. 2.设计流程的说明: 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器。釜液冷却器和产品冷凝器等设备。热量自塔釜输入,物料在塔内经多次部分汽化与与部分冷凝器进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定流程装置时应考虑余热的利用,注意节能。另外,为保持塔的操作稳定性,流程中除用泵直接送入塔原料外,也可以采用高位槽送料以免

受泵操作波动的影响 塔顶冷凝装置根据生产状况以决定采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用全分凝器。总而言之确定流程时要较全面,合理的兼顾设备,操作费用操作控制及安全因素。 连续精馏操作流程图 冷凝器 再沸器 3.操作条件:

500万吨年炼油减压蒸馏装置设计书

500万吨/年炼油减压蒸馏装置设计书 第一章文献综述 1.1石油工业简介 石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。由碳和氢化合形成的烃类构成石油的主要组成部分,约占95%~99%,含硫、氧、氮的化合物对石油产品有害,在石油加工中应尽量除去。不同产地的石油中,各种烃类的结构和所占比例相差很大,但主要属于烷烃、环烷烃、芳香烃三类。通常以烷烃为主的石油称为石蜡基石油;以环烷烃、芳香烃为主的称环烃基石油;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较多,凝固点高,硫含量低,镍、氮含量中等,钒含量极少。除个别油田外,原油中汽油馏分较少,渣油占1/3。组成不同类的石油,加工方法有差别,产品的性能也不同,应当物尽其用。 石油炼制工业是国民经济最重要的支柱产业之一,是提供能源,尤其是交通运输燃料和有机化工原料的最重要的工业。据统计,全世界总能源需求的40%依赖于石油产品,汽车,飞机,轮船等交通运输器械使用的燃料几乎全部是石油产品,有机化工原料主要也是来源于石油炼制工业,世界石油总产量的10%用于生产有机化工原料。 石油是十分复杂的烃类非烃类化合物的混合物。石油产品种类繁多,市场上各种牌号的石油产品达1000种以上,大体上可分为以下几类: ⑴燃料:如各种牌号的汽油、航空煤油、柴油、重质燃料油等; ⑵润滑油:如各种牌号的燃机油、机械油等; ⑶有机化工原料:如生产乙烯的裂解原料、各种芳烃和烯烃等; ⑷工艺用油:如变压器油、电缆油、液压油等; ⑸沥青:如各种牌号的铺路沥青、建筑沥青、防腐沥青、特殊用途沥青等; ⑹蜡:如各种食用、药用化妆品用,包装用的石蜡和地蜡; ⑺石油焦炭:如电极用焦、冶炼用焦、燃料焦等。 从上述石油产品品种之多和用途之广也可以看到石油炼制工业在国民经济和国防中的重要地位。 石油作为一种能流密度高,便于储存、运输、使用的清洁能源已广泛应用于国民经济的方方面面。按2001年中国各行业石油消费构成看,交通运输业占30%以上,是消费石油最多的行业。 在交通运输业中,汽车是最大的石油消费用户。在石油产品中,汽油的85%~90%和柴油的30%被汽车所消耗。面对中国目前汽车的飞速发展,保有量的迅猛增长,不能不未雨绸缪,以防石油短缺制约汽车工业的正常发展。从世界围看,汽车的出现把石油工业推向了快速发展的轨道,加快了石油产品的消费和需求。

蒸馏塔的设计---化工原理设计

过程装备设计课程设计-------分离苯-甲苯精馏塔设计 专业:过程装备与控制 班级: 3班 姓名: 彭云飞 学号: 0603020346 指导老师:杨启明 设计日期: 2010-11-17

目录 (一)设计任务书-------------------------------------------------3 (二)设计内容------------------------------------------------------3 (三)设计中符号说明------------------------------------------5 (四)精馏塔的物料衡算----------------------------------------7 (五)塔板数的确定----------------------------------------------8 (六)精馏塔塔体工艺尺寸设计------------------------------------9 (七)塔板主要工艺尺寸的计算----------------------------------11 (八)塔板负荷性能图------------------------------------------------ 13 (九)接管尺寸的选取-------------------- ----------------------17 (十)封头的选取------------------------------------------------18 (十一)法兰的选取------------------------------------------------18 (十二)筛板塔的工艺设计计算结果总表---------------------19

900万吨年减压蒸馏装置设计开题报告

本科毕业论文开题报告 题目900万吨/年原油减压蒸馏装置 初步设计 学生姓名蒋川学号0904040429 教学院系化学化工学院 专业年级2009级化学工程与工艺 指导教师段蜀波职称讲师 单位西南石油大学化学化工学院 辅导教师邹长军职称教授 单位西南石油大学 完成日期2012 年 3 月18 日

900万吨/年原油减压蒸馏装置初步设计(开题报告) 1选题目的、意义 随着社会的发展,我国经济的发展越来越依赖化石燃料的供应。而这些燃料中,石油被誉为“工业的血液”,其对我国经济发展的重要性是不言而喻的。石油是一种及其复杂的混合物。要从原油中提炼出多种多样的燃料、润滑油和其他产品,基本途径就是:将原油分割为不同沸程的馏分,然后按照油品的使用要求,除去这些馏分中的非理想组分,或者是经由化学转化形成所需要的组成,进而获得合格的石油产品。在这个过程中蒸馏就是一种合适的手段,而且也是最经济、最容易实现的手段。因此,蒸馏装置是炼油厂中一个很重要的装置。原油蒸馏是石油加工中第一道不可少的工序,故通常称原油蒸馏为一次加工,其他加工工序则称为二次加工[2]。原油的一次加工能力即原油蒸馏装置的处理能力,常被视为一个国家炼油工业发展水平的标志。原油常减压蒸馏在炼化企业加工过程中占有很重要的地位,其加工的好坏直接关系到后续产品质量和经济效益。因此,原油常减压蒸馏被称为石油加工的“龙头”。基于以上原因,几乎在所有的炼油厂中,原油的第一个加工装置就是常减压蒸馏装置。尽管近年来常减压蒸馏技术和管理经验不断创新,装置节能降耗和产品质量得到了显著的提高,但与国外先进水平相比,仍存在较大的差距,如装置耗能较大,分馏和减压拔出深度偏低,对含硫原油的适应性较差等。进一步的提高常减压装置的操作水平和运行水平显得日益重要,对提高炼油企业的经济效益也具有非常重要的意义。 本设计主要是依据《大庆原油评价报告》确定原油加工方案,进行原油常减压蒸馏的工艺设计。它的意义在于,通过常减压蒸馏对原油的处理,可以按所指定的产品方案将原油分割得到汽油、煤油、轻柴油、重柴油馏分以重油馏分等。可以减少渣油量,提高原油总拔出率。不仅能获得更多的轻质油品,也可为二次加工、三次加工提供更多的原料油。 2国内外研究现状 2.1国内现状 国内常减压蒸馏技术近年来有很大发展,在改进加工流程,提高设备效率,降低能耗,提高产品质量方面做了大量的开发性工作,常减压蒸馏装置的平均

常减压蒸馏工艺计算汇总

本科毕业设计工艺计算 题目年处理24万吨焦油常减压蒸馏车间初步设计院(系环化学院 班级:化工12-2 姓名:柴昶 学号: 2012020836 指导教师:张劲勇 教师职称:教授 2016年3月

第4章工艺计算 4.1设备选择要点 4.1.1 圆筒管式炉 (1)合理确定一段(对流段)和二段(辐射段)加热面积比例,应满足正常条件下,二段焦油出口温度400~410℃时,一段焦油出口温度在120~130℃之间的要求。 (2)蒸汽过热管可设置预一段或二段,要合理确定加热面积。当蒸气量为焦油量的4%时,应满足加热至400~450℃的要求。 (3)辐射管热强度实际生产波动在18000~26000千卡/米2·时,设计宜采用18000~22000千卡/米2·时,对小型加热炉,还可取低些。当选用光管时,对流段热强度一般采用6000~10000千卡/米2·时。 (4)保护层厚度宜大于200毫米,是散热损失控制在3%以内。 (5)火嘴能力应大于管式炉能力的 1.25~1.3倍。火嘴与炉管净距宜大于900毫米,以免火焰添烧炉管。 (6)辐射管和遮蔽管宜采用耐热钢(如Cr5Mo等)。 4.1.2馏分塔 (1)根据不同塔径确定塔板间距,见表4-1。 表4-1 塔板间距 塔径 (mm) 800 900 1000 1200 1400 1600 1800 2000 2200 2400 板距(mm) 350 350 350 350 400 400 450 450 450 450 400 400 450 450 500 500 500 500 (2)进料层的闪蒸空间宜采用板距的2倍。 (3)降液管截面宜按停留时间不低于5秒考虑。 (4)塔板层数应结合流程种类、产品方案、切取制度及其他技术经济指标综合确定。 4.2物料衡算 原始数据: 年处理量24万t/a 原料煤焦油所含水分4% 年工作日330日, 半年维修一次 每小时处理能力w=30303.03kg 可按30303 kg计算

减压蒸馏

减压蒸馏 一、基本原理 很多有机化合物,特别是高沸点的有机化合物,在常压下蒸馏往往发生分解、氧化或聚合的物质。在这种情况下,采用减压蒸馏方法最为有效。 液体的沸点是指它的蒸气压等于外界压力时的温度,因此液体的沸点是随外界压力的变化而变化的;从另一个角度来看,由于液体表面分子逸出所需的能量随外界压力的降低而减少。因此,降低蒸馏体系的压力,则液体的沸点下降,这种在减压下的蒸馏操作称为减压蒸馏或真空蒸馏。一般的高沸点有机化合物,当压力降低到20mmHg时,沸点比常压沸点要低100~120℃。可利用图1的沸点-压力的经验计算图,近似地找出高沸点物质在不同压力下的沸点。例如,水杨酸乙酯常压下的沸点为234℃,现欲找其在20mmHg 的沸点为多少度,可在图1的b线上找出相当于234℃的点,将此点与c线上20mmHg处的点联成一直线,把此线延长与a线相交,其交点所示的温度就是水杨酸乙酯在20mmHg时的沸点,约为118℃。 图1. 沸点-压力的经验计算图 二、减压蒸馏装置 减压蒸馏装置主要由蒸馏、抽气(减压)、安全保护和测压四部分组成。简单的减压蒸馏装置如图2所示。蒸馏部分由蒸馏瓶、克氏蒸馏头、毛细管、温度计及冷凝管、接受器等组成。蒸馏烧瓶内蒸馏的液体约占其容量1/3~1/2,不可超过1/2。克氏蒸馏头可减少由于液体暴沸而溅入冷凝管的可能性;而毛细管的作用,则是导入空气,不断形成小气泡作为气化中心,使蒸馏平稳,避免液体过热而产生暴沸冲出现象,这对减压蒸馏是非常重要的。毛细管口距瓶底约1~2mm,为了控制毛细管的进气量,可在毛细玻璃管上口套一段软橡皮管,橡皮管中插入一段细铁丝,并用螺旋夹夹住。蒸出液接受部分(图2中16和17),通常用多尾接液管连接两个或三个厚壁梨形或圆形烧瓶,在接受不同馏分时,只需转动接液管,使不同的馏分流入指定的接受器中,而不中断蒸馏。在减压蒸馏系统中切勿使用有裂缝或薄壁的玻璃仪器,尤其不能用不耐压的平底瓶(如锥形瓶、平底烧瓶等),以防止内向爆炸。 抽气部分用减压泵,最常见的减压泵有水泵和油泵两种。

分离乙醇水精馏塔设计(含经典工艺设计流程图和塔设备图)

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容: 1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算;

5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分 数,下同),其余为水;产品的乙醇含量不得低于90%;塔 顶易挥发组分回收率为99%,生产能力为50000吨/年90% 的乙醇产品;每年按330天计,每天24小时连续运行。塔顶 压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽 压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水;(2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容: 1、设计说明书的内容

1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算; 5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,

下同),其余为水;产品的乙醇含量不得低于90%;塔顶易挥 发组分回收率为99%,生产能力为50000吨/年90%的乙醇产 品;每年按330天计,每天24小时连续运行。塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸 汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740 原料乙醇组成 xD0.7788 塔顶易挥发组分回收率90% 平均摩尔质量 MF = 由于生产能力50000吨/年,. 则 qn,F 所以,qn,D 2)塔板数的确定: 甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设 计中理论塔板数的计算采用图解法。由乙醇和水有关物性的

蒸馏塔设备规范

塔设备设计 、塔设备的结构设计 塔设备在石油、化工等生产中,广泛用于精馏、吸收、萃取、气体增湿、离子交换等单元操作中。虽然所进行的工艺过程(单元操作)各不相同,其结构形式各异但根据塔的内件结构可将塔设备划分为板式塔和填料塔两大类。不论是板式塔还是填料塔,均由以下几部分组成: 塔体由筒体、封头、联接法兰等组成。 内件由塔盘、填料及支承装置组成。 支座一般采用裙式支座。 附件包括人孔、手孔、各种接管、吊柱、操作台、扶梯、保温层等。 (一)板式塔 图5-1 板式塔

1 板式塔的总体结构及其分类 板式塔的结构示意图如图5-1 所示。 板式塔的主体部分由塔体和裙座构成。 塔体和裙痤多采用钢板焊制。裙座为上端与塔体底封头焊接在一起,下端通过地脚螺栓固定在基础上。有的塔体需用铸钢制造时,采用以每层塔盘为一段,用法兰联接的形式。 板式塔的内件主要由多层塔盘组成。各层塔盘的结构相同,由气液接触元件(如浮阀、筛孔、泡罩等)、塔盘板、溢流装置、降液管受液盘以及支承件、紧固件等元件组成。一般塔盘间距相同。开有人孔的塔盘间距较大,通常为700mm 。最底一层塔盘到塔底的距离也 比塔盘间距高,因为塔底空间起着贮槽的作用,保证料液有足够的储存,使塔底液体不致流空。最高一层 塔盘和塔项距离也高于塔盘间距,在这一段上往往装有除沫器。 塔盘结构有整块式和分块式两种。采用形式与塔径大小有关,当直径小于700mm 的板式塔采用整块式塔盘,由于塔体分段,所以塔盘的安装可在塔外进行,塔体不需开设人孔。当塔的直径大于700mm 时,应 采用分块式塔盘,塔体上开设人孔,塔盘的装、拆可以在塔内进行。 按塔盘上气、液两相接触元件结构的不同,板式塔又可分为:泡罩塔、筛板塔、浮阀塔、舌形塔以及各种复合型塔。目前,国内石油化工生产中使用较多的板式塔为筛板塔和浮阀塔。1.整块式塔盘结构采用整块式塔盘的塔体是由若干塔节组成,各塔节之间用法兰联接,每个塔节安装一至数块塔盘。根据塔盘的支承方式,整块式塔盘分为定距管式和重叠式两类。 图5-2 定距管式塔盘塔节 (1)定距管式塔盘 定距管式塔盘(见图5-2 )由塔盘板、塔盘圈及带溢流的降液管组成。支承是由定距

(完整版)22原油减压蒸馏装置设计_毕业设计论文

毕业设计(论文)题目: 22原油减压蒸馏装置设计

原油减压蒸馏控制系统设计 摘要 石油在加热条件下容易受热分解而使油品颜色变深、胶质增加。在常压蒸馏时,为保证产品质量,炉口温度一般不高于370℃,通过常压蒸馏,可以把原油中350℃以前的汽油、煤油、轻柴油等直流产品分离出来。350℃以上的高沸点馏分则难以蒸出,而这部分馏分油是生产润滑油和催化裂化原料油的主要原料,但是由于这部分油在高温下会发生分解反应,只能通过降低系统压力从而降低其沸点的方法来获得,所以一般情况下,炼油厂都会在常压蒸馏之后设置减压蒸馏过程,用以获取更大的经济效益。 根据生产任务的不同减压塔可以分为润滑油型和燃料油型两种。本次设计参考大庆原油的基本性质,其属于低硫石蜡基原油,其特点是高含蜡,高凝点,沥青质含量低,350~500℃减压馏分的润滑油含量约占原油的15%,而粘度指数可达90~120,是生产润滑油的良好原料,加工大庆原油时可以根据市场对产品的需求、经济效益等方面的因素,采用润滑油型加工方案。 本次设计根据任务书的要求,参照大庆原油的常减压蒸馏的部分操作数据,设计一座年处理量为300万吨的减压蒸馏装置,设计的主要内容包括:工艺流程的确定;抽真空系统相关参数的计算;加热炉负荷计算。 关键词:减压塔计算抽真空系统加热负荷

ABSTRACT Oil under color, increases in glial, in the atmospheric distillation, in order to ensure product quality, the mouth temperature is not 370 ℃,by atmospheric distillation, gasoline, kerosene, light diesel oil that lower than 350 ℃of DC products are separated. The 350 ℃distillation fraction is difficult to isolate, but this part o the distillate is the main raw material of producing lubricants and fluid catalytic cracking feedstock. As this part of the oil at , therefore, under normal circumstances, refinery will set the vacuum distillation process after distillation at normal pressure to obtain greater economic benefits. According to different production tasks, vacuum tower can be divided into two kinds of lubricant type and fuel type, the design references the basic nature of Daqing crude oil. It belongs to low sulfur paraffinic crude oil, characterized by of lubricating oil. Daqing crude oil can be processed in accordance with market demand on the production level, economic and other factors, using lubricant type processing program. According to the task requirements, refers to the operation data of Daqing crude oil vacuum distillation ,to design an annual unit. The main design elements include: vacuum tower of the industrial design calculations; vacuum system related calculations; Key words: vacuum tower calculations;vacuum systems;)和故障容错(Fault Tolerance)。提高计算机控制系统硬件可靠性的措施:冗余结构设计;提高元器件和部件的可靠性;合理设计系统结构;采用抗干扰技术。 本系统的上位机选用IPC-619研华工控机,深度仅为429 mm的紧凑型,4U

板式精馏塔设计流程

筛板塔设计 【设计步骤】 (一)确定设计方案和操作流程; (二)进行工艺设计; (三)塔板设计(塔板主要工艺尺寸、流体力学校核、塔的操作性能图); (四)板式塔结构设计(塔高); (五)管路和附属设备的计算与选型; (六)图纸绘制; (七)编制设计说明书。 【设计说明书内容】 (一)说明书目录; (二)设计任务书(设计题目、设计任务、设计条件、设计内容和要求); (三)设计方案简介(流程的设计及说明); (四)工艺计算; (五)塔板设计(塔板主要工艺尺寸、流体力学校核、塔的操作性能图); (六)板式塔结构设计(塔高); (七)精馏塔辅助设备的计算和选型; (八)设计结果汇总; (九)结束语(设计评述); (十)参考文献。 【设计计算】(工艺计算、塔板设计) (一)设计方案的确定 1.二元混合物的分离,采用连续精馏流程。 2.采用泡点进料,将原料液加热至泡点后送入精馏塔内(q=1)。 3.塔顶上升蒸气全凝器冷凝,冷凝液在泡点下一部分回流至塔内。 4.操作压力:4kPa(塔顶表压)。 5.单板压降:≤0.7 kPa。 6.全塔效率:E T =55%。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分数(x F 、x D 、x W )。 2.原料液及塔顶、塔底产品的平均摩尔质量(M F 、M D 、M W )。 3.物料衡算(F、D、W)。 (三)塔板数的确定 1.理论板层数N T 的求取。 (1)图解法(x-y图、两操作线) (2)逐板计算法(相平衡、两操作线) (3)简捷计算法(吉利兰关联图) 2.实际板层数的求取(理论板层数/塔效率) (四)精馏塔、提馏塔的工艺条件及有关物性数据的计算 1.操作压力的计算 (1)精馏段平均压力 (2)提馏段平均压力 2.操作温度的计算

蒸馏塔与裙座的机械设计

《化工设备基础及设计》课程设计蒸馏塔与裙座的机械设计

目录 板式塔设备机械设计任务书 (1) 1. 设计任务及操作条件 (1) 2. 设计内容 (1) 3. 设计要求 (1) 1、塔的设计条件及主要物性参数表 (2) 2、塔设备设计计算程序及步骤 (3) 按设计压力计算塔体和封头厚度 (3) 塔设备质量载荷计算 (3) 自振周期计算 (5) 地震载荷与地震弯矩计算 (5) 风载荷与风弯矩计算 (7) 偏心弯矩 (9) 最大弯矩 (9) 圆筒轴向应力校核和圆筒稳定校核 (10) 塔设备压力试验时的应力校核 (11) 裙座轴向应力校核 (12) 基础环设计 (14) 地脚螺栓计算 (15) 3、设计结果汇总表 (16) 4、设计评论 (17) 5、参考资料 (18) 附图1 浮阀塔装配图

板式塔设备机械设计任务书 1. 设计任务及操作条件: 试进行一蒸馏塔与裙座的机械设计。 已知条件为:塔体内径Di=1800mm,塔高40m,工作压力为1.2MPa,设计温度为350℃,介质为原油,安装在湛江郊区,地震强度为7度,塔内安装45层浮阀塔板,塔体材料选用20R,裙座选用Q235A。 2. 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 3. 设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(2#图纸)

过程控制课程设计-精馏塔温度控制系统

、 过程控制系统与仪表课程设计 目录 : 一、研究对象.............................................. 错误!未定义书签。 二、研究任务.............................................. 错误!未定义书签。 三、仿真研究要求............................................................................. . (4) 四、传递函数计算............................................................................. . (5) 五、控制方案.............................................. 错误!未定义书签。 1. 单回路反馈控制系统 (6) $ 1) 控制方案的系统框图和工艺控制流程图................ 错误!未定义书签。 2) PID参数整定 (7) 3) 系统仿真.......................................... 错误!未定义书签。 4) 对象特性变化后仿真 (12) 2. Smith预估补偿控制系统................................. 错误!未定义书签。 1) 控制方案的系统框图和工艺控制流程图................ 错误!未定义书签。 2) 控制系统方框图.................................... 错误!未定义书签。 3) 系统仿真 (21) · 3. 前馈-反馈控制系统 1) 控制方案的系统框图和工艺控制流程图 (25) 2) 系统仿真 (27) 3) 对象特性变化后仿真............................................................................. . (30)

精馏塔设计过程

化工原理课程设计任务书 苯-甲苯分离过程板式精馏塔设计1设计条件 原料含量(质量分数)处理能力(T/Y)馏出液中含量(质 量分数) 釜液中含量(质量 分数) 塔类型 0.36 65000 0.91 0.03 筛板 每年实际生产天数:330(一年中有一个月检修) 精馏塔塔顶压强:4Kpa 冷却水温度:30℃ 饱和水蒸汽压力:2.52 / k cm gf 2 设计任务 完成精馏塔工艺要求,精馏设备设计,有关附属设备的设计和选用,绘制大控制点工艺流程图,塔板结构简图,编制设计说明书 3 设计图要求 1、用1号图纸绘制装置图一张:一主视图,一俯视图,四个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。 2、用2号图纸绘制设备流程图一张。 3、用坐标值绘制溶液的y-x图一张,并用图解法求理论塔板数。

目录 1绪论 (4) 1.1 设计方案 (4) 1.2选塔依据 (5) 2 精馏塔的工艺设计 (5) 2.1 全塔工艺设计计算 (6) 2.1.1 进料组成的确定及物料衡算 (6) 2.1.2 平均相对挥发度的计算 (7) 2.1.3 最小回流比和适宜回流比的选定 (8) 2.1.4 精馏段和提馏段操作线方程 (8) 2.1.5 逐板法确定塔板数 (9) 2.1.6全塔效率 (10) 2.1.7 实际塔板数和实际加料位置 (11) 2.2 塔的工艺条件及物性数据计算 (11) 2.2.1 操作压强P (11) 2.2.2 操作温度T (12) 2.2.3 塔内各段气、液两相组分的平均分子量 (12) 2.2.4精馏段和提馏段各组分的密度 (13) 2.2.5 液体比热容 (14) 2.2.6 液体表面张力 (14) 2.2.7液体热导率................................................................. .. (15)

板式蒸馏塔实验报告

板式精馏塔实验报告 学院:广州大学化学化工学院 班级:12化工2 姓名:朱志豪 其他组员:陈啸翔、毛勇、冯丹艳、利巧怡学号:1205200018 指导老师:陈胜洲、郑文芝 实验时间:2014.11.19

摘要:本文对筛板精馏塔的性能进行全面的测试,主要对乙醇正丙醇精馏过程中的不同 实验操作条件进行探讨,得出了回流比、进料流量等与全塔效率的关系,确定了该筛板精塔的最优实验操作条件。 关键词:精馏;回流比;全塔效率 Abstract:The sieve plate distillation column performance comprehensive testing, mainly on ethanol isopropyl alcohol distillation process in the different experimental conditions were discussed, the reactor concentration, reflux ratio, feed location and the entire towerThe relationship between the efficiency of sieve plate tower, determine the optimal experimental conditions of fine. Key words: Distillation;reflux ratio; the tower efficiency 引言:精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要 章节[2]。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题[4]。这类问题取材于工程实践,是培养工程观念、提高学生解决实际问题能力的好方法,但同时也成为学习的难点。在工业生产中,充分掌握操作条件各类因素的影响,对提高产品的质量稳定生产,提高效益有重要的意义。本研究从塔釜浓度、回流比、进料位置、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察[1],得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义通过本实验我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义[3]。 1.实验部分 1.1 实验目的 1. 充分利用化工原理知识,对精馏过程多实验方案进行设计,并进行实验验证,得出实 验结论,以掌握实验研究的方法; 2. 学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响; 3.学习精馏塔性能参数的测量方法,并掌握其影响因素; 4.测定精馏过程的动态特性,提高学生对精馏过程的认识;

原油常压蒸馏塔设计.

石油炼制工程课程设计 设计题目: 5.8Mt/a原油常压蒸馏塔设计 学院:石油化工学院 学生姓名:马钰、岳炜烨 学号:1210140094、1210140095 专业班级:化学工程与工艺(本)1202 指导教师:刘晓瑞 2015年12月

银川能源学院课程设计评审意见表 指导教师评语: 第一名小组成员成绩:第二名小组成员成绩: 指导教师: 年月日 答辩小组评语: 第一名小组成员成绩:第二名小组成员成绩: 评阅人: 年月日 课程设计总成绩第一名小组成员成绩:第二名成员小组成绩:答辩小组成员签字: 年月日

课程设计任务书设计题目 5.8Mt/a原油常压蒸馏塔设计 学生姓名 马钰 岳炜烨 所在学院石油化工学院 专业、年 级、班 化学工程与工艺 1202(本)班 设计要求1、根据设计要求选择并绘制原油常减压蒸馏装置工艺流程图 2、根据设计参数(原油及产品性质、产品收率等)进行全塔的工艺计算并绘制常压塔的计算草图及全塔的气液相负荷图 3、根据设计参数进行常压塔的尺寸并绘制常压塔设备图 4、根据设计参数塔板的水力计算并绘制全塔的塔板负荷性能图(选作) 学生应完成的工作1、根据设计要求选择并绘制原油常减压蒸馏装置工艺流程图 2、根据原料油性质及产品方案确定产品收率,作出物料平衡(列出油品性质) 3、确定汽提方式及汽提蒸汽用量,选择塔板类型确定塔板数,画出精馏塔草图 4、确定塔各部位压力和加热炉出口压力,确定进料过汽化度及汽化段温度和塔底温度,假设塔顶及各侧线抽出温度,作全塔热量平衡,确定回流热并分配回流热 5、校核各侧线抽出温度、塔顶温度,绘制出全塔的气液相负荷分布图 6、计算塔径和塔高绘制常压塔设备图 7、作塔板水力学核算,绘制出全塔的塔板负荷性能图(选作) 参考文献徐春明,杨朝合.石油炼制工程[M].北京:石油工业出版社,2009,4 上海化工学院炼油教研组.石油炼制设计数据图表集(上下册)[M].上海:上海化工学院,1978 工作计划第1-2天:查阅文献,收集资料,选择并绘制常减压蒸馏装置工艺流程图进行原油及油品性质计算和产品收率及物料平衡 第3-4天:进行全塔的热量衡算并绘制出精馏塔的计算草图 第5-6天:进行塔的温度校核并绘制出全塔的气液相负荷分布图 第7-8天:进行塔的尺寸并绘制全塔的设备图及塔板水力计算并绘制塔板负荷性能图(选作) 第9天:整理设计资料,制作PPT,准备答辩 第10天:答辩 任务下达日期:2015 年11月24 日 任务完成日期:2015 年12月 3 日 指导教师(签名):学生(签名):

常减压蒸馏装置常压塔工艺设计

化工专业课程设计常减压蒸馏装置常压塔工艺设计 学校名称:广东石油化工学院 专业名称:化学工程与工艺 班别: 姓名: 学号: 指导教师: 完成时间:2012年02月01日至2012年10月日 广东石油化工学院

课程设计说明书 设计名称:化工专业课程设计 题目:530万吨/年原油常减压蒸馏装置设计 常压分馏塔工艺设计 学生:学号: 班别: 专业:化学工程与工艺 指导教师: 日期:2012 年02 月20 日 广东石油化工学院 化学工程与工艺专业

设计任务书 2012 年9 月30 日批准 系主任谢颖 发给学生 1.设计题目: 原油常减压蒸馏装置工艺设计 2. 学生完成全部设计之期限: 2013 年10 月20 日 3. 设计之原始数据: (另给) 4. 计算及说明部分内容: (设计应包括的项目) 一、总论 1.概述;2.文献综述;3.设计任务依据;4.主要原材料;5.其他 二、工艺流程设计 1. 原料油性质及产品性质; 2. 生产方案; 3.工艺流程; 4. 蒸馏塔类型、塔器结构;5.环保措施

三、常压蒸馏塔工艺计算 1. 工艺参数计算; 2. 物料平衡计算; 3.操作条件的确定; 4. 蒸馏塔各点 温度核算;5. 蒸馏塔汽液负荷计算 四、常压蒸馏塔尺寸计算 1. 塔径计算; 2. 塔高计算 五、常压蒸馏塔水力学计算 六、车间布置设计 1. 车间平面布置方案; 2. 车间平面布置图; 3. 常压蒸馏塔装配图 七、参考资料 5. 绘图部分内容: (明确说明必绘之图) (1) 原油常减压蒸馏装置工艺流程图 (2) 车间平面布置图 (3) 常压蒸馏塔装配图 插图: 主要塔器图, 蒸馏塔汽液负荷分布图, 计算草图等. 6. 发出日期: 2013 年9 月30 日 设计指导教师: 完成任务日期: 2013 年10 月日 学生签名: 石油化工生产技术课程设计 原油常减压蒸馏装置工艺设计基础数据

相关主题
文本预览
相关文档 最新文档