当前位置:文档之家› 蒸馏塔设备规范

蒸馏塔设备规范

蒸馏塔设备规范
蒸馏塔设备规范

塔设备设计

、塔设备的结构设计

塔设备在石油、化工等生产中,广泛用于精馏、吸收、萃取、气体增湿、离子交换等单元操作中。虽然所进行的工艺过程(单元操作)各不相同,其结构形式各异但根据塔的内件结构可将塔设备划分为板式塔和填料塔两大类。不论是板式塔还是填料塔,均由以下几部分组成:

塔体由筒体、封头、联接法兰等组成。

内件由塔盘、填料及支承装置组成。

支座一般采用裙式支座。

附件包括人孔、手孔、各种接管、吊柱、操作台、扶梯、保温层等。

(一)板式塔

图5-1 板式塔

1 板式塔的总体结构及其分类

板式塔的结构示意图如图5-1 所示。

板式塔的主体部分由塔体和裙座构成。

塔体和裙痤多采用钢板焊制。裙座为上端与塔体底封头焊接在一起,下端通过地脚螺栓固定在基础上。有的塔体需用铸钢制造时,采用以每层塔盘为一段,用法兰联接的形式。

板式塔的内件主要由多层塔盘组成。各层塔盘的结构相同,由气液接触元件(如浮阀、筛孔、泡罩等)、塔盘板、溢流装置、降液管受液盘以及支承件、紧固件等元件组成。一般塔盘间距相同。开有人孔的塔盘间距较大,通常为700mm 。最底一层塔盘到塔底的距离也

比塔盘间距高,因为塔底空间起着贮槽的作用,保证料液有足够的储存,使塔底液体不致流空。最高一层

塔盘和塔项距离也高于塔盘间距,在这一段上往往装有除沫器。

塔盘结构有整块式和分块式两种。采用形式与塔径大小有关,当直径小于700mm 的板式塔采用整块式塔盘,由于塔体分段,所以塔盘的安装可在塔外进行,塔体不需开设人孔。当塔的直径大于700mm 时,应

采用分块式塔盘,塔体上开设人孔,塔盘的装、拆可以在塔内进行。

按塔盘上气、液两相接触元件结构的不同,板式塔又可分为:泡罩塔、筛板塔、浮阀塔、舌形塔以及各种复合型塔。目前,国内石油化工生产中使用较多的板式塔为筛板塔和浮阀塔。1.整块式塔盘结构采用整块式塔盘的塔体是由若干塔节组成,各塔节之间用法兰联接,每个塔节安装一至数块塔盘。根据塔盘的支承方式,整块式塔盘分为定距管式和重叠式两类。

图5-2 定距管式塔盘塔节

(1)定距管式塔盘

定距管式塔盘(见图5-2 )由塔盘板、塔盘圈及带溢流的降液管组成。支承是由定距

管和拉杆将塔盘紧固在塔节内的一组支座上。

教材 P493 图 17-2 )

(1.1)塔节尺寸 塔节尺寸的确定主要考虑安装和检修的方便。塔径小只能伸入手臂安装 ; 塔径大可以进

入塔节内安装, 塔节长度可取较大。 由于受拉杆长度的限制, 并避免发生安装困难,每节塔 内塔盘数取

4~6 块,塔节长度 L 和板间距 H 的常用尺寸参见表 5-1 。

(1.2)塔盘板

图 5-3 定距管式塔盘板

塔盘板如图 5-3 所示, 塔盘板的厚度选取见表 5-2,板上开有阀孔、拉杆孔、 降液管孔 和泪孔。

(教材 P494图 17-5)

定距管式塔盘塔节尺寸

(1.3)塔盘圈 塔盘圈是由与塔盘板同样材料焊成的圆环。为了在塔盘与塔体间的缝隙中安放封用密 封用石棉绳,塔盘圈有角焊和翻边两种。 (教材 P 497

图 17-9)

图5-4 塔盘圈

角焊结构此结构系将塔盘圈角焊于塔板上组成塔盘(图5-4 a、b)。

在没有特殊要求时,可用单面角焊,焊缝可在塔盘圈内侧,也可在外侧。这种塔盘圈制造简单,但要注意减少焊接变形引起的塔板不平。

翻边结构此结构的塔盘圈直接由塔盘板翻边而成,因此可避免焊接就形,保证尺寸正确,缺点是需要冲压模具。当直边较短或制造条件许可时,可以整体冲压(图5-4c)。否则应另做一个塔盘圈与塔盘板对接(图5-4d)

塔盘圈的结构尺寸如图5-4,塔盘圈的高度h1 一般可取70mm,但不得低于溢流堰高度。塔盘圈外缘与塔体内壁的间隙一般为10-12mm。填料支承圈用φ 8-10mm 的圆钢弯成,其焊

接位置h2 随填料圈数而定,一般可以取30 或40mm 。塔盘圈的结构尺寸参见表5-2 。

表5-2 整块式塔盘结构尺寸

注:1、当腐蚀速度大于0.1mm/a,塔盘板厚度适当增加或在塔盘板下面加筋(应采用间断焊接,以防止塔盘板变形)。

2、泡罩的升气管胀接在塔盘上时,须适当增加塔盘厚度。(1.4)塔盘密封装置

图5-5 塔盘密封结构当塔盘装入塔节后,塔盘圈与塔节内壁间的间隙就成了填料函。常见的密封结构见图

5-5。它由石棉绳填料,压圈、压板、螺柱及螺母组成。螺柱焊在塔盘圈上,焊接高度25~30mm ,当拧紧螺母,压板压向压圈,而压圈压缩填料使之变形以达到密封的目的。每个压圈上焊两个吊耳,见图5-6 以便装拆,密封填料一般采用φ10~12mm 的石棉绳,放置2~3 层。图5-5 中(a)适用于塔盘圈比较低的情况;(b)(c)适用塔盘圈比较高的情况。压板与螺柱尺寸见图5-7。(教材P498 图17-10 相同)

图5-6 压圈

图 5-8 降液管

(1.5) 降液管

降液管分为圆形和弓形三种,如图

5-8 所示。图中( a )( b )为圆形降液管,其中( a )

图 5-7 压板与螺柱

是用管的伸出端兼作溢流堰,而图(b)是另外设有溢流堰,圆形降液管的降液能力小,管中易为泡沫所充满,产生拦液现象,因此,只有在液体负荷较小或塔径较小时用,图(c)

为弓形降液管,它最大限度地利用于塔的载面,不仅降液能力大,而且具有气、液分离较好优点,故使用较多,尤其用于大塔。降液管由平板和弧形板焊接而成,平板上部有凸出肩架,组装时使其架于塔板上,操作时作为溢流堰。堰长L 和堰高H 由工艺决定,常取L=(0.6~0.8)D1 (塔盘内径),

h=30~40mm 。(教材P499图17-12~13 相同)塔的最下层塔盘降液管末端,应设液封槽(图5-8(d))。(教材P499图17-14相同)(1.6)定距管支承结构定距管支承结构由拉杆、定距管、塔盘支座和锁紧螺母组成,见图5-9 。定距管对塔盘起支承作用并保证相邻两塔盘的板间距。安装时先根据安装尺寸把四个支座焊在塔壁上,将四根下端拧好螺母的拉杆穿入支座的拉杆孔,把下层的一块塔盘从上套进拉杆,塔板支承在支座上,再把定距管套进拉杆,然后装好密封装置。这样依次装入塔盘。最上层一块塔盘

的上面用短套管套进拉杆再放上垫圈,用双螺母锁紧。

图5-9 定距管支承结构

吸收塔设备管理制度

吸收塔设备管理制度 设备基本信息 一、设备基本信息 设备名称:吸收塔(1台)启用时间:年8月 型号/规格:Φ4600*63100 设备类别:B 所在生产线:铵酸工段——硝酸制造厂家:四川蓝星机械有限公司辅助设施:配套的脱盐水管(DN40)、稀硝酸管(DN50)、循环冷却水管(DN219)、法兰、阀门 压力表、温度计等 管理责任人:维修保养责任人: 操作责任人: 二、设定运行参数: 循环水上水、回水温度20~35℃,出吸收塔尾气温度15~25℃,吸收塔压差50~70MPa,吸收塔液位40~60%,吸收塔出口酸浓度55~80%。 三、备品备件名称:无 四、润滑及密封:无 五、设备图纸、说明书等其他需要记载的信息:有全套图纸 维修保养规定 一、日常检查保养内容及要求: 1、严格执行操作规程和设备维护检修。每周一需由检验员对氯离子进行点滴测定,氯离子控制在500ppm左右。 2、按规程规定的时间、内容巡回检查,对需停车处理的问题应记录在案,待停车检修时处置。 3、保持设备及环境清洁、整齐。 4、日常维修保养以当班操作人员为主,当班值班维修人员为辅。由管理责任人、、对以上事项的执行情况进行检查,督促当班操作人员及当班维修人员严格按日常保养内容完成此工作,并完善相关记录。 二、专项检查保养方法、周期、内容及要求: 监控压差变化,酸漏压差减少或循环水差,换热效果差等需停车检查。1至12层如循环水堵,则热量上移,13至27层冰冻水异常上升时,热量上升等,则根据工艺参数变化决定拆开几层检查,并对检查发现的问题进行处置。 该设备至少三年检修一次;当排出的循环水内酸含量高或换热效果差后需待停车后进行保养。 1、保养内容:拆开检查对所发现的隐患进行合理处置;对所配套管线、阀门、液位计、软连接进行检查,更换或修复损坏部件。对塔壁厚度进行探伤检查腐蚀情况,更换损坏冷却盘管,处理所配套管线、阀门、法兰、垫片泄漏点。 2、保养以维修责任人员为主,操作责任人员为辅。保养时管理责任人、、需在检修保养现场进行指导,督促维修人员和操作人员按保养要求和内容完成保养任务,并完善相关记录。

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

第三章 蒸馏和吸收塔设备自测

第三章蒸馏和吸收塔设备 一、填空题(40分) 1.板式塔是_ ___接触式气液传质设备;填料塔是____接触式气液传质设备。 2.塔板的主要类型有____、____、____、____等。 3.气体通过塔板的总压降包括____、____和____。 4.塔板上的异常操作现象包括____、____、____。 4.塔板的负荷性能图由五条线构成,它们是____、____、____、____、____,塔板适宜的操作区是____区域,而实际操作时应尽可能将操作点位于适宜操作区的。 5.塔板的操作弹性是指________。 6.填料的几何特性参数主要包括____、____、____等。 7.填料塔内件主要有____、____、____、____。 8.填料操作压降线(D p/Z~u)大致可分为三个区域,即____、____和____。填料塔操作时应控制在____区域。

1.逐级(不连续);微分(连续) 2.筛式板、浮阀板、泡罩塔板、舌型塔板 3.干板压降以及克服板上液层的静压强和液体的表面张力 4.漏液现象、液泛现象、雾沫夹带现象 5.两极限的气相流量之比---- 操作弹性 6.比表面积、空隙率、填料因子 7.填料支撑板、液体分布器、液体再分布器、除沫装置 8.恒持液量区、载液区和液泛区;载液区 二、选择题(30分) 1.气液在塔板上有四种接触状态, 优良的接触状态是(),操作时一般控 制在()。 ①鼓泡接触状态②蜂窝接触状态③ 泡沫接触状态④喷射接触状态 2.板式塔塔板的漏液主要与()有关,液沫夹带主要与()有关,液泛主要与()有关。 ①空塔气速②液体流量③板上液面落差④塔板间距 3.()属于散装填料,()属于规整填料。

发电厂所需系统及设备

发电厂所需设备及部分技术参数 输煤系统 名称 汽车卸车机,叶轮给煤机,堆取料机,带式输送机,实物校验装置,滚动筛,碎煤机 各类泵,栈桥冲洗器 锅炉 名称 磨煤机,给煤机(包括电动机),磨煤机润滑油站GBZ-63,锅炉停机泵,送风机,引风机 一次风机,密封风机,电除尘器,连排扩容器,定排扩容器,暖风器及疏水箱 暖风器疏水泵配电箱,电梯,煤斗振动器,一次风机入口消音器 磨煤机润滑油站GBZ-63,磨煤机轴承承检修用环莲葫芦3吨,磨煤机绞笼、电机检修用电动葫芦,墙式旋臂起重机检修用电动葫芦10吨,送风机及电机检修用电动葫芦,引风机及电机检修用电动葫芦,一次风机及电机检修用电动葫芦,手拉葫芦(全厂共用),二氧化碳(磨煤机油站用),大板梁,汽包,大屋顶,过热器,后包墙,省煤器,燃煤气,锅炉,炉水循环泵,吹灰装置 回转式空气预热器,双进双出钢球磨煤机,炉水泵停炉冷却水泵,磨煤机润滑油站,送风机 一次风机,密封风机,电气除尘器,连续排污扩容器,定期排污扩容器,暖风器,电梯,煤斗振动器,一次风入口消音器,磨煤机润滑油油坑泵,检修起吊设施,除尘设施 风机参数 风量(Nm3/h)风压 (Pa) 电机转速 (r/min) 电机功率 (KW) 电机电压 (V) 额定电流 (A) 一次风机17500020700148012506000143二次风机120000107001480450600053引风机501000555075012506000150高压流化 风机 282040000453802 CG-220/9.81-MX型循环流化床 锅炉主要技术参数: 额定蒸发量:220T/H; 过热蒸汽出口压力:9.81mpa; 过热蒸汽温度:540℃; 给水温度:215℃; 空气预热器进口空气温度20℃; 排烟温度:140℃; 锅炉效率:90%; 锅炉设计燃料发热量:11670KJ/KG

化工原理下册第三章 蒸馏和吸收塔设备习题解答

化工原理下册第三章 蒸馏和吸收塔设备习题解答 1.解: 由于设计类题目并不一定有“标准答案”,此处的解仅供参考 (1) 精馏段塔 取板间距0.45T H m =,又知总板效率0.6T E =,则实际塔板数 /6/0.610P T T N N E === 精馏段塔高100.4545T T Z N H =?=?= (2) 塔径 下降液体的平均流量 3 11.8/36000.00328/S L m s == 上升蒸汽的平均流量3 14600/3600 4.05/S V m s == 11 220.00328801.5()()0.0215 4.05 1.13S L S V L V ρρ=?= 取板上液层高度 0.07l h m = 则 0.450.070.38T l H h m -=-= 由以上数据查史密斯关联图,得200.078C = 液体表面张力 20.1/mN m σ=,故C 值不需校正 C =C 20=0.078 极限空塔气速 max 0.078 2.07/m s μ=== 取安全系数为0.7,则空塔气速 0.7 2.07 1.45/m s μ=?= 塔径 1.87D m === 根据塔径标准圆态,取D =2.0m 实际空塔气速 22 4/4 4.05/3.142 1.29/S V D m s μπ==??= (3) 溢流装置 选用单溢流弓形降液管,取溢流延堰长 0.6550.6552 1.31l D m ==?= 则 25211.8 6.03(1.31)n W L l -== 因/0.655W l D =,查取材图3-8知液流收缩系数E =1.02 则堰上液层高度 2 32.8411.81.02()0.013100 1.31ow h m =??= 溢流堰高 0.070.0130.0 w l o w h h h m =-=-= 降液管底隙高度 0.0060.0570.0060.051o w h h m =-=-= 按0.65w l D =,,查取材图(3-10),得 0.122 d w D =,0.07f T A A =

吸收塔系统调试措施

山西国际能源集团宏光发电有限公司联盛2×300MW煤矸石发电项目 烟气脱硫工程 吸收塔系统调试措施 编制: 审核: 批准: 山东三融环保工程有限公司 2012 年8月

目录 1、系统概述 (1) 1、编制依据 (3) 2、调试范围及相关项目 (3) 3、组织与分工 (4) 4.1施工单位 (4) 4.2生产单位 (4) 4.3调试单位 (4) 4、调试前应具备的条件 (5) 5、调试项目和程序 (6) 5.1吸收塔系统启动调试工作流程图 (6) 5.2调试步骤 (6) 6、调试质量的检验标准 (11) 7、安全注意事项 (11) 8、调试项目的记录内容 (12) 附录1 吸收塔系统启动前试验项目检查清单 (13) 附录2. 试运参数记录表 (14) 附录3 FGD装置分系统试运质量检验评定表 (15)

1、系统概述 本工程厂址位于山西省中部西缘柳林县的薛村镇,地处联盛能源有限公司规划的工业集中区内,东北距柳林县约11km,西北距军渡约5km,黄河在厂址西面约12km处。本工程规划建设两台300MW循环流化床锅炉机组,汽机直接空冷,脱硫系统同步建设。本期脱硫岛整体布置在烟囱后,两炉一塔方式,采用石灰石—石膏湿法脱硫工艺,副产物为二水石膏。整套脱硫系统中吸收剂制备系统、石膏脱水系统、废水处理系统以及工艺水系统、GGH系统、吸收塔系统为公用,每台机组设置单独的增压风机系统。 吸收塔系统主要功能将引入的原烟气在喷雾吸收塔内通过吸收塔浆液的喷雾洗涤去除大量的SO2,脱硫反应生成的脱硫产物在吸收塔浆池中被通入的氧化空气强制反应生成硫酸钙并在浆池中结晶生成二水石膏。石膏浆液通过石膏浆液排出泵送入石膏脱水系统,脱硫效率可达85%以上。 进入吸收塔的石灰石浆液在吸收塔浆池中溶解,通过调节进入吸收塔的石灰石浆液量或吸收塔排出浆液浓度,使吸收塔浆池pH值维持在4.5~5.5之间以保证石灰石的溶解及SO2的吸收。烟气在吸收塔内经过吸收塔浆液循环洗涤冷却并除去SO2。脱硫后净烟气由装设于吸收塔上部的2级除雾器除雾使烟气中液滴浓度不大于75mg/Nm3。除去雾滴后的净烟气接入主烟道,并经烟囱排入大气。脱硫反应生成的反应产物经吸收塔氧化风机鼓入吸收塔浆液的氧化空气强制氧化,生成硫酸钙并结晶生成二水石膏,主要成分为二水石膏的吸收塔浆液由石膏浆液排出泵排出吸收塔。SO2吸收系统可细分为吸收塔本体、浆液循环系统、脉冲悬浮系统、氧化空气系统及石膏浆液排出系统。 根据BMCR工况下烟气量以及烟气中SO2含量,本FGD装置每台吸收塔设置3台浆液循环泵,采用3层浆液雾化喷淋方式。 吸收塔除雾器布置于吸收塔上部,烟气穿过循环浆液喷淋层后,再连续流经两级除雾器除去所含浆液雾滴。在一级除雾器的上面和下面各布置一层清洗喷嘴。清洗水从喷嘴强力喷向除雾器元件,带走除雾器顺流面和逆流面上的固体颗粒。二级除雾器下面也布置一层清洗喷淋层。烟气通过两级除雾后,其烟气携带水滴含量不大于75mg/Nm3(干基)。除雾器清洗系统间断运行,采用自动控制。

脱硫吸收塔系统常见故障分析及处理

脱硫吸收塔系统常见故障分析及处理 在电力系统中,脱硫吸收塔扮演着十分重要的角色,其在运行过程中如果出现了故障将会严重影响到电力系统的正常生产和运行,因此,对于脱硫吸收塔可能存在的问题需要我们及时的进行分析和研究,并找到解决的方案。本文主要就脱硫吸收塔系统中常见的故障原因进行了分析和研究,并提出了相应的解决对策,希望通过本次研究对更好的促进脱硫吸收塔常见故障的解决有一定的帮助。 标签:脱硫吸收塔常见故障解决对策 脱硫吸收塔系统在保障电力安全生产和环境保护工作中起到了至关重要的作用,而且在运行过程中不同温度和环境的作用下,会严重影响到系统正常的工作流程,进而导致各种系统故障出现,因此,做好对脱硫系统运行过程中各种缺陷、故障的检修和维护工作就显得十分重要了。 一、脱硫吸收塔系统中循环泵叶轮以及泵壳出现磨损故障 1.故障原因分析 在脱硫吸收系统在运行过程中,由于系统中主要的介质是石灰石浆液,外加浆液的酸碱度变化程度很大,因此,在系统运行过程中,浆液循环泵的叶轮磨损是在所难免的。在系统运行过程中,浆液会在泵内高速运转,产生的冲击力会对泵壳产生一定的冲击,最终将会导致泵壳的磨损。这种情况持续进行下去就会逐步造成泵壳壁的磨损,严重时还会出现磨穿的现象,给系统安全运行造成严重的影响。当泵壳的厚度变薄之后,经过叶轮对其做功后,浆液会出现回流的现象,这就导致了浆液在系统中的循环总量降低,循环液的液压就会减小,达不到设计的高度,导致系统的吸收效果减弱,出力达不到额定的数值,最终导致了脱硫吸收塔系统的各个参数出现异常情况,使得整个系统的脱硫效率持续降低。 2.解决对策 当系统中浆液循环泵叶轮以及泵壳出现了严重的磨损之后,系统中相应的参数就会出现循环泵电流减小,整个浆液系统的出力就会下降,整个浆液的循环量会随之持续降低。当系统出现这种情况之后,应该及时的将系统停止运行,对该系统中的泵叶轮以及泵壳进行特殊的工业防磨处理。当这项工作处理完毕之后,就可以再次使系统投入运行。而当系统中叶轮出现严重的磨损之后,应该根据设备在系统中的运行时间长短,综合考虑各项经济效益,及时的更换成全新的叶轮,从而保证系统能够正常的循环,保持正常的浆液循环量。 二、脱硫吸收塔系统中循环泵出口喷头以及母管出现堵塞故障 1.故障原因分析

年产15万吨硫酸吸收塔设备初步设计

年产15万吨硫酸吸收塔工艺设计 摘要 硫酸是一种工农业生产必需的大宗化工基础原料,用途十分广泛。在冶金工业中可用于钢材酸洗、纺织工业中可用于棉纱漂染,染料行业用于染料中间体生产,化肥行业用于磷铵、过磷酸钙的生产,有机合成工业用于脱水剂与高分子组合物,无机工业用于制取金属硫酸盐,民用用于净水剂硫酸铝等。此外,还用于制药、农药、石油精炼、制革、人造纤维、国防军工等工业部门。硫酸生产方法有硫铁矿法、硫磺法、冶炼尾气法、石膏法等。由于硫酸是主要的基础化工原料,其发展程度是一个国家的工业、国民经济发达程度上的标志之一,各国对硫酸生产都比较重视。 此次毕业设计的主要研究对象为硫酸整个生产的基本原理和流程以及着重研究吸收工序中吸收塔的设计和材料的选择对于每一个生产方法的选择的原因和目的进行详细的剖析(如转化装置选用“3+2”五段转化工艺.选用浓度为98%的硫酸来做干燥剂和吸收剂,动力波进化工艺、等技术),从而加深对细节的把握和全局的整合. 关键词: 硫酸、吸收塔、改造

Process Design of a 300㎏/a Sulfuric Acid absorption tower abstract Sulfuric acid is a kind of industrial and agricultural production must base material, the commodity chemicals widely used. Can be used in metallurgy industry, textile industry in steel pickling yarn dyeing can be used for dye intermediates, dye industry production, chemical fertilizer industry for the production of ammonium phosphate, calcium superphosphate, organic synthesis industry for dehydrating agents.it and polymer composition, inorganic industrial used in producing metal sulphate, civil for DTC vitriolic etc. In addition, also used in pharmaceutical, pesticide, oil refining, leather, synthetic fiber, national defense industry, etc. Sulfuric acid production methods have pyrite, sulfur, smelting exhaust, gypsum etc. The foundation is mainly because of sulfuric acid, the development degree of chemical raw materials of industry, is a national economic development level in one of the marks of sulfuric acid production, countries are seriously. The main research object of graduation design for the production of sulfuric acid and basic principle and process of research on absorption process design and materials absorption tower of choice for each production method of choice for the purpose and detailed analysis (such as the transformation of "devices" 3 + 2 conversion processes. Choose consists of sulphuric acid concentration of 98% for desiccant and absorbing wave evolution process, such as motivation, thus deepening) for technical details and global integration. Keywords: Sulfuric acid, the absorption tower, transformation,

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

下册 第3章 蒸馏和吸收塔设备

下册 第3章 蒸馏和吸收塔设备 B3-1评价气液传质设备性能的主要指标是 、 、 、 和 。 B3-2按结构塔设备分为 和 。按气液接触方式分为 和 填料塔是 接触式气液传质设备,塔内 为连续相, 为分散相。错流板式塔是 接触式气液传质设备,塔内 为连续相, 为分散相。 B3-3工业上应用最广泛的板式塔类型有 、 、 和 。 B3-4板式塔操作中可能出现的非理想流动有 、 、 和 。 B3-5板式塔设计中,加大板间距的优点是 和 ,其缺点是 。 B3-6板式塔流体力学验算的项目为 、 、 、 和 。 B3-7板式塔的负荷性能图由 、 、 、 和 五条曲线包围的区域构成。 B3-8负荷性能图的作用是 、 和 。 B3-9 评价填料性能优劣的主要参数是 、 和 。 B3-10在填料塔的-u 曲线图上,有 /P Z Δ和 两个折点,该两个折点将曲线分为三个区,它们分别是 、 、 ;塔的操作应在 。 B3-1 填料塔设计时,空塔气速一般取泛点气速的 。 B3-12 填料层高度的计算可采用 和 。 B3-13下面三类塔板相比较,操作弹性最大的是 ,单板压降最小的是 ,造价最低的是 。 A .板式塔 B .浮阀塔 C .泡罩塔 B3-14 在板式塔设计中,加大板间距,负荷性能图中有关曲线变化的趋势是:液泛线 ,雾沫夹带线 ,漏液线 。 A .下移 B .不变 C .上移 D .不确定 B3-15填料因子φ值减小,填料板的液泛气速 ,流动阻力 。 A .增大 B .不变 C .不确定 D .减小

B3-16下面参数中,属于板式塔结构参数的是和;属于操作参数的是和。 A.板间距B.孔数C.孔速D.板上清液层高度

填料吸收塔设计示例

填料吸收塔课程设计说明书 专业 班级 姓名 班级序号 指导老师 日期

目录 前言 (2) 水吸收丙酮填料塔设计 (2) 一任务及操作条件 (2) 二吸收工艺流程的确定 (2) 三物料计算 (3) 四热量衡算 (4) 五气液平衡曲线 (5) 六吸收剂(水)的用量Ls (5) 七塔底吸收液浓度X1 (6) 八操作线 (6) 九塔径计算 (6) 十填料层高度计算 (9) 十一填科层压降计算 (13) 十二填料吸收塔的附属设备 (13) 十三课程设计总结 (15) 十四主要符号说明 (16) 十五参考文献 (17) 十六附图 (18)

前言 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔内气液接触部件的形式,可以分为填料塔和板式塔。板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。 塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。 填料塔由填料、塔内件及筒体构成。填料分规整填料和散装填料两大类。塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。 水吸收丙酮填料塔设计 一任务及操作条件 ①混合气(空气、丙酮蒸汽)处理量:12493/ m h。 ②进塔混合气含丙酮 2.34%(体积分数);相对湿度:70%;温度:35℃; ③进塔吸收剂(清水)的温度25℃; ④丙酮回收率:90%; ⑤操作压力为常压。 二吸收工艺流程的确定 采用常规逆流操作流程.流程如下。

吸收塔区设备管道

施工技术方案(作业指导书)报审表 表号:DJH-A-06(98版)

一、工程概述 黄岛电厂三期扩建工程2×660MW机组烟气脱硫工程,每台机组配备一座脱硫吸收塔,除尘后的锅炉烟气经换热调节器冷却后进入脱硫吸收塔内,海水升压泵房供给大量海水,由两侧入口导入吸收塔喷淋洗涤进入塔内的烟气,烟气中的SO2被海水吸收而除去,净化后的烟气经除雾器除雾排放。吸收SO2后的海水在曝气池中与新的海水混合,曝气处理,使其中不稳定的亚硫酸根被氧化成为稳定的硫酸根,并使海水的PH值与COD等指标恢复到海水水质标准后排入大海。密封风机安装完毕后通过密封风管道分别向进出口及旁路挡板门提供密封风,以防止挡板门关闭后烟气泄漏。 二、编写依据 1、《吸收塔本体安装图》(北京龙源环保工程有限公司)(北京矿冶研究总院) 2、《吸收塔区管道安装图》(北京龙源环保工程有限公司)(北京矿冶研究总院) 3、《密封风机安装图》(北京龙源环保工程有限公司)(北京矿冶研究总院) 4、《电力建设施工及验收技术规范》(锅炉篇) 1996版 5、《火电施工质量检验及评定标准》(锅炉篇) 1996版 6、《电力建设安全工作规程》(火力发电厂部分) 7、《施工组织总设计》 8、《锅炉脱硫专业施工组织总设计》 三、设备规格及部件数量 1、喷淋层41件 2、除雾气层170件 3、支撑梁32件 4、支撑格栅136件 5、填料层37604件 6、调节装置1件 7、密封风机2台 8、玻璃钢管道85米

9、密封风管道130米 四、劳力组织及工期安排 1、劳力组织: 安装工: 10-20人起重工: 2~4人 2、工期安排: 2006年7月~2006年8月 五、主要工器具 1、机具:汽车吊(25t或50t)、运输拖车、拖拉机、电焊机、卷扬机。 2、工具:倒链、吊带、磨光机、活口扳手、力矩扳手、撬棍、螺丝刀、液压千斤顶(1t~5t)、铜棒、锉刀、制造厂家配专用工具。 3、量具:游标卡尺(0~300㎜)、千分尺(0~25㎜)、塞尺(L=150㎜或L=300㎜)、塞规、盘尺(50m或100m)、铁水平、框式水平、压力表、钢卷尺(3m)若干等,以上工具使用前必须经过校验。 消耗性材料:破布50kg 汽油20 kg 、粘接剂若干只、砂纸若干张。 六、主要施工方案 1、脱硫吸收塔布置在炉后烟囱侧零米,设备吊装运输比较容易,采用25t汽车吊或其它满足负荷的吊车直接把设备吊到吸收塔基础旁。 2、设备到货后编号、清点。按要求进行复查支撑基础标高。 3、安装喷淋层,将喷淋层母管安装在中间支撑梁顶部,用垫片找平二次灌浆后,逐一安装喷淋层支管,支管末端均用垫片找平,然后将排气管及检查孔安装完毕。 4、除雾器及盖板安装,由两侧开始将盖板及T型板用螺钉固定后,铺设除雾器层。

脱硫吸收塔SO2吸收系统(DOC)

第三章 SO2吸收系统 3.1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO2等有害成分的过程主要在这个系统完成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石-石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SO2溶解于吸收剂中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的分压,增加了吸收过程的推动力,吸收速率较快。FGD反应速率取决于四个速率控制步骤,即SO2的吸收、HSO3氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SO2吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广,双膜理论模型如图所示。图中p表示SO2在气相主体中的分压,p i表示在界面上的分压,c和c i 则分别表示SO2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力×吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

3.2.2、化学过程原理 3.2.1.1、SO2、SO3和HCl的吸收: 烟气中的SO2和SO3与浆液液滴中的水发生如下反应: SO2 + H2O → HSO3— + H+ SO3 + H2O → H2SO4 HCl遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下: CaCO3 + H2O → Ca2+ + HCO3— + OH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。低的pH值不利于酸性气体的脱除效率,但是有利于石灰石的溶解。 SO2、SO3、HCl等与石灰石浆液发生以下离子反应: Ca2+ + HCO3— + OH—+ HSO3— + 2H+→ Ca2+ + HSO3— + CO2↑+2H2O 氧化反应:2HSO3—+ O2→ 2SO42—+ 2H+ Ca2+ + HCO3— + OH—+ SO42— + 2H+→ Ca2+ + SO42—+ CO2↑+2H2O Ca2+ + HCO3— + OH—+ 2H+ + 2Cl—→ Ca2+ + 2Cl—+ CO2↑+ 2H2O 经验显示,吸收剂浆液的pH值控制在5.5~6.0之间, pH值为5.6时最佳,此时酸性气体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SO2含量以及实际的吸收塔浆液的pH值。 3.2.1.3、氧化反应 通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: 2HSO3—+ O2→ 2SO42—+ 2H+ 3.2.1.4、石膏形成: Ca2+ + SO42— + 2H2O → CaSO4 ? 2H2O

蒸馏和吸收塔设备试题

第3章蒸馏和吸收塔设备 一、选择题 1.下述说法中错误的是()。 A、板式塔内气液逐级接触,填料塔内气液连续接触 B、精馏用板式塔,吸收用填料塔 C、精馏既可以用板式塔,又可以用填料塔 D、吸收不可以用板式塔,但可以用填料塔 2.在精馏塔的设计中,设计思想是:在全塔汽液两相总体呈()接触,而在每一块塔板上汽液 两相以()方式接触。 A、逆流 B、并流 C、错流 D、不确定 3.溢流液泛是由于()造成的。 A、降液管通过能力太小 B、液流分布不均匀 C、塔板上严重漏液 D、液相在塔板间返混 4.下列属于错流塔板的有()。 A、喷射塔板 B、浮阀塔板 C、舌形塔板 D、浮舌塔板 5.下面三类塔板相比较,操作弹性最大的是(),单板压降最小的是(),造价最低的是 ()。 A、筛板塔 B、浮阀塔 C、泡罩塔 6.在板式塔设计中,加大板间距,负荷性能图中有关曲线的变化趋势是:液泛线(),液沫夹带 线(),漏液线()。 A、上移 B、不变 C、下移 D、不确定 二、填空题 7.填料的种类很多,大致可分为实体填料和网体填料两大类,请写出三种常见的填料的名称 ___________、___________、_______________。 8.填料塔的塔径与填料直径之比不能太小,一般认为比值至少要等于_______。填料塔适宜的空塔气速 一般可取_______气速的50%~80%。 9.筛板塔两相接触的传质面积为。若处理的液体量很大或塔径很大时,一般采用,以 达到的目的。 10.板式塔与填料塔比较:精馏操作中,对易起泡体系应选用塔更适合;对热敏性物系,精馏塔 此时应选用塔更适合。 11.填料塔的持液量增加,则压降,动力消耗,汽液允许流速度。 12.写出三种常见填料的名称 _______、____________、________ 。 13.写出三种常用板式塔的名称、、。 14.在浮阀塔的负荷性能图中,塔的适宜操作范围通常是由下列5条边界线圈定的;雾沫夹带线:液泛线: _____________、_____________、____________。 15.塔板负荷性能图由、、 、、线所组成。 16.板式塔的全塔效率是指与之比。 17.实体填料的类型有(写出三种) 18.板式塔的三种不正常操作现象是、和。 19.板式塔的单板效率是指气相(或液相)与 之比。 20.生产中常用的三种塔板型式是。 21.板式塔的设计原则是:总体上______________________________________ ,在每层塔板上

(吸收塔系统及设备)

吸收塔系统及设备 1、吸收塔系统组成及原理 1.1系统组成 吸收塔系统包括吸收塔本体、循环浆泵、喷淋层、除雾器、氧化风机、搅拌器、石膏排出泵等。 1.2系统原理 烟气从吸收塔下侧进人,与吸收浆液逆流接触,洗涤烟气中的SO2、SO3、HCl和HF等,在塔内进行吸收反应,对落入吸收塔浆池的反应物再进行氧化反应,得到脱硫副产品二水石膏。 在添加石灰石浆液的情况下,石灰石、副产物和水等混合物形成的浆液从吸形成雾柱。在液滴落回吸收塔浆池的过程中,实现了对烟气中的二氧化硫、三氧化硫、氯化氢和氟化氢等酸性组分的吸收过程。烟气从吸收塔下部进人,逐渐上升,而浆液雾化的液滴从上而下落下,整个吸收过程称为逆流吸收。经吸收剂洗涤脱硫后的清洁烟气,通过除雾器除去雾滴后进人烟气换热器升温侧。 被吸收的二氧化硫与浆液中的石灰石反应生成亚硫酸盐,进人塔底部的氧化池,浆液池中设有空气分配管和搅拌器。浆液中的CaS03在外加空气的强烈氧化和搅拌作用下,由氧化空气氧化生成硫酸盐,转化成CaSO422H2O(石膏),便是石膏过饱和溶液的结晶。为了有利于CaSO3的转化,氧化池内浆液的pH值保持在5左右。 为充分、迅速氧化吸收塔浆池内的亚硫酸钙,设置氧化空气系统,向吸收塔供应适量的空气。氧化风机运行方式为一运一备。在吸收塔去除二氧化硫期间,利用来自循环浆液的水将烟气冷却至饱和温度。消耗的水量由工艺水补偿。为优化吸收塔的水利用,这部分补充水被用来清洗吸收塔顶部的除雾器。吸收塔浆池中浆液的停留时间应能保证可形成优良的石膏晶体,从吸收塔中抽出的浆液被送至石膏旋流器。吸收塔浆液循环系统一般由三台或四台循环浆泵和对应的喷淋系统组成,按单元制设计。循环浆泵入口设有排空管路,当循环浆泵停运时,排空门自动打开,排空管路中的浆液,防止沉淀结垢。 在吸收塔顶部设排空阀门。当FGD停运时,排空阀门打开,使塔内外压力相同。当FGD投运时,排空阀门关闭,保证系统在设计压力下运行。该排空门的作用如下: (1)在调试及FGD系统检修时打开,可排除漏进的烟气,有通气、通风、通光的作用。 (2)FGD停运时,避免烟气在系统内冷凝而产生腐蚀。

第八章 蒸馏和吸收塔设备自测

第六章 蒸馏和吸收塔设备(二) 一、填空题(40分) 1.板式塔是____接触式气液传质设备,操作时为____连续相;填料塔是____接触式气液传质设备,操作时为____连续相。 2.塔板的主要类型有____、____、____、____等。 3.气体通过塔板的总压降包括____、____和____。 4.塔板上的异常操作现象包括____、____、____。 4. 塔板的负荷性能图由五条线构成,它们是____、____、____、____、____,塔板适宜的操作区是____区域,而实际操作时应尽可能将操作点位于适宜操作区的。 5.塔板的操作弹性是指________。 6.填料的几何特性参数主要包括____、____、____等。 7.通常根据____、____及____ 三要素衡量填料性能的优劣。 8.填料因子是指____________。 9.填料塔内件主要有____、____、____、____。 10.填料操作压降线(Dp/Z~u)大致可分为三个区域,即____、____和____。填料塔操作时应控制在____区域。 二、选择题(30分) 1.气液在塔板上有四种接触状态,优良的接触状态是(),操作时一般控制在()。 ①鼓泡接触状态②蜂窝接触状态③泡沫接触状态④喷射接触状态 2.板式塔塔板的漏液主要与()有关,液沫夹带主要与()有关,液泛主要与()有关。 ①空塔气速②液体流量③板上液面落差④塔板间距 3.()属于散装填料,()属于规整填料。 ①格栅填料②波纹填料 ③矩鞍填料 ④鲍尔环填料 ⑤脉冲填料 ⑥弧鞍填料 4.填料的静持液量与()有关,动持液量与()有关。

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO 2 。 入塔的炉气流量为2250m3/h,其中进塔SO 2的摩尔分数为0.05,要求SO 2 的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) H计算 (11) 3.4.1传质单元高度 OG

相关主题
文本预览
相关文档 最新文档