无碳小车传动方案设计5
- 格式:doc
- 大小:67.50 KB
- 文档页数:2
㈠无碳小车设计思路根据本届竞赛题目对无碳小车(以下简称:小车)功能设计、徽标设计的要求,我们首先确定如下的设计思路:1、根据能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以小车前进能量来源直接由重物下落过程中减少的重力势能提供为宜。
2、根据小车功能设计要求(小车在前行时能够自动避开赛道上设置的障碍物),小车前进的路线具有一定的周期性;考虑到小车转向时速度有损失,小车前进的线路是命题设计要求的最优解。
3、结构的设计与成本分析、加工工艺设计统筹考虑,力求产品的最优化设计。
4、徽标反映本届竞赛主题:无碳小车㈡无碳小车设计方案以下是具体的设计方案介绍:一、徽标设计(图1)图1(1)设计说明:整个徽标是一个椭圆形的圈,包围着一个车轮,车轮下面写着“No Carbon”的字样。
其中,车轮代表着我们所做的无碳小车。
其后面是由众多抽象的“S”形条纹组成,代表着我们的无碳小车由所要求的“S”形跑到飞驰而出。
其下的“No Carbon”字样简单明了地说明了这届大赛的主题,并且外面的椭圆圈,代表着能量的意识,说明了势能与动能相互转换的过程。
最后,以整体上看,整个图形像一只眼睛。
看着远方,对未来全球实现无碳充满希望。
(2)材料:45钢(3)制作:激光打标机喷漆外圈红色R:255 G:0 B:0 内圈红色R:170 G:0 B:0 “No”R:85 G:85 :B::85 “Carbon”R:170 G:0 B:0车轮R:255 G:85 B:85 “S”R:255 G:85~170 B:0~85二、小车动力、动力—转向、转向系统1、小车的动力系统(图2)(1)方案:根据竞赛命题要求(小车前行过程中完成的所有动作所需的能量均重物损失最少,所以以绳拉力为动力为宜。
拉力作用于锥型原动轮(以下简称:原动轮)上,形成力矩,力矩对该原动轮产生转动效应,通过一系列齿轮的传动,将动力输出,使后轮转动,小车前进。
设计方案说明书
一、能量转换设计方案
将给定的重力势能通过滑轮组合等转化为小车所需要的能量。
首先,通过滑轮的配合保证小车的动力来源以及速度的稳定。
重物与定滑轮1连接,通过定滑轮2与皮带轮3连接(绳缠绕在皮带轮上),皮带轮3固定在小车车轴上。
当重物下落时,重力势能通过滑轮组带动皮带轮运动,从而使车轮转动,具体情况如下图所示:
图一小车能量转换示意图
二、运动方向设计方案
利用凸轮机构来控制小车的前进方向,以躲避障碍物。
在小车前进过程中,为躲避障碍物需走S型路线,这就需要在小车行走过程中,在特定的位置改变小车的前进方向,通过一组凸轮机构即可实现小车的转弯。
车轴带动凸轮1转动,然后将运动轨迹通过导杆2 传递给滑块3,滑块3带动车轴4运动(车轴4做周期性摆动),从而达到小车改变方向的目的。
图二小车运动方向改变示意图。
无碳小车设计方案
(机械工程学院工业工程10-1 王康王恒斌胡中王)
1、总体方案设计
方案一
1)构架部分
小车采用三轮结构采用(一个转向,两个驱动);
重物落差0.5米物重1kg;
图1
2)转向部分
转向机构与驱动轴相连;
通过凸轮作用前轮转向;
计算传动机构使小车每行驶2000mm转向轮摆动一个周期;
通过计算凸轮的形状,尽量减小转向轮的摆动角度,到达小车绕过更多障碍的目的;
图2
3)驱动
采用卷簧储能,绳子的拉力带动绳轮转动,将能量储存在卷簧上;
重物在下落的过程当中小车不行走,待重物落在小车上后,小车在卷簧的作用下行走,保证小车行走平稳;
采用齿轮传动,并设计单向离合结构,保证在卷簧能量释放完后小车能凭借惯性继续前行,又能避免卷簧反向储能;
方案二
1)构架部分
小车采用三轮结构采用(一个转向,两个驱动);
重物落差0.5米物重1kg;
2)转向部分
小车采用偏心轮(偏心轮由驱动轴通过带传动驱动)带动前轮转向杆实现转向,偏心轮与前轮转向杆采用柔性绳连接。
3)驱动
采用绳轮驱动驱动轴,绳子一端绕在绳轮上,另外一端连在重物上,重物下落通过绳子带动绳轮转动,实现驱动。
图3
3、结构设计见图纸
方案一装配图、零件图
方案二装配图、零件图。
无碳小车型设计方案无碳小车型设计方案随着环保意识的不断增强,低碳环保已成为现代社会的一个重要趋势。
汽车作为人们日常生活中不可或缺的交通工具,其碳排放一直是环保问题的热点之一。
因此,设计一种无碳小车型,成为当代社会亟待解决的问题。
1.设计方案本设计方案的无碳小车型,主要特点是使用太阳能充电,具有零排放、低噪音、节能环保等特点。
其主要结构由车身、底盘、动力系统和控制系统四部分组合构成。
1.1 车身设计无碳小车采用轻量化车身结构,采用纤维复合材料制作,同时采用非常规的车身设计,使车辆在运动中可以最大限度地降低气动阻力,并且在车辆停车时可以更好地利用太阳能电池板进行充电。
1.2 底盘设计车辆底盘采用铝合金结构,以减轻车辆整体重量。
同时,车辆底盘也要具备良好的稳定性和强度,以保障整车的运行安全。
在设计中还要充分考虑悬挂系统和制动系统的设计,保证车辆在高速行驶、行驶过程中的平稳性和安全性。
1.3 动力系统设计车辆使用太阳能电池板为主要动力源。
使用最新的环保电池,进行技术创新和优化升级,做到电池匹配合理,能够最大限度延长车辆的使用寿命和续航里程。
1.4 控制系统设计车辆采用先进的控制系统,实现动力系统的电力调度,同时实现对车辆动力的精确调整和管理,通过车载气压传感器、温度传感器等进行实时监控,保证车辆在各种工作状态下高效、稳定、安全地运行。
同时在车载系统中配备智能导航系统、语音控制系统等,方便驾驶者使用。
2.实施方案建立一个以太阳能充电为主要能源的无碳小车型生产工厂,采用纳米技术、智能化技术、智能制造技术以及信息技术等现代先进技术手段,同时采用ISO9000质量管理体系和ISO14000环境管理体系,制定严格的标准和流程控制,以保证车辆质量和安全性。
其中,生产工厂将建立一个以能源开发、生产、运输、存储、销售及售后服务为一体的动力系统实验室,以保障太阳能动力系统的稳定性和可靠性,为市场提供优质的产品和服务。
另外,在无碳小车型的使用过程中,需要建立完善的充电站网络,通过互联网与车辆控制系统进行连接,实现自动化充电,方便车主使用。
重庆大学工程训练综合能力竞赛——无碳小车设计方案1摘要本作品是依据竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。
该小车通过微调装置,能够实现自动走“8”字及直线绕障。
此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。
本文将对无碳小车的设计过程,功能结构特点等进行详细介绍。
并介绍创新点。
2引言随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。
节能、环保、方便、经济,是现代社会所提倡的。
现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。
针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。
3目的本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。
这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。
4工作原理和设计理论推导4.1总体结构无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。
主要部件如下图的小车整体模型4.2设计理念及说明4.2.1无碳小车模块机构介绍◆驱动机构:本方案采用绳轮作为驱动力转换机构。
我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。
同时做到了到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击,提高了能量利用率。
绳轮机构简单,传动效率高,且在针对不同场地导致的所需动力不同的情况,可通过调节绕绳位置来改变转矩,使动力改变,增强适应性。
一、背景介绍随着全球气候变暖的加剧和环境污染问题的日益严重,低碳环保已经成为当今社会的一个重大关注点。
汽车作为重要的交通工具,在环保问题上也需要做出贡献。
因此,本文将介绍一种无碳小车的设计方案,以减少碳排放和降低对环境的影响。
二、设计原理无碳小车设计方案主要基于两个关键原理:能量转换和再生能源利用。
2.1 能量转换传统汽车使用内燃机将燃料中的化学能转化为机械能驱动车辆。
而无碳小车设计方案中,我们将采用电动机来实现能量的转换。
电动机通过将电能转换为机械能来驱动车辆,从而减少了对石油等化石燃料的依赖,从而减少了碳排放。
2.2 再生能源利用为了解决电动车使用电池容量有限的问题,无碳小车设计方案还将充分利用再生能源。
具体而言,我们将在车辆上安装太阳能板以收集太阳能,并将其转化为电能存储在电池中。
在行驶过程中,太阳能板将为电池提供额外的能量,从而延长车辆的续航里程。
三、技术实现方案3.1 车辆结构设计无碳小车设计方案中,车辆的结构应该轻巧且坚固,以最大程度地减少能量损耗。
因此,我们采用了轻质材料,如铝合金和碳纤维复合材料来制造车身和车架。
这些材料具有较高的强度和较低的密度,有利于减轻整个车辆的重量。
3.2 电动机设计为了实现高效能量转换,我们将选择一种高效的无刷直流电动机。
这种电动机不仅效率高,噪音低,而且具有较好的控制特性。
同时,考虑到车辆的需求,我们还会采用可调速电动机,以便根据不同的行驶场景进行调整。
3.3 内部能量管理系统设计为了更好地利用再生能源,我们将在车辆上安装一套内部能量管理系统。
该系统包括太阳能板、储能电池和能量转换器。
具体而言,太阳能板将收集太阳能并将其转化为直流电能,然后存储在电池中。
而能量转换器将负责将电能转换为机械能,驱动车辆行驶。
3.4 智能控制系统设计为了实现全自动驾驶和智能化管理,无碳小车设计方案还将配备智能控制系统。
该系统将基于人工智能技术,通过传感器和摄像头实现车辆的感知和决策。
无碳小车无碳小车设计说明◆构架部分◆转向部分◆驱动部分◆细节零件部分◆制造材料(一)构架部分整个车身基本由支架构成,重物下落处由细绳织成网,同时还能起到减轻因碰撞而损失能量的作用。
2.重物落差0.5米,物重1kg.3.车身为梯形结构4.载重物置于梯形原动轮正下方,即车的中心部分,由支架固定,这样一方面为了保持车身的平衡,另一方面为了节省空间,使车身体积尽可能的小。
(二)驱动部分1.驱动原理绳的拉力为动力,将物块下落的势能尽可能多的转换为小车的动能,进而克服阻力做功,推动小车。
设计梯形原动轮r,带轮传动比为i=4,后轮驱动轮半径为r4=30mm,重下落加速度为a1,车前进加速度为a2,则对重物受力有:T-mg=ma1忽略其它微小因素,力矩平衡有(设车前进的驱动力为F)Tr=iFr4设路面对车的摩擦力为f,车身重为M(粗略估计M=3Kg),摩擦系数取0.02则f= μMg F-f=Ma2故使重物先做变加速运动,然后做变减速运动,小车先加速后匀速最后减速,且最后减速过程为减小重物下落到最低点时与车身发身碰撞损失能量,所以使当物块距小车很近时,原动轮的半径再次变小,绳子的拉力不足以使原动轮匀速转动,重物减速下落,车减速继续前进。
可设车减速的加速度为a,为使小车下落后不脱离车身,则如上图受力分析知α<=1°即加速度a 2>=-0.17m/s ,故由以上推理可设计r max = 30mm r min = 5mm r 中 =10mm2. 梯形原动轮1) 在起始时原动轮的转动半径较大,起动转矩大,有利起动。
2) 起动后,原动轮半径变小,转速提高,转矩变小,和阻力平衡后小车匀速运动。
3) 当物块距小车很近时,原动轮的半径再次变小,绳子的拉力不足以使原动轮匀速转动,但是由于物块的惯性,仍会减速下降,原动轮的半径变小,总转速比提高,小车缓慢减速,直到停止,物块停止下落,正好接触小车3. 带轮传动80mm1)主动轮半径 R1=40mm 厚度d1=10mm从动轮半径 R2=10mm 厚度d2=10mm2)为尽可能减小因带传动时摩擦做功消耗能力,故带轮传动设计为同步带传动,同时为尽可能减轻车身重量,带轮由工程塑料加工制成。
无碳小车机械设计方案无碳小车机械设计方案随着全球环境问题的日益严重,减少碳排放已经成为了全社会所面临的一个重要任务。
在交通工具方面,由于传统的汽车采用燃油作为能源,排放大量的二氧化碳,严重污染了环境。
因此,设计一种无碳小车成为了迫切的需求。
一、设计目标本设计方案旨在设计一种无碳小车,以解决交通工具碳排放的问题。
设计的小车外形简洁美观,结构简单可靠,操控容易,并提高了行车的稳定性和舒适性。
二、设计原理本设计方案采用了电动汽车的原理,以电能作为能源,消除了燃料燃烧排放的问题。
电动小车由电机、电池、控制系统和底盘组成。
电机通过电池供电,驱动车辆运动。
控制系统负责控制电机的启停和速度调节。
底盘承担承载车身和悬挂吸收道路震动的任务。
三、主要部件设计1. 电机:选择高效率的永磁直流电机,具有较高的转速和较大的输出扭矩。
需要具备良好的散热性能和低噪音。
2. 电池:采用高能量密度的锂电池,以提供充足的电能。
需要具备长寿命和较短的充电时间。
3. 控制系统:设计电机启停和调速的电控系统,提供优秀的响应速度和操作便利性。
选择高精度的传感器和电子元件,保证系统稳定性和安全性。
4. 底盘:设计轻量化的车身结构,选用优质的材料,提高车身刚性和稳定性。
采用独立悬挂系统,能够有效吸收道路震动,提高乘坐舒适性。
四、性能指标1. 续航里程:设计小车的电池容量应足够提供一定的续航里程,以满足使用者的日常出行需求。
2. 最高速度:电机的输出能力和电池的电能储存量决定了小车的最高速度,应该设计在城市道路限速范围内。
3. 加速性能:设计小车的电机输出扭矩和重量比决定了小车的加速性能,应该具备良好的起步加速能力。
4. 控制系统响应速度:设计的控制系统应该具备快速响应的能力,能够及时控制电机的启停和调速。
五、安全性设计小车的安全性设计十分重要。
在机械结构上,选用高强度材料,确保车身结构的完整性。
在电气系统上,采取过流、过压、过载保护措施,防止电路故障引起的安全问题。
无碳小车设计方案专业车辆工程101姓名李海勃学号 1003010110无碳小车设计方案小车设计 1:工作原理先由重物长带(1)上,由于重力的作用,带向下运动,带动轮轴转动,这时候,车轮转动,同时,轮轴通过短带(2)带动轮盘(3)的转动,轮盘(3)带动导向轮(4)的右边的转向杆(5)前后摆动,实现车的转向。
2:动力装置一):传动的选择及其原理:可以利用带传动,因为带传动比较容易实现,同时也容易保证较好的传动比。
如图(2)传动:二):传动比与路程的设计计算:由于带传动的过程中,圆周走过的路程的相同的所以下面的车轮轴也走过了 S 轴圆周= S落差=500mm因为R车轮/R轴=S车/S落差,那么可以设计自己不同的轴来保证行走最远的距离。
取 R车轮/R轴=S车/S落差=8取 R轴=15mm则 R车轮=120mm。
则车可以行走距离为 S车/=500*8=4000mm 3:转向装置图(2)一):转向装置的选择:选择采用空间四杠机构来实现转向,其原理是利用曲柄摇杆机构曲柄转一圈,摇杆转动一定角度,原理如图(2):在连杆与小车导向杆之间利用球铰连接,因为要实现不同方向的转动。
二):工作原理:用车轮轴带动轮盘(1),用轮盘(1)作为四杠机构的曲柄,杠(2)是其连杆,杠(3)是摇杆,轮盘(1)转动一圈,杠(3)摆动一定的角度,通过行使的路程,计算好每个转弯的的位置,以实现转弯。
三):计算:设计轮盘(1)每转动一圈,小车穿过一个障碍物,所以小车走1m车轴转动圈数为: 1000/(3.14*120)=2.65轮轴带轮盘(1)传动比为 R轮盘(1)/R车轴=2.65:1所以带轮盘(1)直径为 R轮盘(1)=2.65*15=39.8mm 设计工艺(1) 小车的地板采用的是硬制透明的塑料,它可以减轻小车的重量,减少与地面摩擦而产生的能量损失。
(2) 皮带可以采用拉的相对比较紧些,这样就比较容易拉动周的转动。
(3) 所有转动副连接处,都采用球轴承,可以减小摩擦,同时可以保证运动的准确性。