工程热力学习题(第3章)解答
- 格式:pdf
- 大小:66.73 KB
- 文档页数:2
3-1门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。
于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗? 解:按题意,以门窗禁闭的房间为分析对象,可看成绝热的闭口系统,与外界无热量交换,Q =0,如图所示,当安置在系统内部的电冰箱运转时,将有电功输入系统,根据热力学规定:W <0,由热力学第一定律W U Q +∆=可知,0>∆U ,即系统的热力学能增加,也就是房间内空气的热力学能增加。
由于空气可视为理想气体,其热力学能是温度的单值函数。
热力学能增加温度也增加,可见此种想法不但不能达到降温目的,反而使室内温度有所升高。
3-2既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢?解:仍以门窗紧闭的房间为对象。
由于空调器安置在窗上,通过边界向环境大气散热,这时闭口系统并不绝热,而且向外界放热,由于Q<0,虽然空调器工作时依旧有电功W 输入系统,仍然W<0,但按闭口系统能量方程:W Q U -=∆,此时虽然Q 与W 都是负的,但W Q >,所以∆U<0。
可见室内空气热力学能将减少,相应地空气温度将降低。
3-6 下列各式,适用于何种条件?(说明系统、工质、过程)1)q=du+ w ;适用于闭口系统、任何工质、任何过程 2)q=du+ pdv ;适用于闭口系统、任何工质、可逆过程3)q=c v dT+ pdv ;适用于闭口系统、理想气体、任何过程4)q=dh ;适用于开口系统、任何工质、稳态稳流定压过程5)q=c p dT- vdp 适用于开口系统、理想气体、可逆过程3-8 对工质加热,其温度反而降低,有否可能?答:有可能,如果工质是理想气体,则由热力学第一定律Q=ΔU+W。
理想气体吸热,则Q>0,降温则ΔT<0,对于理想气体,热力学能是温度的单值函数,因此,ΔU <0。
⼯程热⼒学思考题及答案第三章沈维道、将智敏、童钧耕《⼯程热⼒学》课后思考题答案⼯程热⼒学思考题及答案第三章理想⽓体的性质1. 怎样正确看待“理想⽓体”这个概念?在进⾏实际计算是如何决定是否可采⽤理想⽓体的⼀些公式?答:理想⽓体:分⼦为不占体积的弹性质点,除碰撞外分⼦间⽆作⽤⼒。
理想⽓体是实际⽓体在低压⾼温时的抽象,是⼀种实际并不存在的假想⽓体。
判断所使⽤⽓体是否为理想⽓体(1)依据⽓体所处的状态(如:⽓体的密度是否⾜够⼩)估计作为理想⽓体处理时可能引起的误差;(2)应考虑计算所要求的精度。
若为理想⽓体则可使⽤理想⽓体的公式。
2.⽓体的摩尔体积是否因⽓体的种类⽽异?是否因所处状态不同⽽异?任何⽓体在任意状态下摩尔体积是否都是0.022414m 3/mol?答:⽓体的摩尔体积在同温同压下的情况下不会因⽓体的种类⽽异;但因所处状态不同⽽变化。
只有在标准状态下摩尔体积为0.022414m 3/mol3.摩尔⽓体常数R 值是否随⽓体的种类不同或状态不同⽽异?答:摩尔⽓体常数不因⽓体的种类及状态的不同⽽变化。
4.如果某种⼯质的状态⽅程式为RgT pv =,那么这种⼯质的⽐热容、热⼒学能、焓都仅仅是温度的函数吗?答:⼀种⽓体满⾜理想⽓体状态⽅程则为理想⽓体,那么其⽐热容、热⼒学能、焓都仅仅是温度的函数。
5.对于⼀种确定的理想⽓体,)(v p c c ?是否等于定值?v p c c 是否为定值?在不同温度下)(v p c c ?、v p c c 是否总是同⼀定值?答:对于确定的理想⽓体在同⼀温度下v p c c ?为定值,v p c c 为定值。
在不同温度下v p c c ?为定值,v p c c 不是定值。
6.麦耶公式Rg c c v p =?是否适⽤于理想⽓体混合物?是否适⽤于实际⽓体?答:迈耶公式的推导⽤到理想⽓体⽅程,因此适⽤于理想⽓体混合物不适合实际⽓体。
7.试论证热⼒学能和焓是状态参数,理想⽓体热⼒学能和焓有何特点?答:在⼯程热⼒学⾥,在⽆化学反应及原⼦核反应的过程中,化学能、原⼦核能都不变化,可以不考虑,因此热⼒学能包括内动能和内位能。
第3章 热力学第一定律3.5空气在压气机中被压缩。
压缩前空气的参数为p 1=1bar ,v 1=0.845m 3/kg ,压缩后的参数为p 2=9bar ,v 2=0.125m 3/kg ,设在压缩过程中1kg 空气的热力学能增加146.5kJ ,同时向外放出热量55kJ 。
压缩机1min 产生压缩空气12kg 。
求:①压缩过程中对1kg 空气做的功;②每生产1kg 压缩空气所需的功(技术功);③带动此压缩机所用电动机的功率。
解:①闭口系能量方程q=∆u+w 由已知条件:q=-55 kJ/kg ,∆u=146.5 kJ/kg得 w =q -∆u=-55kJ-146.5kJ=-201.5 kJ/kg即压缩过程中压气机对每公斤气体作功201.5 kJ②压气机是开口热力系,生产1kg 空气需要的是技术功w t 。
由开口系能量守恒式:q=∆h+w tw t = q -∆h =q-∆u-∆(pv)=q-∆u-(p 2v 2-p 1v 1)=-55 kJ/kg-146.5 kJ/kg-(0.9×103kPa×0.125m 3/kg-0.1×103kPa×0.845m 3/kg)=-229.5kJ/kg即每生产1公斤压缩空气所需要技术功为229.5kJ③压气机每分钟生产压缩空气12kg ,0.2kg/s ,故带动压气机的电机功率为N=q m·w t =0.2kg/s×229.5kJ/kg=45.9kW3.7某气体通过一根内径为15.24cm 的管子流入动力设备。
设备进口处气体的参数是:v 1=0.3369m 3/kg ,h 1=2826kJ/kg ,c f1=3m/s ;出口处气体的参数是h 2=2326kJ/kg 。
若不计气体进出口的宏观能差值和重力位能差值,忽略气体与设备的热交换,求气体向设备输出的功率。
解:设管子内径为d ,根据稳流稳态能量方程式,可得气体向设备输出的功率P 为:2222f1121213(0.1524)()()(28262326)440.3369c d P m h h h h v ×=−=−=−× =77.5571kW 。
3.5 典型例题例题3-1 某电厂有三台锅炉合用一个烟囱,每台锅炉每秒产生烟气733m (已折算成标准状态下的体积),烟囱出口出的烟气温度为100C ︒,压力近似为101.33kPa ,烟气流速为30m/s 。
求烟囱的出口直径。
解 三台锅炉产生的标准状态下的烟气总体积流量为33V073m /s 3219m /s q =⨯=烟气可作为理想气体处理,根据不同状态下,烟囱内的烟气质量应相等,得出V 0V 0pq p q T T = 因p =0p ,所以33V0V 0219m /s (273100)K299.2m /s 273K q T q T ⨯+===烟囱出口截面积 32V f 299.2m /s9.97m 30m/sq A c ===烟囱出口直径 2449.97m 3.56m 3.14Ad π⨯=== 讨论在实际工作中,常遇到“标准体积”与“实际体积”之间的换算,本例就涉及到此问题。
又例如:在标准状态下,某蒸汽锅炉燃煤需要的空气量3V 66000m /h q =。
若鼓风机送入的热空气温度为1250C t =︒,表压力为g120.0kPa p =。
当时当地的大气压里为b 101.325kPa p =,求实际的送风量为多少?解 按理想气体状态方程,同理同法可得 01V1V010p T q q p T = 而 1g1b 20.0kPa 101.325kPa 121.325kPa p p p =+=+= 故 33V1101.325kPa (273.15250)K66000m 105569m /h 121.325kPa 273.15kPaq ⨯+=⨯=⨯例题3-2 对如图3-9所示的一刚性容器抽真空。
容器的体积为30.3m ,原先容器中的空气为0.1MPa ,真空泵的容积抽气速率恒定为30.014m /min ,在抽气工程中容器内温度保持不变。
试求:(1) 欲使容器内压力下降到0.035MPa 时,所需要的抽气时间。
第三章 气体和蒸气的性质3−1 已知氮气的摩尔质量328.110 kg/mol M −=×,求: (1)2N 的气体常数g R ;(2)标准状态下2N 的比体积v 0和密度ρ0; (3)标准状态31m 2N 的质量m 0;(4)0.1MPa p =、500C t =D 时2N 的比体积v 和密度ρ; (5)上述状态下的摩尔体积m V 。
解:(1)通用气体常数8.3145J/(mol K)R =⋅,查附表23N 28.0110kg/mol M −=×。
22g,N 3N8.3145J/(mol K)0.297kJ/(kg K)28.0110kg/molR R M −⋅===⋅×(2)1mol 氮气标准状态时体积为22233m,N N N 22.410m /mol V M v −==×,故标准状态下2233m,N 3N 322.410m /mol 0.8m /kg28.0110kg/molV v M −−×===×223N 3N111.25kg/m 0.8m /kgv ρ===(3)标准状态下31m 气体的质量即为密度ρ,即0 1.25kg m =。
(4)由理想气体状态方程式g pv R T=g 36297J/(kg K)(500273)K2.296m /kg0.110Pa R T v p ⋅×+===×33110.4356kg/m 2.296m /kgv ρ===(5)2223333m,N N N 28.0110kg/mol 2.296m /kg 64.2910m /mol V M v −−==××=×3-2 压力表测得储气罐中丙烷38C H 的压力为4.4MPa ,丙烷的温度为120℃,问这时比体积多大?若要储气罐存1 000kg 这种状态的丙烷,问储气罐的体积需多大?解:由附表查得383C H 44.0910kg/mol M −=×3838g,C H 3C H8.3145J/(mol K)189J/(kg K)44.0910kg/molR R M −⋅===⋅×由理想气体状态方程式g pv R T=g 36189J/(kg K)(120273)K0.01688m /kg4.410PaR T v p⋅×+===×331000kg 0.01688m /kg 16.88m V mv ==×=或由理想气体状态方程g pV mR T=g 361000kg 189J/(kg K)(120273)K16.88m 4.410PamR T V p×⋅×+===×3−3 供热系统矩形风管的边长为100mm ×175mm ,40℃、102kPa 的空气在管内流动,其体积流量是0.018 5m 3/s ,求空气流速和质量流量。
第3章理想气体的性质1.怎样正确看待“理想气体”这个概念?在进行实际计算时如何决定是否可采用理想气体的一些公式?第一个问题很含混,关于“理想气体”可以说很多。
可以说理想气体的定义:理想气体,是一种假想的实际上不存在的气体,其分子是一些弹性的、不占体积的质点,分子间无相互作用力。
也可以说,理想气体是实际气体的压力趋近于零时极限状况。
还可以讨论什么情况下,把气体按照理想气体处理,这已经是后一个问题了。
后一个问题,当气体距离液态比较远时(此时分子间的距离相对于分子的大小非常大),气体的性质与理想气体相去不远,可以当作理想气体。
理想气体是实际气体在低压高温时的抽象。
2.气体的摩尔体积V m是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是0.022414m3/mol?气体的摩尔体积V m不因气体的种类而异。
所处状态发生变化,气体的摩尔体积也随之发生变化。
任何气体在标准状态(p=101325Pa,T=273.15K)下摩尔体积是0.022414m3/mol。
在其它状态下,摩尔体积将发生变化。
3.摩尔气体常数R值是否随气体的种类而不同或状态不同而异?摩尔气体常数R是基本物理常数,它与气体的种类、状态等均无关。
4.如果某种工质的状态方程式为pv=R g T,这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?是的。
5.对于确定的一种理想气体,c p–c v是否等于定值?c p/c v是否为定值?c p–c v、c p/c v是否随温度变化?c p–c v=R g,等于定值,不随温度变化。
c p/c v不是定值,将随温度发生变化。
6.迈耶公式c p–c v=R g是否适用于动力工程中应用的高压水蒸气?是否适用于地球大气中的水蒸气?不适用于前者,一定条件下近似地适用于后者。
7.气体有两个独立的参数,u(或h)可以表示为p和v的函数,即u=f(p,v)。
但又曾得出结论,理想气体的热力学能(或焓)只取决于温度,这两点是否矛盾?为什么?不矛盾。
工程热力学习题3答案工程热力学习题3答案工程热力学是热力学在工程领域的应用,是工程师必须掌握的基础知识之一。
学习题是帮助学生巩固理论知识和培养解决实际问题能力的重要工具。
本文将为大家提供工程热力学学习题3的详细解答,希望能对大家的学习有所帮助。
题目一:一个理想气体在容器中经历了一个绝热膨胀过程,初始状态为P1、V1、T1,终态为P2、V2、T2。
已知绝热指数γ,求解过程中的温度变化ΔT。
解答一:根据理想气体状态方程PV=RT,可以得到初始状态和终态的温度分别为T1=R/P1V1和T2=R/P2V2。
由于过程是绝热膨胀,所以可以利用绝热指数γ来求解温度变化ΔT。
绝热指数γ定义为γ=Cp/Cv,其中Cp为定压比热容,Cv为定容比热容。
对于理想气体来说,γ是一个常数。
由于绝热过程中没有热量交换,所以有以下关系式成立:P1V1^γ=P2V2^γ。
利用这个关系式,可以将温度变化ΔT表示为:ΔT=T2-T1=(P2V2-P1V1)/(R(γ-1))。
题目二:一个容器中装有一定质量的水,初始温度为T1,通过加热使水的温度升高到T2,求解加热过程中水的热容。
解答二:根据热容的定义,热容C表示单位质量物质温度升高1度所需的热量。
对于水来说,热容可以表示为C=mCw,其中m为水的质量,Cw为水的比热容。
加热过程中,水的温度升高ΔT=T2-T1,所需的热量可以表示为Q=mCwΔT。
将上述公式代入热容的定义中,可以得到热容C=Q/(mΔT)。
题目三:一个汽轮机的入口压力为P1,温度为T1,出口压力为P2,温度为T2,求解汽轮机的等熵效率。
解答三:汽轮机的等熵效率定义为ηs=(h1-h2s)/(h1-h2),其中h1为入口焓,h2为出口焓,h2s为等熵过程中的出口焓。
根据热力学第一定律,可以得到汽轮机的等熵过程中的出口焓h2s为:h2s=h1-(Cp(T1-T2)),其中Cp为气体的定压比热容。
将上述公式代入等熵效率的定义中,可以得到汽轮机的等熵效率ηs=1-(T2/T1)^(γ-1),其中γ为气体的绝热指数。
第三章 理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。
理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。
判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。
若为理想气体则可使用理想气体的公式。
2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。
只有在标准状态下摩尔体积为 0.022414m 3 /mol3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异 答:摩尔气体常数不因气体的种类及状态的不同而变化。
4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。
5.对于一种确定的理想气体,()p v C C 是否等于定值pv C C 是否为定值在不同温度下()p v C C -、pv C C 是否总是同一定值答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。
在不同温度下()p v C C -为定值,pv C C 不是定值。
6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。
7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。
但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾为什么答:不矛盾。
第三章 气体和蒸气的性质3−1 已知氮气的摩尔质量328.110 kg/mol M −=×,求: (1)2N 的气体常数g R ;(2)标准状态下2N 的比体积v 0和密度ρ0; (3)标准状态31m 2N 的质量m 0;(4)0.1MPa p =、500C t =D 时2N 的比体积v 和密度ρ; (5)上述状态下的摩尔体积m V 。
解:(1)通用气体常数8.3145J/(mol K)R =⋅,查附表23N 28.0110kg/mol M −=×。
22g,N 3N8.3145J/(mol K)0.297kJ/(kg K)28.0110kg/molR R M −⋅===⋅×(2)1mol 氮气标准状态时体积为22233m,N N N 22.410m /mol V M v −==×,故标准状态下2233m,N 3N 322.410m /mol 0.8m /kg28.0110kg/molV v M −−×===×223N 3N111.25kg/m 0.8m /kgv ρ===(3)标准状态下31m 气体的质量即为密度ρ,即0 1.25kg m =。
(4)由理想气体状态方程式g pv R T=g 36297J/(kg K)(500273)K2.296m /kg0.110Pa R T v p ⋅×+===×33110.4356kg/m 2.296m /kgv ρ===(5)2223333m,N N N 28.0110kg/mol 2.296m /kg 64.2910m /mol V M v −−==××=×3-2 压力表测得储气罐中丙烷38C H 的压力为4.4MPa ,丙烷的温度为120℃,问这时比体积多大?若要储气罐存1 000kg 这种状态的丙烷,问储气罐的体积需多大?解:由附表查得383C H 44.0910kg/mol M −=×3838g,C H 3C H8.3145J/(mol K)189J/(kg K)44.0910kg/molR R M −⋅===⋅×由理想气体状态方程式g pv R T=g 36189J/(kg K)(120273)K0.01688m /kg4.410PaR T v p⋅×+===×331000kg 0.01688m /kg 16.88m V mv ==×=或由理想气体状态方程g pV mR T=g 361000kg 189J/(kg K)(120273)K16.88m 4.410PamR T V p×⋅×+===×3−3 供热系统矩形风管的边长为100mm ×175mm ,40℃、102kPa 的空气在管内流动,其体积流量是0.018 5m 3/s ,求空气流速和质量流量。
沈维道、将智敏、童钧耕《工程热力学》课后思考题答案工程热力学思考题及答案第三章 理想气体的性质1. 怎样正确看待“理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式?答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。
理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。
判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。
若为理想气体则可使用理想气体的公式。
2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是0.022414m 3/mol?答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。
只有在标准状态下摩尔体积为0.022414m 3/mol3.摩尔气体常数R 值是否随气体的种类不同或状态不同而异?答:摩尔气体常数不因气体的种类及状态的不同而变化。
4.如果某种工质的状态方程式为RgT pv =,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。
5.对于一种确定的理想气体,)(v p c c −是否等于定值?v p c c 是否为定值?在不同温度下)(v p c c −、v p c c 是否总是同一定值?答:对于确定的理想气体在同一温度下v p c c −为定值,v p c c 为定值。
在不同温度下v p c c −为定值,v p c c 不是定值。
6.麦耶公式Rg c c v p =−是否适用于理想气体混合物?是否适用于实际气体? 答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。
7.试论证热力学能和焓是状态参数,理想气体热力学能和焓有何特点?答:在工程热力学里,在无化学反应及原子核反应的过程中,化学能、原子核能都不变化,可以不考虑,因此热力学能包括内动能和内位能。
第三章 热力学第一定律 习题参考答案思考题3-1门窗紧闭的房间……答:按题意,以房间(空气+冰箱)为对象,可看成绝热闭口系统,与外界无热量交换,Q=0电冰箱运转时,有电功输入,即W 为负值,按闭口系统能量方程:WU +Δ=0 或即热力学能增加,温度上升。
0>−=ΔW U 3-6 下列各式,适用于何种条件? 答:答案列于下表公式适用条件w du q δδ+= 闭口系统,任何工质,任何过程,不论可逆与不可逆 pdv du q +=δ 闭口系统,任何工质,可逆过程 pdv dT c q v +=δ闭口系统,理想气体,可逆过程dh q =δ 闭口系统,定压过程; 或开口系统与环境无技术功交换。
vdp dT c q v −=δ开口系统,理想气体,稳态稳流,可逆过程3-10 说明以下结论是否正确: (提示:采用推理原则,否定原则) ⑴ 气体吸热后一定膨胀,热力学能一定增加。
答:错误,如等容过程吸热后不膨胀;如不是等容过程吸热后热力学能也不一定增加,当对外净输出功量大于吸热量时,则热力学能不增加。
⑵ 气体膨胀一定对外作功。
答:错误,如气体向真空膨胀则不作功,另外气体膨胀对外作膨胀功的充要条件是:气体膨胀和要有功的传递和接受机构。
⑶ 气体压缩时,一定消耗外功。
答:错误,如处于冷却过程的简单可压缩系统,则会自发收缩(相当于被压缩),并不消耗外功。
⑷ 应设法利用烟气离开锅炉时带走的热量。
答:错误不应说设法利用烟气离开锅炉时带走的热量。
因为热量是过程量,不发生则不存在。
应该说设法利用烟气离开锅炉时带走的热能(或热焓)。
习 题3-1 已知:min 202000/400===time N hkJ q 人人求:?=ΔU 解:依题意可将礼堂看作绝热系统,思路:1、如何选取系统?2、如何建立能量方程? ⑴ 依题意,选取礼堂空气为系统,人看作环境,依热力学第一定律,建立能量方程:kJ time N q Q U W W Q U 51067.2602020004000×=××=⋅⋅==Δ∴=−=Δ人Q⑵ 如选“人+空气”作系统, 依据热力学第一定律:W Q U −=Δ0,0,0=Δ∴==U Q W Q如何解释空气温度升高:该系统包括“人+空气”两个子系统 ,人散热给空气,热力学能降低,空气吸热,能内升高,二者热力学能代数和为零。
第三章 气体的热力性质和热力过程思 考 题1. 理想气体的热力学能和焓只和温度有关,而和压力及比体积无关。
但是根据给定的压力和比体积又可以确定热力学能和焓。
其间有无矛盾?如何解释?答:其间没有矛盾,因为对理想气体来说,由其状态方程PV=RT 可知,如果给定了压力和比容也就给定了温度,因此就可以确定热力学能和焓了。
2. 迈耶公式对变比热容理想气体是否适用?对实际气体是否适用?答:迈耶公式p0v0c c R -=是在理想气体基础上推导出来的,因此不管比热是否变化,只要是理想气体就适用,而对实际气体则是不适用的。
3. 在压容图中,不同定温线的相对位置如何?在温熵图中,不同定容线和不同定压线的相对位置如何?答:对理想气体来说,其状态方程为:PV=RT ,所以,T 愈高,PV 值愈大,定温线离P-V 图的原点愈远。
如图a 中所示,T 2>T 1。
实际气体定温线的相对位置也大致是这样由定比热理想气体温度与熵的关系式2ln expp S R P C T c ++=可知,当S 一定时(C 2、R 、C p0都是常数)压力愈高,T 也愈高,所以在T-S 图中高压的定压线位于低压的定压线上,如图b 所示,P 2>P 1实际气体的定压线也类似的相对位置。
由定比热理想气体温度与熵的关系式1ln expv S R V C T c -+=可知,当S 一定时(C 1、R 、C v0都是常数)比容愈大,温度愈低,所以在T-S 图中大比容的定容线位于小比容的定容线下方,如图c 所示,v 2<v 1实际气体的定容线bT a P c T也有类似的位置关系。
4. 在温熵图中,如何将理想气体在任意两状态间热力学能的变化和焓的变化表示出来?答:对理想气体,任意两状态间内能变化21201v v u C dT q -∆==⎰,所以在温熵图中可用同样温度变化范围内定容过程所吸收的热量表示出来。
如同d ,定容线12’下的面积1342’1即表示1、2在状态间的热力学能变化12u -∆ 对理想气体来说,任意状态间的焓的变化21201p p h C dT q -∆==⎰,所以可用同样温度变化范围内定压过程所吸收的热量来表示。
第3章 热力学第一定律
3.5空气在压气机中被压缩。
压缩前空气的参数为p 1=1bar ,v 1=0.845m 3/kg ,压缩后的参数为p 2=9bar ,v 2=0.125m 3/kg ,设在压缩过程中1kg 空气的热力学能增加146.5kJ ,同时向外放出热量55kJ 。
压缩机1min 产生压缩空气12kg 。
求:①压缩过程中对1kg 空气做的功;②每生产1kg 压缩空气所需的功(技术功);③带动此压缩机所用电动机的功率。
解:①闭口系能量方程
q=∆u+w 由已知条件:q=-55 kJ/kg ,∆u=146.5 kJ/kg
得 w =q -∆u=-55kJ-146.5kJ=-201.5 kJ/kg
即压缩过程中压气机对每公斤气体作功201.5 kJ
②压气机是开口热力系,生产1kg 空气需要的是技术功w t 。
由开口系能量守恒式:q=∆h+w t
w t = q -∆h =q-∆u-∆(pv)=q-∆u-(p 2v 2-p 1v 1)
=-55 kJ/kg-146.5 kJ/kg-(0.9×103kPa×0.125m 3/kg-0.1×103kPa×0.845m 3/kg)
=-229.5kJ/kg
即每生产1公斤压缩空气所需要技术功为229.5kJ
③压气机每分钟生产压缩空气12kg ,0.2kg/s ,故带动压气机的电机功率为
N=q m·w t =0.2kg/s×229.5kJ/kg=45.9kW
3.7某气体通过一根内径为15.24cm 的管子流入动力设备。
设备进口处气体的参数是:v 1=0.3369m 3/kg ,
h 1=2826kJ/kg ,c f1=3m/s ;出口处气体的参数是h 2=2326kJ/kg 。
若不计气体进出口的宏观能差值和重力位能差值,忽略气体与设备的热交换,求气体向设备输出的功率。
解:设管子内径为d ,根据稳流稳态能量方程式,可得气体向设备输出的功率P 为:
2222f1121213(0.1524)()()(28262326)440.3369
c d P m h h h h v ×=−=−=−× =77.5571kW 。
3.9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为500kPa ,温度为25℃。
充气开始时,罐内空气参数为50kPa ,10℃。
求充气终了时罐内空气的温度。
设充气过程是在绝热条件下进行的。
解:根据开口系统的能量方程,有:
δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s
由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有:
d(m·u )=h in ·d m
有: m ·d u +u ·d m=h in ·d m 即:m ·d u=(h in -u )·d m =pv ·d m =R g T ·d m
分离积分变量可得:(c v /R g )·d T /T=d m /m
因此经积分可得:(c v /R g )ln(T 2/T 1)= ln(m 2/m 1)
设储气罐容积为V 0,则:m 1=p 1·V 0/(R g T 1),m 2=p 2·V 0/(R g T 2)
易得T 2=T 1· (p 2/p 1) R g /cp =283×(500/50)0.287/1.004=546.56
K 3.10一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为1000kPa ,温度为27℃。
充气开始时,储气罐内为真空,求充气终了时罐内空气的温度。
设充气过程是在绝热条件下进行的。
解:根据开口系统的能量方程,有:
δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s
由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有:
d(m·u )=h in ·d m
对上式积分可得:(m·u)cv2-(m·u)cv1=h in·m2
因为(m·u)cv1=0,有m cv2=m2,则u cv2=h in,故有
T cv2=c p T in/c v=kT in=1.4×300=420K
3.13温度t1=10℃的冷空气进入锅炉设备的空气预热器,用烟气放出来的热量对其加热,若已知1 Nm3(标准立方米)烟气放出245kJ的热量,空气预热器没有热损失,烟气每小时的流量按质量计算是空气的1.09倍,烟气的气体常数R g=286.45J/(kg·K),并且不计空气在预热器中的压力损失,求空气在预热器中受热后达到的温度t2。
解:1 Nm3(标准立方米)烟气的质量m y为:
y
g0
1013251
1.296 kg 286.45273
p V m
R T ×
===
×
对应的空气质量m k为:m k=m y/1.09=1.189 kg
由于空气预热器没有热损失,则烟气放出的热量全部被冷空气吸收,则:m k c p(t2- t1)=245,则:
t2= t1+245/( m k c p)=10+245/(1.189×1.004)=215.2 K。