材料力学扭转实验实验报告
- 格式:docx
- 大小:40.27 KB
- 文档页数:7
引言概述:本文是《扭转实验的实验报告(二)》。
扭转实验是一种用于研究材料的力学性质的实验方法。
在本次实验中,我们通过对不同材料的扭转实验进行了测试和分析,并总结了实验结果,以期进一步了解材料的力学性能和变形行为。
正文内容:一、实验目的:1.1研究不同材料在扭转载荷下的力学性能;1.2分析不同材料在扭转载荷下的变形行为;1.3比较不同材料的扭转刚度和扭转强度。
二、实验装置和材料:2.1实验装置:我们使用了一台扭转试验机进行实验。
该试验机能够提供控制扭转载荷的功能,并能够测量样品的扭转角度和扭矩;2.2实验材料:我们选择了不同种类的材料进行实验,包括金属材料、塑料材料和复合材料等。
三、实验方法:3.1样品制备:我们按照一定规格和尺寸制备了不同材料的样品。
样品的形状和尺寸应符合国际标准,以保证实验结果的可比性;3.2扭转实验参数设置:我们在实验过程中设置了一定的扭转载荷和扭转速度,并保持其他实验参数不变,以探究不同载荷和速度对材料力学性能的影响;3.3数据采集和分析:我们使用实验装置提供的数据采集系统记录样品的扭转角度和扭矩,并进行数据分析和统计。
四、实验结果:4.1不同材料的扭转刚度比较:我们对不同材料的扭转刚度进行了比较。
实验结果显示,金属材料具有较高的扭转刚度,而塑料材料和复合材料的扭转刚度较低;4.2不同材料的扭转强度比较:我们对不同材料的扭转强度进行了比较。
实验结果显示,金属材料具有较高的扭转强度,而塑料材料和复合材料的扭转强度较低;4.3不同材料的变形行为分析:我们对不同材料在扭转载荷下的变形行为进行了分析。
实验结果显示,金属材料变形较小且具有较高的弹性恢复性,而塑料材料和复合材料的变形较大且难以恢复;4.4不同材料的破坏形态观察:我们对不同材料在扭转载荷下的破坏形态进行了观察。
实验结果显示,金属材料在破坏前具有明显的塑性变形,而塑料材料和复合材料的破坏形态主要表现为断裂;4.5材料力学性能与组织结构的关系:我们分析了材料力学性能与其组织结构之间的关系。
一、实验目的1. 理解扭转实验的基本原理和实验方法;2. 掌握扭转实验的操作步骤和数据处理方法;3. 分析不同材料的扭转性能,了解其力学特性;4. 比较不同实验条件下的扭转性能,探讨影响因素;5. 培养学生的实验操作能力和分析问题、解决问题的能力。
二、实验原理扭转实验是力学实验中的一种基本实验,用于研究材料在扭转应力作用下的力学性能。
扭转实验的原理是:当材料受到扭转力矩的作用时,材料内部的应力分布会发生变化,从而产生剪切应力。
通过测量材料的扭转角度、扭矩和扭转刚度等参数,可以分析材料的扭转性能。
扭转实验的基本原理如下:(1)扭转应力分布:在扭转应力作用下,材料内部的应力分布呈环状,即剪切应力τ沿半径r的变化规律为τ=τ0(1-3cosθ/r),其中τ0为最大剪切应力,θ为扭转角度,r为半径。
(2)扭矩与扭转角度的关系:在扭转实验中,扭矩M与扭转角度θ之间存在如下关系:M=2πTθ,其中T为扭转刚度,表示材料抵抗扭转变形的能力。
(3)扭转刚度:扭转刚度T是衡量材料扭转性能的重要参数,其计算公式为T=GI/P,其中G为剪切模量,I为截面惯性矩,P为扭矩。
三、实验方法1. 实验材料:选择具有代表性的材料,如钢、铝、塑料等。
2. 实验设备:扭转试验机、电子秤、游标卡尺、量角器等。
3. 实验步骤:(1)准备实验材料:根据实验要求,截取一定长度的材料,确保材料尺寸满足实验要求。
(2)安装实验设备:将扭转试验机、电子秤、游标卡尺、量角器等设备安装调试到位。
(3)测量材料尺寸:使用游标卡尺测量材料的直径、长度等尺寸,并记录数据。
(4)施加扭矩:将材料固定在扭转试验机上,逐步施加扭矩,记录扭矩值。
(5)测量扭转角度:在施加扭矩的过程中,使用量角器测量材料的扭转角度,并记录数据。
(6)数据处理:根据实验数据,计算材料的扭转刚度、最大剪切应力等参数。
四、实验结果与分析1. 实验结果:通过实验,得到了不同材料的扭转刚度、最大剪切应力等参数。
一、实验目的1. 掌握扭转试验机的操作方法。
2. 测定低碳钢的剪切屈服极限和剪切强度极限。
3. 比较低碳钢和铸铁在扭转过程中的变形及其破坏形式。
4. 分析试件断口形貌,了解两种材料的扭转性能差异。
二、实验设备与仪器1. 扭转试验机2. 游标卡尺3. 低碳钢圆轴试件4. 铸铁圆轴试件三、实验原理扭转试验是材料力学实验中的一种基本试验,通过测定材料在扭转过程中的应力、应变和破坏情况,来研究材料的扭转性能。
在扭转过程中,材料内部的应力分布呈环形分布,最大应力出现在试件的边缘,最小应力出现在试件中心。
四、实验步骤1. 将低碳钢和铸铁圆轴试件分别安装在扭转试验机上。
2. 使用游标卡尺测量试件的直径,记录数据。
3. 设置扭转试验机,选择合适的加载速度。
4. 开启试验机,开始进行扭转试验。
5. 观察试件的变形情况,记录屈服扭矩和破坏扭矩。
6. 取下试件,观察断口形貌,分析破坏原因。
五、实验结果与分析1. 低碳钢试件的扭转实验结果如下:- 剪切屈服极限:σs = 220 MPa- 剪切强度极限:σb = 300 MPa低碳钢在扭转过程中,当扭矩达到屈服扭矩时,试件表面出现屈服现象,扭矩基本不变。
随着扭矩的继续增大,试件进入强化阶段,变形增加,扭矩随之增加。
当扭矩达到破坏扭矩时,试件发生断裂。
2. 铸铁试件的扭转实验结果如下:- 剪切强度极限:σb = 150 MPa铸铁在扭转过程中,当扭矩达到剪切强度极限时,试件发生断裂。
由于铸铁为脆性材料,其扭转过程中的变形较小,几乎没有屈服现象。
3. 对比两种材料的扭转性能:- 低碳钢具有较好的扭转性能,剪切屈服极限和剪切强度极限较高,适合用于承受扭转载荷的结构件。
- 铸铁的扭转性能较差,剪切强度极限较低,不适合用于承受扭转载荷的结构件。
4. 分析试件断口形貌:- 低碳钢试件断口为纤维状断口,表明其断裂原因主要是由于拉伸断裂。
- 铸铁试件断口为解理断口,表明其断裂原因主要是由于剪切断裂。
材料力学金属扭转实验报告[5篇范例]第一篇:材料力学金属扭转实验报告材料力学金属扭转实验报告【实验目的】1、验证扭转变形公式,测定低碳钢的切变模量G。
;测定低碳钢和铸铁的剪切强度极限bτ握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;2、绘制扭矩一扭角图;3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异;4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。
【实验仪器】仪器名称数量参数游标卡尺1 0-150mm,精度CTT502 微机控制电液伺服扭转试验机 1 最大扭矩500N·m,最大功率低碳钢、铸铁各 1 标准【实验原理和方法】1..测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩esM,低碳钢的扭转屈服应力为 pess43WM=τ式中:/3pd W π=为试样在标距内的抗扭截面系数。
在测出屈服扭矩sT 后,改用电动快速加载,直到试样被扭断为止。
这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩ebM,低碳钢的抗扭强度为 pebb43WM=τ对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-eM 图如图1-3-2 所示。
当达到图中 A 点时,eM 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力sτ,如能测得此时相应的外力偶矩epM,如图1-3-3a 所示,则扭转屈服应力为 pepsWM=τ经过A 点后,横截面上出现了一个环状的塑性区,如图1-3-3b 所示。
若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图 1-7c 所示的情况,对应的扭矩sT 为 OϕM eABCM epM esM eb 图 1-3-2低碳钢的扭转图τ sTτ sTτ sT(a)pT T =(b)s pT T T <<(c)sT T =图 1-3-3低碳钢圆柱形试样扭转时横截面上的切应力分布s p s3d/22sd/2s s3412d 2 d 2 ττπρρπτρπρρτ WdT ====⎰⎰由于es sM T =,因此,由上式可以得到 pess43WM=τ无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。
扭转试验材料力学实验报告docx(二)引言:扭转试验是材料力学实验中常用的一种试验方法,通过对材料在扭转载荷下的变形与破坏进行观察和分析,可以获得关于材料力学性能的重要数据。
本文档将对扭转试验的原理和实验过程进行详细介绍,并结合相应的示意图和数据进行分析和解读。
一、扭转试验原理1. 扭转载荷的作用机理2. 扭转角与转矩之间的关系3. 扭转试验的应用领域二、扭转试验的实验准备1. 试验设备和装置的选用2. 样品的制备和处理3. 扭转试验条件的设定4. 扭转试验的安全注意事项5. 实验前的校验和预处理三、扭转试验的实验步骤1. 材料样品的固定和装夹2. 扭转试验条件的设定和调整3. 开始扭转试验并记录相关数据4. 观察和记录样品的变形和破坏情况5. 扭转试验结束后的数据处理和分析四、扭转试验结果的数据分析1. 扭转角与转矩的关系曲线分析2. 弹性区和塑性区的划分及标定3. 材料的扭转刚度和扭转强度计算4. 扭转试验结果与其他力学性能指标的关联性分析5. 结果的可靠性评估和误差分析五、扭转试验的优化和改进1. 设备和装置的改进方向2. 试验方法和参数的优化建议3. 数据处理和分析方法的改进思路4. 实验结果和结论的潜在影响和应用方向5. 对未来扭转试验的展望和研究方向总结:通过对扭转试验的详细介绍和分析,本文档对扭转试验的原理、实验步骤、数据分析等方面进行了全面的阐述。
扭转试验对于研究材料的力学性能具有重要意义,但仍存在一些局限性和改进空间。
随着科学技术的不断进步,我们可以预见,在未来的研究中,扭转试验将得到更广泛和深入的应用,并为材料科学领域的发展做出更大的贡献。
材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。
2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。
3、熟悉扭转试验机的工作原理和操作方法。
二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。
扭矩与扭转角之间的关系可以通过试验机测量得到。
对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。
当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。
四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。
2、安装试件,确保其中心线与试验机的轴线重合。
3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。
4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。
5、继续加载,直至试件断裂,记录极限扭矩$T_b$。
6、取下试件,观察其破坏形式。
六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。
扭转实验报告摘要:本文旨在探讨扭转实验的目的、原理、步骤及结果分析。
通过对不同材料和扭力条件下的扭转实验,我们将了解其对材料性能的影响,以期为材料的设计和工程应用提供参考。
一、引言扭转实验是一种常用的材料力学实验方法,用于研究材料的扭转性能。
在材料工程中,了解材料的扭转性能对于合理设计和选择材料至关重要。
扭转实验可以表征材料的剪切性能和变形行为,并提供了评估材料强度、刚性和可靠性的重要参数。
二、实验目的本次扭转实验的目的是研究不同材料在不同扭转条件下的性能差异。
通过测量扭转杆材料在不同扭力下的旋转角度和扭转应力,我们可以评估材料的剪切刚度和材料的扭转可用性。
三、实验原理扭转实验是通过施加一个扭力(或扭矩)来引起材料的扭转变形。
材料会在受到扭转作用时发生变形,并由此产生剪切应力和剪切应变。
扭转实验涉及到材料的弹性和塑性变形。
在弹性阶段,材料会在不断施加的扭转力下保持线性弹性行为,而在超过临界点后则发生可见的塑性变形。
实验步骤:1. 安装测力传感器并调整校准;2. 确保扭转装置及夹具的稳定性;3. 将待测试材料安装到扭转装置上并调节紧固螺丝;4. 施加扭力,并逐渐增大直到达到预定的目标扭力;5. 记录扭转杆的旋转角度和施加的扭力;6. 重复实验步骤以获得可靠的数据。
四、实验结果分析通过对不同材料在不同扭力条件下的扭转实验,我们得出了以下的结果分析:1. 材料A在扭转力逐渐增大的过程中,其旋转角度逐渐增加,但增幅逐渐减小。
这可能说明材料A在扭转过程中遇到了一定的变形限制。
2. 材料B在扭转力较小的情况下表现出较大的旋转角度,然而随着扭转力的增大,其旋转角度增加的速率逐渐减缓。
这可能表明材料B在低扭转力下具有良好的弹性变形能力,但在高扭转力下,其可能出现较大的塑性变形。
3. 材料C在整个扭转实验过程中,其旋转角度和扭力之间的关系呈现出近线性的趋势。
这表明材料C在不同扭转力下的变形行为较为稳定。
根据以上实验结果分析,我们可以得出一些初步结论:1. 材料的旋转角度和扭力之间存在一定的关系,不同材料的关系可能不同;2. 材料的弹性和塑性变形能力会对扭转实验的结果产生影响;3. 不同材料在扭转实验中呈现出不同的性能特点,可以根据实际需要选择合适的材料。
材料力学扭转实验报告材料力学扭转实验报告引言材料力学是研究材料在外力作用下的变形和破坏规律的学科,扭转实验是其中的重要实验之一。
本报告旨在介绍材料力学扭转实验的原理、方法、实验装置以及实验结果的分析与讨论。
实验原理扭转实验是通过施加一个力矩来引起材料的扭转变形,从而研究材料的力学性能。
在扭转实验中,材料会发生剪切应变,而剪切应力与剪切应变之间的关系可以通过剪切模量来描述。
剪切模量是材料的一项重要力学参数,它反映了材料抵抗剪切变形的能力。
实验方法本次实验采用了经典的圆柱体扭转实验方法。
首先,选择一根具有一定长度的圆柱体样品,将其固定在扭转实验机上。
然后,通过扭转实验机施加一个力矩,使样品发生扭转变形。
同时,通过测量扭转角度和施加力矩的大小,可以得到材料的剪切模量。
实验装置本次实验所用的扭转实验装置包括扭转实验机、样品夹具、测量仪器等。
扭转实验机是用来施加力矩的设备,样品夹具用于固定样品,并保证其能够自由扭转。
测量仪器包括扭转角度测量仪和力矩测量仪,用于测量样品的扭转角度和施加的力矩。
实验结果分析与讨论通过实验测量得到的扭转角度和施加的力矩数据可以用来计算材料的剪切模量。
根据材料力学的理论知识,剪切模量可以通过以下公式计算:G = (L * T) / (J * θ)其中,G表示剪切模量,L表示样品的长度,T表示施加的力矩,J表示样品的截面转动惯量,θ表示样品的扭转角度。
通过对实验数据的处理和计算,可以得到材料的剪切模量。
进一步地,可以通过对不同材料进行扭转实验,比较其剪切模量的大小,从而分析不同材料的力学性能。
结论通过本次材料力学扭转实验,我们了解了扭转实验的原理和方法,并通过实验装置和测量仪器进行了实验。
通过对实验数据的分析和计算,我们得到了材料的剪切模量,并通过比较不同材料的剪切模量,进一步了解了材料的力学性能。
这对于我们深入了解材料的性质和应用具有重要意义。
总结材料力学扭转实验是研究材料力学性能的重要实验之一。
扭转实验的实验报告篇一:低碳钢和铸铁的扭转实验报告一、试验目的扭转试验报告1、测定低碳钢的剪切屈服极限τs。
和剪切强度极限近似值τb。
2、测定铸铁的剪切强度极限τb。
3、观察并分析两种材料在扭转时的变形和破坏现象。
二、设备和仪器1、材料扭转试验机2、游标卡尺三、试验原理1、低碳钢试样对试样缓慢加载,试验机的绘图装置自动绘制出T-φ曲线(见图1)。
最初材料处于图1 低碳钢是扭转试验弹性状态,截面上应力线性分布,T-φ图直线上升。
到A点,试样横截面边缘处剪应力达到剪切屈服极限τs。
以后,由屈服产生的塑性区不断向中心扩展,T-φ图呈曲线上升。
至B点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。
这不动或摆动的最小值就是屈服扭矩Ts。
再以后材料强化,T-φ图上升,至C点试样断裂。
在试验全过程中,试样直径不变。
断口是横截面(见图2a),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。
图2 低碳钢和铸铁的扭转端口形状据屈服扭矩?s?3Ts (2-1)4Wp按式2-1可计算出剪切屈服极限τs。
据最大扭矩Tb可得:?b?3Tb(2-2)4Wp按式2-2可计算出剪切强度极限近似值τb。
说明:(1)公式(2-1)是假定横截面上剪应力均达到τs后推导出来的。
公式(2-2)形式上与公式(2-1)虽然完全相同,但它是将由塑性理论推导出的Nadai公式略去了一项后得到的,而略去的这一项不一定是高阶小量,所以是近似的。
(2)国标GB10128-88规定τs和τb均按弹性扭转公式计算,这样得到的结果可以用来比较不同材料的扭转性能,但与实际应力不符。
II、铸铁试样铸铁的曲线如图3所示。
呈曲线形状,变形很小就突然破裂,有爆裂声。
断裂面粗糙,是与轴线约成45°角的螺旋面(见图1-3-2b)。
这是由于铸铁抗拉能力小于抗剪能力,而这面上拉应力最大之故。
据断裂前的最大扭矩Tb按弹性扭转公式1-3-3可计算抗扭强度τb。
扭转破坏实验实验报告篇一:扭转实验报告一、实验目的和要求1、测定低碳钢的剪切屈服点?s、剪切强度?b,观察扭矩-转角曲线(t??曲线)。
2、观察低碳钢试样扭转破坏断口形貌。
3、测定低碳钢的剪切弹性模量g。
4、验证圆截面杆扭转变形的胡克定律(??tl/gip)。
5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。
二、试验设备和仪器1、微机控制扭转试验机。
2、游标卡尺。
3、装夹工具。
三、实验原理和方法遵照国家标准(gb/t10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。
如材料的剪切屈服强度点?s和抗剪强度?b等。
圆截面试样必须按上述国家标准制成(如图1-1所示)。
试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。
图1-1试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。
图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa段)、屈服阶段(ab段)和强化阶段(cd段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。
由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达10?以上。
从扭转试验机上可以读取试样的屈服扭矩破坏扭矩由算材料的剪切屈服强度抗剪强度式中:试样截面的抗扭截面系数。
ts和tb。
和?s?3ts/4wt计?s和?b,wt??d0/16为3?s?3ts/4wt计算材料的剪切屈服强度?s和抗剪强度?b,式中:wt??d0/163为试样截面的抗扭截面系数。
当圆截面试样横截面的最外层切应力达到剪切屈服点?s时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。
当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点?s时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩ts要大一些,对于破坏扭矩也会有同样的情况。
扭 转 实 验
一.实验目的:
1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。
2.确定低碳钢试样的剪切屈服极限、剪切强度极限。
3.确定铸铁试样的剪切强度极限。
4.观察不同材料的试样在扭转过程中的变形和破坏现象。
二.实验设备及工具
扭转试验机,游标卡尺、扳手。
三.试验原理:
塑性材料和脆性材料扭转时的力学性能。
(在实验过程及数据处理时所支撑的理论依据。
参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。
)
四.实验步骤
1.a 低碳钢实验(华龙试验机)
(1)量直径:
用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:
启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。
(3)调整试验机并对试样施加载荷:
在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。
(4)试样断裂后,从峰值中读取最大扭矩。
从夹头上取下试样。
(5)观察试样断裂后的形状。
1.b 低碳钢实验(青山试验机)
(1)量直径:
用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:
启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ
0d S M b M 0d
用扳手顺时针旋转,夹紧试样。
(3)调整试验机并对试样施加载荷:
在电脑显示屏上调整扭矩、峰值、夹头间转角、切应变1、切应变2、试验时间的零点;选择“实验方案1”;用鼠标“新建”,在下拉菜单中,依次输入“试验编号”、“实验员”、“钢筋长度”、在“实验材料”中选择“塑性”、“材料形状”中选择“实心”和“钢筋直径”等信息后,点击“确定”;鼠标点“开始”键,就给试样施加扭矩了;在加载过程中,注意观察试样屈服时扭矩的变化,并记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“停止”键,使试验机停止转动。
(4)试样断裂后,取下试样,从峰值中读取最大扭矩。
(5)观察试样断裂后的形状。
2.a 铸铁实验(华龙试验机)
(1)量直径:
用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:
启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。
(3)调整试验机并对试样施加载荷:
在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择 “教学铸铁试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。
(4)试样断裂后,从夹头上取下试样,读取峰值表中最大扭矩。
(5)观察试样断裂后的形状。
2.b 低碳钢实验(青山试验机)
(1)量直径:
用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:
启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,用扳手顺时针旋转,夹紧试样。
S M b M 0d b M 0d
(3)调整试验机并对试样施加载荷:
在电脑显示屏上调整扭矩、峰值、夹头间转角、切应变1、切应变2、试验时间的零点;选择“实验方案1”;用鼠标“新建”,在下拉菜单中,依次输入“试验编号”、“实验员”、“钢筋长度”、在“实验材料”中选择“脆性”、“材料形状”中选择“实心”和“钢筋直径”等信息后点击“确定”;鼠标点“开始”键,就给试样施加扭矩了;当扭矩达到最大值时,试样突然断裂,后按下“停止”键,使试验机停止转动。
(4)试样断裂后,取下试样,从峰值中读取最大扭矩。
(5)观察试样断裂后的形状。
圆周扭转在弹性范围内剪应力分布如图a 所示,对于塑性材料,当扭矩增大到一定数值后,试样表面应力先达到流动极限,并逐渐向内扩展,形成环形塑性区,如图b 所示。
若扭矩逐渐增大,塑性区也不断扩大。
当扭矩达到时,横截面上的剪应力都近似达到如
图c 所示,在这种剪应力分布下,流动时剪应力公式为。
在扭矩继续增加时,试样继续变形,材料进一步强化,当试样扭断时,整个横截面上的剪应力都达到,此时最大扭矩为,因此剪切强度极限和流动极限一样,近似地.
b M S τS M S τρτW M S S 43=
b τb M ρτW M b
b 43=
由于铸铁是脆性材料,应力在横截面上从开始受力直至破坏都保持为线性分布,当试样边缘上的剪应力达到
时,此时最大扭矩为,故仍有弹性阶段的应力公式计算强度
极限。
六.数据处理
b b M
七.实验结论
八.预习思考题
1.为什么扭转试样两端较粗,中间较细?中间和两端采用光滑曲线过度,而不是直角连接?
2.在计算低碳钢屈服强度和极限强度的公式中为什么会出现3/4,而不是其他系数呢?
3.如果扭转试样是屈服失效,请用最大剪应力理论分析一下,试样可能的断口形状。
4.如果扭转试样是断裂失效,请用最大正应力理论分析一下,试样可能的断口形状。
5.安装扭转试样为什么要“把试样水平地放在两夹头之间”?
6.低碳钢试样在扭转时的变形要经历哪3个阶段?
九.分析思考题
1.扭转实验中你是怎样测量试样直径的?为什么采用这种方法?
2.两种试样的断口形状分别是什么样的?怎样解释这种结果?
3.铸铁试样扭转破坏断口的倾斜方向与施加扭矩的方向有无直接关系?为什么?
4.通过你已经做过的拉伸、压缩、扭转实验,请总结一下低碳钢抗拉、抗压、抗剪强度的大小关系。
同样地,请总结一下铸铁的抗拉、抗压、抗剪性能。
5.结合你已经做过的拉伸、压缩、扭转实验,请分析低碳钢的载荷-变形曲线有什么共同点。
6. 对于本次实验,你有什么体会?你有什么建议?。