2020年宁夏银川一中高考数学二模试卷(文科)
- 格式:docx
- 大小:1.59 MB
- 文档页数:19
2020年宁夏高考模拟考试 文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是A. A C φ⋂=B. A C C ⋃=C. B C B ⋂=D. A B C =2. 若复数2(1)z m m m i =+++是纯虚数,其中m 是实数,则1z= A. i B. i - C. 2iD. 2i -3. 若1sin()43x π-=,则sin 2x = A.79B. 79-C.13D. 13-4. 在矩形ABCD 中,8AB =,6AD =,若向该矩形内随机投一点P ,那么使ABP ∆与ADP ∆ 的面积都小于4的概率为 A.136B.112C.19D.495. 在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于 A. 66B. 132C. -66D. -1326. 设函数2()23f x x x =--,若从区间[2,4]-上任取一个实数x ,则所选取的实数x 满足()0f x ≤的概率为A.12B.13C.23D.147. 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m8. 已知双曲线)0(13222>=-a y a x 的离心率为2,则 =aA. 2B.26C. 25D. 19. 函数ln ()xf x x=的图象大致为 A. B.C. D.10.已知函数532sin 2064y x x ππ⎛⎫⎛⎫=+<< ⎪⎪⎝⎭⎝⎭的图象与一条平行于x 轴的直线有两个交点,其横坐标分别为1x ,2x ,则12x x =+ A.43πB.23π C.3π D.6π 11.已知三棱锥ABC D -四个顶点均在半径为R 的球面上,且22===AC BC AB ,,若该三棱锥体积的最大值为1,则这个球的表面积为 A.81500π B. 9100π C. 925πD. π412. 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分別为12,F F ,过2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角项点的等腰直角三角形,则椭圆的离心率为A B .22 D -二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前2019年普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}09|2≤-=x x A ,{})12ln(|2++-==x x y x B ,则B A ⋂= A .{}33|≤<-x x B .{}02|≤<-x xC .{}02|<<-x xD .{}320|≠><x x x x 且或2.复数z 满足,则z 等于A .i 31-B .1C .i 2321-D .i 2123-3.已知直线m 、n 与平面,,βα下列命题正确的是 A .//,//m n αβ且//,//m n αβ则 B .,//m n αβ⊥且,m n αβ⊥⊥则 C .,m m n αβ=⊥且,n αβα⊥⊥则D .,m n αβ⊥⊥且,m n αβ⊥⊥则4.已知21log 3=a ,31log 21=b ,31)21(=c ,则 A .a b c >> B . a c b >> C .c a b >> D .b a c >> 5.已知在平面直角坐标系中,曲线()ln f x a x x =+在x a =处的切线过原点,则a = A .1B .eC .1eD .06.若函数2()xf x bx c=++的图象的顶点在第四象限,则函数'()f x的图象是7.如果执行右面的程序框图,输入46==mn,,那么输出的p等于A.720 B.360 C.240 D.1208.已知)0,0()cos()(>>+=ωϕωAxAxf的图象如图所示,为得到)6sin()(πω+-=xAxg的图象,可以将)(xf的图象A.向右平移65π个单位长度B.向右平移π125个单位长度C.向左平移65π个单位长度D.向左平移π125个单位长度(8题图) (7题图)9.公差不为零的等差数列{}n a的前n项和为n S.若4a是3a与7a的等比中项,168=S,则10S等于A.18 B.24 C.30 D.6010.已知,是单位向量,,的夹角为90,若向量满足c2||=--,则||的最大值为A.22-B.2C.2 D.22+11.已知函数21(1)()2(1)ax xf x xx x x⎧++>⎪=⎨⎪-+≤⎩在R上单调递增,则实数a的取值范围是A.[]0,1B.(]0,1C.[]1,1-D.(]1,1-12.已知1F,2F分别是双曲线)0,0(12222>>=-babyax的左、右焦点,过2F与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若21MFF∠为锐角,则双曲线离心率的取值范围是A.),2(∞+B.),2(∞+C.)2,1(D.)2,1(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分13.设变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数z=2x+3y 的最小值为 .14.某几何体的三视图如图所示,则该几何体的体积 .15.已知点M 是半径为4的圆C 内的一个定点,点P 是圆C 上的一个动点,线段MP 的垂直平分线l 与半径CP 相交于点Q ,则||||QM CQ ⋅的最大值为 . 16.已知实数b a ,满足11,10<<-<<b a ,则函数b ax ax y ++=2331有三个零点的概率为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)设函数21cos sin 3cos )(2+-=x x x x f (1)求)(x f 的最小正周期及值域;(2)已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,若23)(=+C B f ,3=a ,3=+c b ,求AB C ∆的面积.18.(本题满分12分)绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣。
普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}09|2≤-=x x A ,{})12ln(|2++-==x x y x B ,则B A ⋂= A .{}33|≤<-x x B .{}02|≤<-x xC .{}02|<<-x xD .{}320|≠><x x x x 且或2.复数z 满足(13)|13|z i i +=+,则z 等于A .i 31-B .1C .i 2321-D .i 2123-3.已知直线m 、n 与平面,,βα下列命题正确的是 A .//,//m n αβ且//,//m n αβ则 B .,//m n αβ⊥且,m n αβ⊥⊥则 C .,m m n αβ=⊥I且,n αβα⊥⊥则D .,m n αβ⊥⊥且,m n αβ⊥⊥则4.已知21log 3=a ,31log 21=b ,31)21(=c ,则 A .a b c >> B . a c b >> C .c a b >> D .b a c >> 5.已知在平面直角坐标系中,曲线()ln f x a x x =+在x a =处的切线过原点,则a = A .1B .eC .1eD .06.若函数2()xf x bx c=++的图象的顶点在第四象限,则函数'()f x的图象是7.如果执行右面的程序框图,输入46==mn,,那么输出的p等于A.720 B.360 C.240 D.1208.已知)0,0()cos()(>>+=ωϕωAxAxf的图象如图所示,为得到)6sin()(πω+-=xAxg的图象,可以将)(xf的图象A.向右平移65π个单位长度B.向右平移π125个单位长度C.向左平移65π个单位长度D.向左平移π125个单位长度(8题图) (7题图)9.公差不为零的等差数列{}n a的前n项和为n S.若4a是3a与7a的等比中项,168=S,则10S等于A.18 B.24 C.30 D.6010.已知,是单位向量,,的夹角为ο90,若向量满足c2||=--,则||的最大值为A.22-B.2C.2 D.22+11.已知函数21(1)()2(1)ax xf x xx x x⎧++>⎪=⎨⎪-+≤⎩在R上单调递增,则实数a的取值范围是A.[]0,1B.(]0,1C.[]1,1-D.(]1,1-12.已知1F,2F分别是双曲线)0,0(12222>>=-babyax的左、右焦点,过2F与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若21MFF∠为锐角,则双曲线离心率的取值范围是A.),2(∞+B.),2(∞+C.)2,1(D.)2,1(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分35里程(公里)组距频率0.002m0.005 0.00850 100 150 200 250 300 13.设变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数z=2x+3y 的最小值为 .14.某几何体的三视图如图所示,则该几何体的体积 .15.已知点M 是半径为4的圆C 内的一个定点,点P 是圆C 上的一个动点,线段MP 的垂直平分线l 与半径CP 相交于点Q ,则||||QM CQ ⋅的最大值为 .16.已知实数b a ,满足11,10<<-<<b a ,则函数b ax ax y ++=2331有三个零点的概率为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)设函数21cos sin 3cos )(2+-=x x x x f (1)求)(x f 的最小正周期及值域;(2)已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,若23)(=+C B f ,3=a ,3=+c b ,求ABC ∆的面积.18.(本题满分12分)绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣。
2020年宁夏高考文科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =( )A. [0,)+∞B. [1,)+∞C. 3,2⎛⎫+∞ ⎪⎝⎭D. 30,2⎡⎫⎪⎢⎣⎭2. 在复平面内,复数22ii+-对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3.“x>5”是“>1”的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充要条件4. 以A (-2,1),B (1,5)为半径两端点的圆的方程是( ) A. (x +2)2+(y -1)2=25 B. (x -1)2+(y -5)2=25C. (x +2)2+(y -1)2=25或(x -1)2+(y -5)2=25D. (x +2)2+(y -1)2=5或(x -1)2+(y -5)2=5 5. 已知函数2()21x f x a =-+(a R ∈)为奇函数,则(1)f =( ) A. 53-B. 13C. 23D. 326. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,510a =-,则1a =( ) A. -3B. -2C. 2D. 37. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则( ) A. 1212p p << B. 1212p p << C. 2112p p << D.2112p p << 8. 已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ) A. 58-B.118C.14D.189. 已知4616117421⨯⨯⨯⨯⨯⨯⨯= T ,若右边的框图是计算T 的程序框图,则框图中①和②处可以分别填入( ) A.i m m i +=≤,?10 B.1?10++=≤i m m i , C.i m m i +=≤,?11 D.1?11++=≤i m m i ,10.已知点()12,0F -,圆()222:236F x y -+=,点M 是圆上一动点,线段1MF 的垂直平分线与2MF 交于点N .则点N 的轨迹方程为A.22192x y -=B.320x y --=C.2236x y += D.22195x y += 11.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( )A .2B .3C .4D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦ 二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B =IA .)0,1(-B .)1,2(--C .)0,2(-D .)2,2(-2.设i 是虚数单位,若复数)()2(1R a i a a ∈-+-是纯虚数,则a = A .1-B .1C .2-D .23.等差数列{}n a 的前11项和8811=S ,则=+93a a A .8B .16C .24D .324.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为 A B .2 C D5.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则目标函数13++=x y z 的取值范围是A .⎥⎦⎤⎢⎣⎡4,41B .[)+∞⋃⎥⎦⎤ ⎝⎛∞-,441, C .⎥⎦⎤⎢⎣⎡--41,4 D .(]⎪⎭⎫⎢⎣⎡+∞-⋃-∞-,414,6.已知MOD 函数是一个求余函数,其格式为(,)MOD n m ,其结果为n 除以m 的余数,例如(8,3)2MOD =.右面是一个算法的 程序框图,当输入的值为25时,则输出 的结果为 A .4 B .5 C .6D .77.已知,a b 都是实数,p :直线0x y +=与 圆()()222x a y b -+-=相切;q :2a b +=,则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .62.6万元 B .63.6万元 C .64.7万元D .65.5万元9.某空间几何体的三视图如图所示,则该几何体的体积为 A .37B .38C .38π-D .37π- 10.平行四边形ABCD 中,3AB =,4AD =,6AB AD ⋅=-u u u r u u u r ,13DM DC =u u u u r u u u r ,则MA MB ⋅u u u r u u u r的值为A .10B .12C . 14D .1611.已知函数()2sin(2)(0)f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位后关于y 轴对称,则下列结论中不正确...的是 A .56πϕ=B .(,0)12π是()f x 图象的一个对称中心C .()2f ϕ=-D .6x π=-是()f x 图象的一条对称轴12.已知不等式222y ax xy +≤对于[]3,2],2,1[∈∈y x 恒成立,则a 的取值范围是A .[)+∞,1B .[)4,1-C .[)+∞-,1D .[]6,1-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分. 13.函数x x x f 3)(3-=的极小值点为___________.14.在平面直角坐标系xOy 中,抛物线x y 42=上的点到焦点距离为3,那么该点到y 轴的距离为_______. 15.设,m n 是两条不同的直线,,αβ是两个不同的平面,有下列正确命题的序号是.(1)若m ∥α,n ∥α,则m ∥n ,(2)若,m m n α⊥⊥则//n α(3)若m α⊥,n β⊥且m n ⊥,则αβ⊥; (4)若β⊂m ,βα//,则α//m16.设数列{}n a 的前n 项和为n S ,已知11=a ,)(13*11N n S S a n n n ∈--=++,则10S =________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC ∆中,3π=A ,CB sin 5sin 3=.(1)求B tan ; (2)ABC ∆的面积4315=S ,求ABC ∆的边BC 的长. 18.(本小题满分12分)如图,在四棱锥ABCD E -中,ABCD ED 平面⊥,CD AB //,AD AB ⊥,122AB AD CD ===.(1)求证:BDE BC 面⊥;(2)当几何体ABCE 的体积等于34时,求四棱锥. ABCD E -的侧面积.19.(本小题满分12分)某水产品经销商销售某种鲜鱼,售价 为每公斤20元,成本为每公斤15元.销 售宗旨是当天进货当天销售.如果当天卖 不出去,未售出的全部降价处理完,平均 每公斤损失3元.根据以往的销售情况, 按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种鲜鱼日需求量的平均数x (同一组中的数据用该组区间中点值代表); (2)该经销商某天购进了300公斤这种鲜鱼,假设当天的需求量为x 公斤(0500)x ≤≤,利润为Y 元.求Y 关于x 的函数关系式,并结合频率分布直方图估计利润Y 不小于700元的概率.CABDE20.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的焦距为C 与y 轴交于()()0,1,0,1A B -两点.(1)求椭圆C 的标准方程;(2)设P 点是椭圆C 上的一个动点且在y 轴的右侧,直线PA ,PB 与直线3x =交于M ,N 两点.若以MN 为直径的圆与x 轴交于E ,F 两点,求P 点横坐标的取值范围. 21.(本小题满分12分)已知函数()xf x xe =.(1)讨论函数()()xg x af x e =+的单调性;(2)若直线2y x =+与曲线()y f x =的交点的横坐标为t ,且[],1t m m ∈+,求整数m 所有可能的值.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分) 选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,过点(24)P --,的直线l的参数方程为:24x y ⎧=-⎪⎪⎨⎪=-+⎪⎩ (t 为参数),直线l 与曲线C 分别交于M 、N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 23.(本小题满分10分)选修4—5;不等式选讲.已知函数|1|||)(--=x x x f .(1)若|1|)(-≥m x f 的解集非空,求实数m 的取值范围;(2)若正数y x ,满足M y x =+22,M 为(1)中m 可取到的最大值,求证:xy y x 2≥+.银川一中高三第二次模拟文科数学试题参考答案一、选择题:本大题共12小题,每小题5分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABBAABBDCDCC二.填空题:13.1 14. 2 15.(3) (4) 16. 2513三、解答题: 17.解:(1)由得,,由得,B B BC B sin 32cos 5cos 32sin 532sin 5sin 5sin 3πππ-=⎪⎭⎫⎝⎛-==B B sin 25cos 235+=……4分,所以B B cos 235sin 21=,(2)设角、、所对边的长分别为、、 由和正弦定理得,由得解得(负值舍去)由余弦定理得,18.(本小题满分12分)(1)解:取CD 的中点F ,连结BF ,则直角梯形ABCD 中,BF CD ⊥,BF CF DF ==90CBD ∴∠=︒即:BD BC ⊥Θ⊥DE 平面ABCD ,⊂BC 平面ABCDDE BC ⊥∴又BD DE D ⋂=BDE BC 平面⊥∴ (2)解:Θ1112433233ABCE E ABC ABC V V DE S DE AB AD DE -∆==⨯⨯=⨯⨯⨯⨯== 2DE ∴=2222=+=∴AD DE EA ,3222=+=BD DE BE ,又2=AB 222AE AB BE +=∴AE AB ⊥∴∴四棱锥ABCD E -的侧面积为6222621212121++=⨯⨯+⨯⨯+⨯⨯+⨯⨯CD DE BE BC AB AE AD DE 19.(Ⅰ)-x =50×0.0010×100+150×0.0020×100+250×0.0030×100+350×0.0025×100+450×0.0015×100=265.(Ⅱ)当日需求量不低于300公斤时,利润Y =(20-15)×300=1500元; 当日需求量不足300公斤时,利润Y =(20-15)x -(300-x )×3=8x -900元;故Y =⎩⎨⎧8x -900,0≤x <300,1500,300≤x ≤500.由Y ≥700得,200≤x ≤500, 所以P (Y ≥700)=P (200≤x ≤500)=0.0030×100+0.0025×100+0.0015×100 =0.7.20.解:(Ⅰ)由题意可得,1b =,c =2a =,,椭圆C 的标准方程为2214x y +=.(Ⅱ)设000(,)(02)P x y x <≤,(0,1)A -,(0,1)B , 所以001PA y k x +=,直线PA 的方程为0011y y x x +=-, 同理得直线PB 的方程为0011y y x x -=+, 直线PA 与直线3x =的交点为003(1)(3,1)y M x +-, 直线PB 与直线3x =的交点为⎪⎪⎭⎫⎝⎛+-1)1(3300x y N ,,线段MN 的中点003(3,)y x , 所以圆的方程为22200033(3)()(1)y x y x x -+-=-. 令0y =,则222020093(3)(1)y x x x -+=-,因为220014x y +=,所以20136(3)4x x -=-, 因为这个圆与x 轴相交,所以该方程有两个不同的实数解,则013604x ->,又002x <≤,解得024(,2]13x ∈. 解法二:直线AP 的方程为111(0)y k x k =->,与椭圆2244x y +=联立得:2211(14)80k x k x +-=,121814P k x k =+,同理设BP 直线的方程为21y k x =+可得222814P k x k -=+,由121814k k +222814k k -=+,可得1241k k =-,所以1(3,31)M k -,2(3,31)N k +,MN 的中点为123()(3,)2k k +,所以MN 为直径的圆为22212123()3()2(3)()()22k k k k x y +---+-=. 0y =时,22212123()3()2(3)()()22k k k k x +---+=,所以212(62)(62)(3)4k k x ----=, 因为MN 为直径的圆与x 轴交于,E F 两点,所以12(62)(62)04k k --->,代入1241k k =-得:111(31)(43)04k k k --<,所以11334k <<, 所以12111881144P k x k k k ==++在11(,)32单增,在13(,)24单减,所以24(,2]13p x ∈.…12分21.解:(1)由题意,知()()xxxg x af x e axe e =+=+,∴()()'1xg x ax a e =++. ①若0a =时,()'xg x e =,()'0g x >在R 上恒成立,所以函数()g x 在R 上单调递增;②若0a >时,当1a x a+>-时,()'0g x >,函数()g x 单调递增, 当1a x a+<-时,()'0g x <,函数()g x 单调递减; ③若0a <时,当1a x a+>-时,()'0g x <,函数()g x 单调递减; 当1a x a+<-时,()'0g x >,函数()g x 单调递增. 综上,若0a =时,()g x 在R 上单调递增;若0a >时,函数()g x 在1,a a +⎛⎫-∞- ⎪⎝⎭内单调递减,在区间1,a a +⎛⎫-+∞ ⎪⎝⎭内单调递增; 当0a <时,函数()g x 在区间1,a a +⎛⎫-∞-⎪⎝⎭内单调递增,在区间1,a a +⎛⎫-+∞ ⎪⎝⎭内单调递减.(2)由题可知,原命题等价于方程2x xe x =+在[],1x m m ∈+上有解, 由于0x e >,所以0x =不是方程的解, 所以原方程等价于210xe x--=,令()21x r x e x =--,因为()'220xr x e x=+>对于()(),00,x ∈-∞+∞U 恒成立, 所以()r x 在(),0-∞和()0,+∞内单调递增. 又()130r e =-<,()2220r e =->,()311303r e -=-<,()2120r e -=>, 所以直线2y x =+与曲线()y f x =的交点仅有两个,且两交点的横坐标分别在区间[]1,2和[]3,2--内, 所以整数m 的所有值为3-,1.22.(1)解:由2sin 2cos (0)a a ρθθ=>得:2(sin )2cos a ρθρθ= ∴曲线C 的直角坐标方程为:22y ax =(a > 0)由24x y ⎧=-⎪⎪⎨⎪=-⎪⎩消去参数t 得直线l 的普通方程为2y x =-(2)解:将直线l的参数方程24x y ⎧=-⎪⎪⎨⎪=-⎪⎩代入22y ax =中得:2(4)8(4)0t a t a -+++= 6分设M 、N 两点对应的参数分别为t 1、t 2,则有1212)8(4)t t a t t a +=+=+,8分 ∵2||||||PM PN MN ⋅=,∴2212121212()()4=t t t t t t t t -=+- 即28(4)40(4)a a +=+,解得1a =.或4-=a 又因为4-=a 时,0<∆,故舍去,所以1a =. 23.(本小题满分10分)选修4—5;不等式选讲.解法一:【命题意图】本题旨在考查绝对值不等式的解法、分析法在证明不等式中的应用,考查考生的推理论证能力与运算求解能力。
宁夏银川市2019-2020学年高考第二次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知α满足1sin 3α=,则cos cos 44ππαα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭( ) A .718B .79C .718-D .79-【答案】A 【解析】 【分析】利用两角和与差的余弦公式展开计算可得结果. 【详解】1sin 3α=Q ,cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫∴+-=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()22211cos cos cos sin 12sin 222222ααααααα⎛⎫⎛⎫=-+=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭2117122318⎡⎤⎛⎫=-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故选:A. 【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题. 2.已知实数0a b <<,则下列说法正确的是( ) A .c ca b> B .22ac bc < C .lna lnb < D .11()()22ab<【答案】C 【解析】 【分析】A B 、利用不等式性质可判断,C D 、利用对数函数和指数函数的单调性判断.【详解】解:对于,A Q 实数0a b <<, 11,c ca b a b∴>> ,0c ≤不成立对于.D 指数函数1()2xy =单调递减性质,因此不成立. 故选:C . 【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.3.已知复数z =(1+2i )(1+ai )(a ∈R ),若z ∈R ,则实数a =( ) A .12B .12-C .2D .﹣2【答案】D 【解析】 【分析】化简z =(1+2i )(1+ai )=()()122a a i -++,再根据z ∈R 求解. 【详解】因为z =(1+2i )(1+ai )=()()122a a i -++, 又因为z ∈R , 所以20a +=, 解得a =-2. 故选:D 【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.4.已知集合{}|,A x x a a R =≤∈,{}|216xB x =<,若A B ,则实数a 的取值范围是( )A .∅B .RC .(],4-∞D .(),4-∞【答案】D 【解析】 【分析】先化简{}{}|216|4xB x x x =<=<,再根据{}|,A x x a a R =≤∈,且A B 求解.【详解】因为{}{}|216|4xB x x x =<=<,又因为{}|,A x x a a R =≤∈,且A B ,【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.5.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .15【答案】A 【解析】 【分析】根据题意可知最后计算的结果为a b ,的最大公约数. 【详解】输入的a ,b 分别为176,320,根据流程图可知最后计算的结果为a b ,的最大公约数,按流程图计算320-176=144,176-144=32,144-32=112,112-32=80,80-32=48,48-32=16,32-16=16,易得176和320的最大公约数为16, 故选:A. 【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.6.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的左支交于不同的两点A ,B ,若2AF FB =u u u r u u u r,则该双曲线的离心率为( ).A 10B .6C 23D 3【答案】A 【解析】直线l 的方程为bx y c a=-,令1a =和双曲线方程联立,再由2AF FB =u u u r u u u r 得到两交点坐标纵坐标关系进行求解即可. 【详解】由题意可知直线l 的方程为bx y c a=-,不妨设1a =. 则x by c =-,且221b c =-将x by c =-代入双曲线方程2221y x b-=中,得到()4234120b y b cy b +--=设()()1122,,,A x y B x y则341212442,11b c b y y y y b b +=⋅=-- 由2AF FB =u u u r u u u r ,可得122y y =-,故32442242121b cy b b y b ⎧-=⎪⎪-⎨⎪-=⎪-⎩则22481b c b =-,解得219=b则c ==所以双曲线离心率3c e a ==故选:A 【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.7.复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C.22- D.22+ 【答案】C 【解析】 【分析】利用复数模与除法运算即可得到结果.解: )()())1111111222i i i z ii i i ---=====-+++-, 故选:C 【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.8.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O 为坐标原点若.0PA PB =u u u v u u u v,则直线OA 与OB 的斜率之积为( )A .14-B .3-C .18-D .4-【答案】A 【解析】 【分析】设出A ,B 的坐标,利用导数求出过A ,B 的切线的斜率,结合0PA PB ⋅=u u u r u u u r,可得x 1x 2=﹣1.再写出OA ,OB 所在直线的斜率,作积得答案. 【详解】解:设A (2114x x ,),B (2224x x ,),由抛物线C :x 2=1y ,得214y x =,则y′12x =. ∴112AP k x =,212PB k x =, 由0PA PB ⋅=u u u r u u u r ,可得12114x x =-,即x 1x 2=﹣1.又14OA x k =,24OB xk =,∴124116164OA OB x x k k -⋅===-. 故选:A .点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A 2(2,)a a ,B 2(2,)b b ,a b ¹,再求切线PA,PB 方程,求点P 坐标,再根据.0PA PB =u u u v u u u v得到1,ab =-最后求直线OA 与OB 的斜率之积.如果先设点P 的坐标,计算量就大一些.9.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,A .()223310,02x y x y +=>> B .()223310,02x y x y -=>> C .()223310,02x y x y -=>>D .()223310,02x y x y +=>>【答案】A 【解析】 【分析】设,A B 坐标,根据向量坐标运算表示出2BP PA =u u u r u u u r,从而可利用,x y 表示出,a b ;由坐标运算表示出1OQ AB ⋅=u u u r u u u r,代入,a b 整理可得所求的轨迹方程.【详解】设(),0A a ,()0,B b ,其中0a >,0b >2BP PA =u u u r u u u r Q ()(),2,x y b a x y ∴-=--,即()22x a x y b y ⎧=-⎨-=-⎩ 30230x a b y ⎧=>⎪∴⎨⎪=>⎩ ,P Q Q 关于y 轴对称 (),Q x y ∴-()(),,1OQ AB x y a b ax by ∴⋅=-⋅-=+=u u u r u u u r ()223310,02x y x y ∴+=>>故选:A 【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程. 10.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( ) A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度【答案】B 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数()sin y A x ωϕ=+的图象变换规律,诱导公式,得出结论.根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-, 解得:2ω=.再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=,可得函数解析式为:()sin 2.3f x x π⎛⎫=+⎪⎝⎭故把()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++=⎪⎝⎭的图象, 故选B . 【点睛】本题主要考查由函数()sin y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数()sin y A x ωϕ=+的图象变换规律,诱导公式的应用,属于中档题.11.设12,x x 为()()cos 0f x x x ωωω=->的两个零点,且12x x -的最小值为1,则ω=( ) A .π B .2πC .3π D .4π 【答案】A 【解析】 【分析】先化简已知得()2sin()6f x wx π=-,再根据题意得出f (x )的最小值正周期T 为1×2,再求出ω的值.【详解】由题得()2sin()6f x wx π=-,设x 1,x 2为f (x )=2sin (ωx ﹣6π)(ω>0)的两个零点,且12x x -的最小值为1, ∴T=1,解得T=2;解得ω=π. 故选A . 【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题. 12.35(1)(2)x y --的展开式中,满足2m n +=的m n x y 的系数之和为( ) A .640 B .416C .406D .236-【答案】B 【解析】 【分析】2m n +=,有02m n =⎧⎨=⎩,11m n =⎧⎨=⎩,20m n =⎧⎨=⎩三种情形,用33(1)(1)x x -=-+中m x 的系数乘以55(2)(2)y y -=-+中n y 的系数,然后相加可得.【详解】当2m n +=时,35(1)(2)x y --的展开式中m nx y 的系数为358()55353535(1)(2)(1)22m m m n n n n n m n n m n n m n m n C x C y C C x y C C x y ---+---⋅-=⋅⋅-⋅=⋅⋅.当0m =,2n =时,系数为3211080⨯⨯=;当1m =,1n =时,系数为4235240⨯⨯=;当2m =,0n =时,系数为523196⨯⨯=;故满足2m n +=的m nx y 的系数之和为8024096416++=.故选:B . 【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键. 二、填空题:本题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~23题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}09|2≤-=x x A ,{})12ln(|2++-==x x y x B ,则B A ⋂= A .{}33|≤<-x x B .{}02|≤<-x xC .{}02|<<-x xD .{}320|≠><x x x x 且或2.复数z 满足(13)|13|z i i +=+,则z 等于A .i 31-B .1C .i 2321-D .i 2123-3.已知直线m 、n 与平面,,βα下列命题正确的是 A .//,//m n αβ且//,//m n αβ则 B .,//m n αβ⊥且,m n αβ⊥⊥则 C .,m m n αβ=⊥I且,n αβα⊥⊥则D .,m n αβ⊥⊥且,m n αβ⊥⊥则4.已知21log 3=a ,31log 21=b ,31)21(=c ,则 A .a b c >> B . a c b >> C .c a b >> D .b a c >> 5.已知在平面直角坐标系中,曲线()ln f x a x x =+在x a =处的切线过原点,则a = A .1B .eC .1eD .06.若函数2()xf x bx c=++的图象的顶点在第四象限,则函数'()f x的图象是7.如果执行右面的程序框图,输入46==mn,,那么输出的p等于A.720 B.360 C.240 D.1208.已知)0,0()cos()(>>+=ωϕωAxAxf的图象如图所示,为得到)6sin()(πω+-=xAxg的图象,可以将)(xf的图象A.向右平移65π个单位长度B.向右平移π125个单位长度C.向左平移65π个单位长度D.向左平移π125个单位长度(8题图) (7题图)9.公差不为零的等差数列{}n a的前n项和为n S.若4a是3a与7a的等比中项,168=S,则10S等于A.18 B.24 C.30 D.6010.已知,是单位向量,,的夹角为ο90,若向量满足c2||=--,则||的最大值为A.22-B.2C.2 D.22+11.已知函数21(1)()2(1)ax xf x xx x x⎧++>⎪=⎨⎪-+≤⎩在R上单调递增,则实数a的取值范围是A.[]0,1B.(]0,1C.[]1,1-D.(]1,1-12.已知1F,2F分别是双曲线)0,0(12222>>=-babyax的左、右焦点,过2F与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若21MFF∠为锐角,则双曲线离心率的取值范围是A.),2(∞+B.),2(∞+C.)2,1(D.)2,1(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分35里程(公里)组距频率0.002m0.005 0.00850 100 150 200 250 300 13.设变量x ,y 满足约束条件:⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数z=2x+3y 的最小值为 .14.某几何体的三视图如图所示,则该几何体的体积 .15.已知点M 是半径为4的圆C 内的一个定点,点P 是圆C 上的一个动点,线段MP 的垂直平分线l 与半径CP 相交于点Q ,则||||QM CQ ⋅的最大值为 .16.已知实数b a ,满足11,10<<-<<b a ,则函数b ax ax y ++=2331有三个零点的概率为 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)设函数21cos sin 3cos )(2+-=x x x x f (1)求)(x f 的最小正周期及值域;(2)已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,若23)(=+C B f ,3=a ,3=+c b ,求ABC ∆的面积.18.(本题满分12分)绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣。
银川一中2020届高三年级第二次月考文 科 数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}21|<<-=x x A ,{}02|2<-=x x x B ,则=B A A .(-1,0) B .(0,2) C .(-2,0) D .(-2,2)2.在复平面内,复数)2(i i -所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限 3.设函数()()1232e ,2log 1,2x x f x x x -⎧<⎪=⎨-≥⎪⎩,则=)]2([f f A .2 B .3 C .4 D .54.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了A .192里B .96里C .48里D .24里5.已知向量=(1,2),=(2,-2),=(m ,1).若∥(2+),则m= A .0 B .1C .2D .36.设3log π=a ,3.0π=b ,π3.0log =c ,则A. a b c >>B. a c b >>C. b c a >>D. b a c >> 7.曲线2ln y x x =-在1x =处的切线的倾斜角为α,则)22cos(πα+的值为 A .54B .54-C .53D .53-8.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前8项和为 A .-48 B .-96 C .36 D .729.记不超过实数x 的最大整数为[]x ,则函数()[]f x x =称作取整函数,取整函数在科学和工程上有广泛应用.下面 的程序框图是与取整函数有关的求和问题,若输出的S 的值为5,则判断框内填入的条件可以是 A . ?6≤k B .?4≤kC .?5≤kD .?3≤k10.已知数列{}n a 满足n a a n n 21+=+,11=a ,则=15a A .111B .211C .311D .41111.已知正方形ABCD 的边长为2,M 为平面ABCD 内一点(包含边界),则AC MB MA ⋅+)( 的最小值为 A .11-B .12-C .13-D .14-12.已知()f x ,()g x 都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''<,且()()()01x f x a g x a a =>≠且,()()()()115112f f g g -+=-,若数列()()f n g n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和大于20202019,则n 的最小值为 A .8B .9C .10D .11二、填空题:本题共4小题,每小题5分,共20分.13.设函数ax x a x x f 3)1()(23--+=.若()f x 为奇函数,则函数)(x f 的单调递减区间为____________.14.已知向量a 与b 的夹角为120°,2||=a ,1||=b ,则=-2|b ________. 15.函数x x x f sin 3cos )(2+= ])2,0[(π∈x 的最大值是 .16.已知数列{}n a 满足11=a ,12+=+n n n a a a (*∈N n ),数列{}n b 是单调递增数列, 且k b -=1,nn n a a k n b )1)(2(1+-=+(*∈N n ),则实数k 的取值范围为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,52-=a ,126-=S . (1)求{}n a 的通项公式;(2)求n s ,并求当n 取何值时n S 有最小值.18.(12分)已知)cos 3,sin 2(x x a =→,)cos 2,(cos x x b -=→,函数3)(+⋅=→→b a x f , (1)求函数y =f (x )的单调增区间和对称轴方程; (2)若1)(≥x f ,求x 的取值范围.19.(12分)已知等比数列{a n }的前n 项和为S n ,且满足22ks n n += (k ∈R). (1)求k 和数列{a n }的通项公式;(2)若数列{b n }满足b n =1(2n +1)log 2(a n ·a n +1),求数列{b n }的前n 项和T n .20.(12分)在平面四边形ABCD 中,π=∠+∠C A ,1=AB ,3=BC ,2==DA CD . (1)求C ∠和四边形ABCD 的面积; (2)若E 是BD 的中点,求CE .21.(12分)已知R a ax x x x f ∈+-=,2ln )(2. (1)若0=a ,求)(x f 在],1[e 上的最小值; (2)求)(x f 的极值点;(3)若)(x f 在],1[e e内有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分. 22.[选修4-4:坐标系与参数方程]已知圆⎪⎩⎪⎨⎧θ+=θ+=sin 22cos 22:y x C (θ为参数),以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系,点,A B 的极坐标分别为()()1,,1,0π. (1)求圆C 的极坐标方程;(2)若P 为圆C 上的一动点,求22||PA PB +的取值范围.23.[选修4-5:不等式选讲]已知,,a b c 为正数,且满足1abc =,证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++++≥.银川一中2020届高三年级第二次月考(文科)参考答案一.选择题 B AACC DDACB BD二.填空题 13.)1,1(- 14.32 15.47 16.32<k 三. 解答题17.解析:(1)设{a n }的公差为d ,由题意得⎩⎨⎧-=+-=+452511d a d a ...............2分得a 1=–7,d =2............................................................................4分所以{a n }的通项公式为a n =2n –9...................................................6分 (2)由(1)得S n =n 2–8n =(n –4)2–16...........................................10分所以当n =4时,S n 取得最小值,最小值为–16...............................12分18. 解析:(1)3cos 32cos sin 2)(2+-=x x x x fx x 2cos 32sin -==)32sin(2π-x .............................................2分单调增区间为)](125,12[z k k k ∈++-ππππ.........................................4分 对称轴方程为z k k x ∈+=,2125ππ.................................................6分 (2)由1)(≥x f 得21)32sin(≥-πx 得z k k x k ∈+≤-≤+,2653226πππππ........10分 所以x 的取值范围为)](127,4[z k k k ∈++ππππ...............................12分 19解析:(1)当n ≥2时,由2S n =2n +1+k (k ∈R )得2S n -1=2n+k (k ∈R ),......2分所以2a n =2S n -2S n -1=2n,即a n =2n -1(n ≥2),........................4分又a 1=S 1=2+2k,当k =-2时,a 1=1符合数列{a n }为等比数列, 所以{a n }的通项公式为a n =2n -1................................................6分(2)由(1)可得log 2(a n ·a n +1)=log 2(2n -1·2n)=2n -1,.........................8分所以b n =1(2n +1)(2n -1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,.........................10分所以T n =b 1+b 2+…+b n =12(1-13+13-15+…+12n -1-12n +1)=n2n +1...........12分20. 解析(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC·CDcos C =13-12cos C,①BD 2=AB 2+DA 2-2AB·DAcos A=5+4cos C.②.......................................2分由①②得cos C=,故C=60°,BD=..........................................4分四边形ABCD 的面积S=AB·DAsin A+BC·CDsin C=×1×2+×3×2sin 60° =2. .........................................................6分....(2) 由)(21+=得 .......................8分 )2(41222CB CD CB CD CE ∙++=...............10分=)2132294(41⨯⨯⨯++ =419 所以219=CE .....................................................12分 21. 解析:(1)xx x f 2'21)(-=,................................2分因为],1[e x ∈,所以0)('<x f所以)(x f 在],1[e 上是减函数,所以最小值为21)(e e f -=.........................................4分(2)定义域为),0(+∞,x ax x x f 122)(2'++-=令0)('=x f 得22,222221++=+-=a a x a a x ................................6分因为0,021><x x ,所以当),0(2x x ∈时,0)('>x f ,当),(2+∞∈x x 时0)('<x f所以)(x f 在),0(2x 单调递增,在),(2+∞x 单调递减,所以2x 为极大值点,无极小值点................................................8分(3).由02ln 2=+-ax x x ,得x x x a ln 2-=,令x x x x g ln )(-=22'ln 1)(x xx x g +-=x x x h ln 1)(2+-=当)1,0(∈x 时,0)1()(=<h x h ,当),1(+∞∈x 时0)1()(=>h x h所以g(x)在]1,1[e 上是减函数,在],1[e 上是增函数,...............................10分e e e g e e g g 1)(,2)1(,1)1(2-===所以e e a 1212-≤<得e e a 21212-≤<.............................................12分 22.解:解析:(1)把圆C 的参数方程化为普通方程为()()22222x y -+-=,即224460x y x y +--+=,..................2分由222,c o s,s i n x y x y ρρθρθ+===, 得圆C 的极坐标方程为24c o s4s i n 60ρρθρθ--+=.................5分(2)设()2c o s ,2s i n ,,P A B θθ的直角坐标分别为()()1,0,1,0-,.....7分则()()()()222222||3212PA PB θθθθ+=+++++++[]2216sin 6,384πθ⎛⎫=++∈ ⎪⎝⎭所以22||PA PB +的取值范围为[]6,38.....10分 23.解析:(1)1abc =,111bc ac ab a b c∴++=++.由基本不等式可得222222,,222b c a c a b bc ac ab +++≤≤≤,.........2分 于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.........5分 (2)由基本不等式得到332()8()a b a b ab +≥⇒+≥,332()8()b c b c bc +≥+≥,332()8()c a c a ac +≥⇒+≥....7分于是得到333333222()()()8()()()a b b c c a ab bc ac ⎡⎤+++++≥++⎢⎥⎣⎦824≥⨯=....10分。
银川一中2020届高三年级第二次模拟考试(文科)参考答案一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBCADCACADDB13.17 14 15- 15. 12 16 . 5三、解答题17.解析(1)77cos cos sin cos sin cos sin a B b A A B B A C +=∴+=Q .....2分7sin sin 7C a C a ∴=∴=...................................4分 1sin 2sin 2sin cos sin cos (0,)23A A A A A A A A ππ=∴=∴=∈∴=Q Q ...........6分;(2)由余弦定理得2222222cos 7,7(),74,3a b c bc A b c bc b c bc bc bc =+-∴=+-=-+∴=+=,.........8分设BC 边上的高为h .113331133321sin 37222214ABCABC S bc A S ah h h ∴==⨯==∴==V V Q ...10分.即BC 边上的高为32114.....................................12分 18.【解析】(1)当1014x ≤<时()401014=50140y x x x =-⨯--..................................................2分 当1420x ≤≤时()40143014=30140y x x =⨯+⨯-+........................................4分 所求函数表达式为:()()301401420501401014x x y x x ⎧+≤≤⎪=⎨-≤<⎪⎩. ........................6分(2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是120.050.1f =⨯=; 海鲜需求量在区间[)12,14的频率是220.10.2f =⨯= 海鲜需求量在区间[)14,16的频率是320.150.30f =⨯=; 海鲜需求量在区间[)16,18的频率是420.120.24f =⨯=;海鲜需求量在区间[]18,20的频率是520.080.16f =⨯=; ............................8分 这50天商店销售该海鲜日需求量的平均数为:1122334455x x f x f x f x f x f =⋅+⋅+⋅++⋅+⋅110.1130.2150.30170.24190.16=⨯+⨯+⨯+⨯+⨯ 15.32=(公斤).........................10分②当14x =时,560y =,由此可令30140620x +≥,得16x ≥所以估计日利润不少于620元的概率为()0.120.0820.4+⨯=.......................12分 19解析 (1)证明:过点P 作PO ⊥AD ,垂足为O .由于点P 在平面ABCD 内的射影恰好在AD 上, ∴PO ⊥平面ABCD ,∴PO ⊥AB ,....................2分 ∵四边形ABCD 为矩形,∴AB ⊥AD ,又AD ∩PO =O , ∴AB ⊥平面P AD , ....................4分∴AB ⊥PD ,AB ⊥P A ,又由AB =3,PB =32,可得P A =3,同理PD =3, 又AD =32,∴P A 2+PD 2=AD 2, ∴P A ⊥PD ,且P A ∩AB =A , ∴PD ⊥平面P AB 又因为⊂PD 平面PCD所以平面PCD ⊥平面P AB .................................................................... 6分 (2)设点E 到底面QBC 的距离为h ,所以点Q 到平面EBC 的距离为d则V Q -EBC =V E -QBC =13S △QBC ×h ,由PE =13PB ,可知BE BP =23,..........8分∴h PO =23,∵P A ⊥PD ,且P A =PD =3, ∴PO =P A ·PD AD =322,∴h =23×322=2,. ..............................10分又S △QBC =12×BC ×AB =12×32×3=922,∴V Q -EBC =13S △QBC ×h =13×922×2=3=13EBC s d ∆.所以点Q 到平面EBC 的距离为3d =.........................................12分20解析 (1)由题意可知222211344019b a a b ⎧-=⎪⎪⎨⎪+=⎪⎩得229,8a b == 故所求椭圆C 的标准方程为x 29+y 28=1........................................4分(2)证明:由题意可知,l 1的方程为x =-3,l 2的方程为x =3,直线l 与直线l 1,l 2联立可得M (-3,-3k +m ),N (3,3k +m ),................6分所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ).所以F 1M →·F 1N →=-8+m 2-9k 2. 联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx +9m 2-72=0....................................8分因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简,得m 2=9k 2+8. ................ 10分所以F 1M →·F 1N →=-8+m 2-9k 2=0,所以F 1M →⊥F 1N →,故∠MF 1N 为定值π2...........12分⎝⎛⎭⎫注:可以先通过k =0计算出此时∠MF 1N =π2,再验证一般性21.(1)f (x )=1+ln x -ax 2(x >0),f ′(x )=1-2ax 2x,当a ≤0时,f ′(x )>0,函数f (x )的单调增区间为(0,+∞),无单调递减区间;....2分 当a >0时,x ∈⎝⎛⎭⎫0,12a ,f ′(x )>0,x ∈⎝⎛⎭⎫ 12a ,+∞,f ′(x )<0,∴函数f (x )的单调递增区间为⎝⎛⎭⎫0,12a , 单调递减区间为⎝⎛⎭⎫12a ,+∞..............................................4分 (2)证法一:xf (x )<2e 2·e x +x -ax 3,即证2e 2·e x x -ln x >0,令φ(x )=2e 2·e xx -ln x (x >0),φ′(x )=2(x -1)e x -e 2xe 2x2,令r (x )=2(x -1)e x -e 2x ,r ′(x )=2x e x -e 2,.....................6分 r ′(x )在(0,+∞)上单调递增,r ′(1)<0,r ′(2)>0,故存在唯一的x 0∈(1,2)使得r ′(x )=0,.............................8分∴r (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∵r (0)<0,r (2)=0, ∴当x ∈(0,2)时,r (x )<0,当x ∈(2,+∞)时,r (x )>0;....................10分 ∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增, ∴φ(x )≥φ(2)=1-ln 2>0,得证....................................12分证法二:要证xf (x )<2e 2·e x -ax 3,即证2e 2·e x x 2>ln x x ,令φ(x )=2e 2·e xx 2(x >0),φ′(x )=2(x -2)e x e 2x 3,7分∴当x ∈(0,2)时,φ′(x )<0,当x ∈(2,+∞)时,φ′(x )>0. ∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增,∴φ(x )≥φ(2)=12.令r (x )=ln xx ,则r ′(x )=1-ln x x 2,当x ∈(0,e)时,r ′(x )>0,当x ∈(e ,+∞)时,r ′(x )<0. ∴r (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴r (x )≤r (e)=1e ,∴φ(x )≥12>1e ≥r (x ),∴2e 2·e x x 2>ln xx ,得证.12分22.(1)曲线1C 的极坐标方程为:2222cossin 2ρθρθ-=, ………2分因为曲线2C 的普通方程为:()2224x y -+=,2240.x y x ∴+-= ………3分∴曲线2C 的极坐标方程为4cos ρθ=. ………5分(2)由(1)得:点A 的极坐标为2,6π⎛⎫⎪⎝⎭,点B 的极坐标为6π⎛⎫⎪⎝⎭∴22AB =-= ………6分()3,0M 点到射线()06πθρ=≥的距离为33sin62d π==………8分 ∴MAB∆的面积为()113322222AB d ⋅=⨯⨯=. ………10分23.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12, ………3分则M =⎝⎛⎭⎫-12,12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. ………5分(2)由(1)得a 2<14,b 2<14. ………6分 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |. ………10分。
宁夏2020年高考文科数学模拟试题及答案(二)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{1,2,3,4,5,6}U =,集合{2,3}A =,集合{3,5}B =,则()U A C B = A .{2,3,5}B .{1,4,6}C .{2}D .{5}2.已知扇形OAB 的圆周角...为2rad ,其面积是28cm ,则该扇形的周长..是( )cm .A .8B .4C .D .3.“k ”是“直线:(2)l y k x =+与圆221x y +=相切”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 若非零向量,a b 满足||||,(2)0a b a b b =+⋅=,则,a b 的夹角为 A.6π B.3π C.56π D.23π 5. 已知两条平行直线1l ,2l 之间的距离为1,1l 与圆C :224x y +=相切,2l 与C 相交于A ,B 两点,则AB =C. 3D. 6. 函数()·ln xf x e x =的大致图象为 A. B. C. D.7. 以下列函数中,最小值为2的是 A .1y x x=+B .33x xy -=+C .()1lg 01lg y x x x =+<< D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭8. 已知实数02224sin 24cos -=a ,0225sin 21-=b ,02023tan 123tan 2-=c ,则c b a ,,的大小关系为 A .c a b >>B .b a c >>C .c b a >>D .a b c >>9.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π8的图象沿x 轴向左平移m (m >0)个单位后,得到一个奇函数的图象,则m 的最小值为 A.7π16B.15π16C.7π8D.π1610.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为A .y =±2xB .y =±22x C .y =±12x D .y =±2x 11. 已知点F 1,F 2分别是椭圆E :22x y 259+=1的左、右焦点,P 为E 上一点,直线l 为∠F 1PF 2的外角平分线,过点F 2作l 的垂线,交F 1P 的延长线于M ,则|F 1M|= A. 10B. 8C. 6D. 412. 已知函数f (x )(x ∈R )满足f (x )=f (a-x ),若函数y=|x 2-ax-5|与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),且mi i 1x =∑=2m ,则a=A. 1B. 2C. 3D. 4二、填空题(本题共4小题,每小题5分,共20分。
2020届宁夏回族自治区银川一中高三第二次模拟考试数学(文)试题一、单选题1.已知集合{}0,1,2,3,4A =,{}B x x n A ==∈,则A B I 的元素个数为( )A .1B .2C .3D .4【答案】C【解析】由题意可知{}B =,再求出A B I ,即可求出结果. 【详解】由题意可知,{}{}0,12B x x n A ==∈=,所以{}0,1,2A B =I ,所以集合A B I 中的元素有3个. 故选:C 【点睛】本题考查了集合的交集运算,属于基础题.2.已知实数a ,b 满足()()i 2i 35i a b ++=-(其中i 为虚数单位),则复数z b ai =+的共轭复数为( ) A .131i 55-+ B .131i 55-- C .131i 55+ D .131i 55- 【答案】B【解析】利用复数的运算法则、共轭复数的定义即可得出. 【详解】实数,a b 满足()()i 2i 35i a b ++=-(其中i 为虚数单位), ∴()()()()()22352a bi i i i i ++-=--,∴11355a bi i +=- , ∴11355a b ==-,, 则复数13155z b ai i =+=-+的共轭复数为131i 55--.故选:B . 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.已知平面α,直线m ,n ,若n ⊂α,则“m n ⊥”是“m α⊥”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【解析】根据线面垂直的判定条件,结合充分条件和必要条件的定义即可得到结论. 【详解】根据线面垂直的判定条件知,若直线m α⊥,n ⊂α,则“m n ⊥”即必要性成立; 若n ⊂α,m n ⊥,则直线m 可以在平面α内,也可以与平面α相交,还可以为相交垂直,则充分性不成立.所以,若n ⊂α,则“m n ⊥”是“m α⊥”的必要不充分条件. 故选:C. 【点睛】本题主要考查充分条件和必要条件的判断,根据线面垂直的性质是解决本题的关键,属于基础题.4.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .2B .3C .4D .5 【答案】C【解析】开始,输入,则,判断,否,循环,, 则,判断,否,循环, 则,判断,否,循环,则,判断,是,输出,结束.故选择C.5.若()()21,0,0x x f x g x x ⎧->⎪=⎨<⎪⎩是奇函数,则()()2f g -的值为( )A .78B .78-C .7D .-7【答案】D【解析】根据奇函数的性质可求出()21=xg x --+,即可求出()()2f g -的值.【详解】因为()()21,0,0x x f x g x x ⎧->⎪=⎨<⎪⎩是奇函数,当0x <时,则0x ->,所以()21xf x --=-,又()f x 是奇函数,所以 ()()21xf x f x -=--=-+, 所以()21=xg x --+,所以()23g -=-,所以()()()237f g f -=-=-. 故选:D. 【点睛】本题主要考查了函数奇偶性,属于基础题.6.甲、乙、丙、丁四人商量是否参加志愿者服务活动.甲说:“乙去我就肯定去.”乙说:“丙去我就不去.”丙说:“无论丁去不去,我都去.”丁说:“甲、乙中只要有一人去,我就去.”则以下推论可能正确的是( ) A .乙、丙两个人去了 B .甲一个人去了 C .甲、丙、丁三个人去了 D .四个人都去了【答案】C【解析】直接利用甲、乙、丙、丁四位同学所说结合丙说:“无论丁去不去,我都去.”分别分析得出答案. 【详解】对于选项A ,∵丙说:“无论丁去不去,我都去.” ∴丙一定去出游,故A 选项错误; 对于选项B ,∵乙说:“丙去我就不去.”, ∴由选项A 可知,乙一定没去,故选项B 错误; 对于选项C ,∵丁说:“甲乙中至少有一人去,我就去.” ∴由选项B 可知,甲、丁一定都出游,故甲、丙、丁三个人去了,此选项正确;对于选项D ,∵乙说:“丙去我就不去.” ∴四个人不可能都去出游,故此选项错误. 故选:C .【点睛】此题主要考查了推理与论证,依次分析得出各选项正确性是解题关键.7.已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S =( )A .44B .44-C .88D .88-【答案】A【解析】根据等比数列的性质,求得64a =,再利用等差数列的前n 项和公式,即可求解11S 的值,得到答案. 【详解】由题意,等比数列{}n a 为等比数列,满足21a =,1016a =,根据等比数列的性质,可得266210116,0a a a a =⨯=>,可得64a =,所以664b a ==,则11111611()11442b b b S +==⨯=,故选A . 【点睛】本题主要考查了等比数列的性质,以及等差数列的前n 项和公式的应用,其中解答中熟记等比数列的性质和等差数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.8.不等式组2001x y y x ≥⎧⎪≤≤⎨⎪≥⎩所表示的平面区域为Ω,用随机模拟方法近似计算Ω的面积,先产生两组(每组100个)区间[]0,1上的均匀随机数1x ,2x ,…,100x 和1y ,2y ,…,100y ,由此得到100个点()(),1,2,,100i i x y i =L ,再数出其中满足()21,2,,100i i y x i <=L 的点数为33,那么由随机模拟方法可得平面区域Ω面积的近似值为( ) A .0.33 B .0.76 C .0.67 D .0.57【答案】C【解析】设平面区域为Ω的面积为S ,因为其中满足()21,2,,100i i y x i <=L 的点数为33,由此即可求出满足2y x ≥的点的个数,再根据几何概型即可求出结果.【详解】设平面区域为Ω的面积为S ,依题意, 100331100S -=,∴0.67S =. 故选:C . 【点睛】本题考查了几何概型的应用,属于基础题. 9.将函数2n 2)3(si f x x π⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到数学函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4x π=C .524x π=D .12x π=【答案】A【解析】分析:根据平移变换可得243y sin x π⎛⎫=+ ⎪⎝⎭,根据放缩变换可得函数()g x 的解析式,结合对称轴方程求解即可. 详解:将函数()223f x sin x π⎛⎫=+⎪⎝⎭的图象上的每个点的横坐标缩短为原来的一半, 纵坐标不变,得到243y sin x π⎛⎫=+ ⎪⎝⎭, 再将所得图象向左平移12π个单位得到函数()g x 的图象,即()224241233g x sin x sin x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由24,32x k k Z πππ+=+∈, 得1,424x k k Z ππ=-∈, 当0k =时,离原点最近的对称轴方程为24x π=-,故选A.点睛:本题主要考查三角函数的图象与性质,属于中档题.由 函数sin()y A x ωϕ=+可求得函数的周期为2πω;由2x k πωϕπ+=+可得对称轴方程;由x k ωϕπ+=可得对称中心横坐标.10.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成角的余弦值为( )A .1010B .15C .310D .35【答案】C 【解析】【详解】平移成三角形用余弦定理解,或建立坐标系解,注意线线角不大于090,故选C.取DD 1中点F ,则1FCD ∠为所求角, 2221251310cos 10225FCD +-∠==,选C. 11.已知点P 为双曲线()222210b x y a ba ->>=右支上一点,点12,F F 分别为双曲线的左右焦点,点I 是12PF F ∆的内心(三角形内切圆的圆心),若恒有121213IPF IPF IF F S S S ∆∆∆-≥成立,则双曲线的离心率取值范围是( )A .(]1,2B .()1,2C .(]0,3D .(]1,3【答案】D【解析】分析:设12PF F ∆的内切圆半径为r ,由12122,2PF PF a F F c -==,用12PF F ∆的边长和r 表示出等式中的三角形面积,结合双曲线的定义得到a 与c 的不等式,可求出离心率取值范围. 详解:设12PF F ∆的内切圆半径为r ,由双曲线的定义得12122,2PF PF a F F c -==,121211,22PF PF S PF r S PF r ∆∆=⋅=⋅, 12122PF F S c r cr ∆=⋅⋅=,由题意得12111223PF r PF r cr ⋅-⋅≥,故()12332c PF PF a ≤-=,故3ce a=≤,又1e >, 所以,双曲线的离心率取值范围是(]1,3,故选D.点睛:本题主要考查利用双曲线的定义、简单性质求双曲线的离心率范围,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围. 12.已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数x 都有()()2x f x e f x -=,当0x <时,()()0f x f x +'>,若()2ln 2a f =,()1f b e -=,11ln 44c f ⎛⎫=⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a c b << B .a b c >>C .c b a >>D .c a b >>【答案】B【解析】构造函数()()xg x e f x =,结合已知可判断函数的奇偶性及单调性,然后即可求解不等式. 【详解】令()()xg x e f x =,∵当0x <时,()()0f x f x +'>, 则()()()0,0xg x e f x f x x '=+'>⎤⎣⎦<⎡, 所以当0x <时,函数()g x 单调递增; 因为对于任意的实数x 都有()()()()2=x x x f x e e f x e f x f x --=⇔-, 所以()()()()()2xx x x g x ef x e f x e f x eg x ---=-=⋅=⋅= 即()g x 为偶函数,所以当0x >时,函数()g x 单调递减, 又()()()ln22ln 2ln 2ln 2a f ef g ===,()()()()11111f b e f g g e--==-=-=,()()1ln 41111ln ln ln ln 4ln 44444c f e fg g g ⎛⎫⎛⎫⎛⎫====-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又ln41ln2>>,所以()()()ln 41ln 2g g g <<,即a b c >>. 故选:B . 【点睛】本题主要考查导数在函数单调性中的应用,解题的关键是构造函数g (x )并判断出单调性及奇偶性.二、填空题13.已知()1,2a =r,()1,0b =r ,则2a b -=r r __________.【解析】根据平面向量的坐标运算可得()21,4a b -=r r,再利用平面向量模的坐标运算公式即可求出结果. 【详解】由题意可知,()21,4a b -=r r,所以2a b -=r r【点睛】本题主要考查了平面向量模的坐标运算公式,属于基础题.14.若倾斜角为α的直线l 与曲线3y x =相切于点()1,1,则24cos sin 2αα-的值为__________. 【答案】15-【解析】根据题意,求出3y x =的导数,计算可得1|x y ='的值,由导数的几何意义可得tan 3α=,由三角函数的恒等变形公式可得22222cos 42tan sin co 4cos 2sin 4cos s s tan i 21n ααααααααα-==--++,代入数据计算可得答案. 【详解】根据题意,曲线3y x =,其导数23y x '=, 则有13|x y ='=,所以tan 3α=,所以22222cos 42tan 21sin 4cos 2sin 4cos tan 1105cos sin 2ααααααααα--===-=-+-+.故答案为:1 5-.【点睛】本题考查利用导数计算曲线的切线方程,关键是掌握导数的几何意义.15.斜率为3的直线l过抛物线C:()220y px p=>的焦点F,若l与圆M:()2224x y-+=相切,则p=______.【答案】12【解析】根据题意,可知倾斜角,数形结合,即可得到圆的半径和参数p之间的关系,从而解得p.【详解】结合题意作图如下:由图可得24MF AM==,2242pr-==,解得12p=.故答案为:12.【点睛】本题考查抛物线方程的求解,注意数形结合即可.16.已知数列{}n a满足()*12Nn na a n+=∈,且12a=,nS表示数列{}n a的前n项之和,则使不等式2311223122263127nn nS S S S S S+++++<L成立的最大正整数n的值是__________.【答案】5【解析】首先根据等比数列的定义和前n项和公式即可求出n S,进而可得11212112222nn nn nS S++++=---,然后再利用裂项相消法可求出23112231222n n n S S S S S S +++++L ,再解不等式即可求出结果. 【详解】由数列{}n a 满足()*12N n n a a n +=∈且12a=,所以数列{}n a 是以2为首项,公比为2的等比数列,所以()12122212n n nS +-==--;所以 ()()1112121221122222222n n n n n n n n S S +++++++==-----, 所以23233411223112111111222222222222222n n n n n S S S S S S +++++=-+-+⋯+----++---L 211222n +=--,则26312112227n +--<,整理得21122254n +>-, 即22256n +<,即6n <,故n 的最大正整数为5. 故答案为5. 【点睛】本题主要考查了等比数列的定义和等比数列的通项公式和前n 项和公式的应用,同时考查了裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.三、解答题17.已知ABC V 的内角,,A B C 的对边分别为,,a b c)cos cos a B b A ac +=,且sin2sin A A =.(1)求A 及a ;(2)若2b c -=,求BC 边上的高. 【答案】(1)a .3A π=(2)14【解析】(1)利用正弦定理化边为角可得a =再利用二倍角公式求得角A ;(2)先利用余弦定理求得3bc =,再利用等面积法求解即可. 【详解】(1)cos cos a B b A ac +=,根据正弦定理得,7sin cos sin cos sin ,A B B A a C += 7sin sin ,C a C ∴=又因为sin 0,C ≠ 7a ∴=,sin2sin ,2sin cos sin ,A A A A A =∴=Q因为sin 0,A ≠所以1cos 2A =, (),0,.3A A ππ∴∈=Q(2)由(1)知,7,.3a A π==由余弦定理得2222cos ,a b c bc A =+- 2227,7(),b c bc b c bc ∴=+-∴=-+因为2b c -=,所以74,bc =+所以 3.bc = 设BC 边上的高为h .11333sin 3.22ABC S bc A ∴==⨯⨯=△12ABC S ah =Q △,13372h ∴⨯=,321.h ∴=即BC 边上的高为32114. 【点睛】本题考查利用正弦定理解三角形,考查三角形的面积公式的应用,考查余弦定理的应用. 18.惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量x (1020x ≤≤,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30元.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为y 元.(1)求商店日利润y 关于日需求量x 的函数表达式.(2)根据频率分布直方图,①估计这50天此商店该海鲜日需求量的平均数.②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.【答案】(1)()()301401420501401014x x y x x ⎧+≤≤⎪=⎨-≤<⎪⎩(2)①15.32公斤 ②0.4 【解析】(1)根据条件列分段函数关系式,即得结果;(2)①根据组中值求平均数,②先根据函数关系式确定日利润不少于620元对应区间,再求对应区间概率. 【详解】(1)当1014x ≤<时()401014=50140y x x x =-⨯-- 当1420x ≤≤时()40143014=30140y x x =⨯+⨯-+所求函数表达式为:()()301401420501401014x x y x x ⎧+≤≤⎪=⎨-≤<⎪⎩. (2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是120.050.1f =⨯=; 海鲜需求量在区间[)12,14的频率是220.10.2f =⨯= 海鲜需求量在区间[)14,16的频率是320.150.30f =⨯=; 海鲜需求量在区间[)16,18的频率是420.120.24f =⨯=; 海鲜需求量在区间[]18,20的频率是520.080.16f =⨯=; 这50天商店销售该海鲜日需求量的平均数为:1122334455x x f x f x f x f x f =⋅+⋅+⋅++⋅+⋅110.1130.2150.30170.24190.16=⨯+⨯+⨯+⨯+⨯ 15.32=(公斤)②当14x =时,560y =,由此可令30140620x +≥,得16x ≥所以估计日利润不少于620元的概率为()0.120.0820.4+⨯=. 【点睛】本题考查函数解析式以及利用频率分布直方图求平均数和概率,考查综合分析求解能力,属中档题.19.如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,BPC △为正三角形,3AB =,32BC =,现以BC 为折痕将BPC △折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:平面PCD ⊥平面PAB ; (2)若点E 在线段PB 上,且13PE PB =,当点Q 在线段AD 上运动时,求点Q 到平面EBC 的距离.【答案】(1)证明见解析;(23【解析】(1)过点P 作PO AD ⊥,垂足为O ,由于点P 在平面ABCD 内的射影恰好在AD 上,可得PO ⊥平面ABCD ,进一步得到AB ⊥AD ,由线面垂直的判定可得AB ⊥PD ,通过计算P A ,PD ,AD ,可得222PA PD AD +=,从而得PA PD ⊥,则PD ⊥平面PAB ,再根据面面垂直的判定定理即可证明结果; (2)利用等积法即可求出点E 到底面QBC 的距离. 【详解】(1)证明:过点P 作PO AD ⊥,垂足为O . 由于点P 在平面ABCD 内的射影恰好在AD 上, ∴PO ⊥平面ABCD ,∴PO AB ⊥, ∵四边形ABCD 为矩形,∴AB AD ⊥, 又AD PO O =I ,∴AB ⊥平面P AD , ∴AB PD ⊥,AB PA ⊥,又由3AB =,32PB =3PA =,同理3PD =, 又32=AD ∴222PA PD AD =+, ∴PA PD ⊥,且PA AB A =I , ∴PD ⊥平面P AB 又因为平面PCD所以平面PCD ⊥平面P AB(2)设点E 到底面QBC 的距离为h ,所以点Q 到平面EBC 的距离为d则13Q EBC E QBC OBC V V S h --==⨯V , 由13PE PB =,可知23BE BP =, ∴23h PO =,∵PA PD ⊥,且3PA PD ==, ∴32PA PD PO AD ⋅==,∴23223h =⨯=,又1192323222QBC S BC AB =⨯⨯=⨯⨯=V ,22332323334EBC PBC S S ==⨯⨯⨯=V V , ∴11921233323Q EBC QBC EBC V S h S d -=⨯=⨯⨯==V V . 所以点Q 到平面EBC 的距离为3d =.【点睛】本题考查面面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求点到面的距离,是中档题20.已知椭圆()2222:10x y C a b a b+=>>的离心率为13,左、右焦点分别为1F ,2F ,210A ⎛ ⎝⎭为椭圆C 上一点. (1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为1A ,2A ,过1A ,2A 分别作x 轴的垂线1l ,2l ,椭圆C 的一条切线:l y kx m =+与1l ,2l 交于M ,N 两点,求证:1MF N ∠是定值.【答案】(1)22198x y +=;(2)证明见解析.【解析】(1)根据椭圆离心率,将点2,3A ⎛ ⎝⎭代入椭圆方程,由此即可求出椭圆方程;(2)由题设知12:3:3l x l x =-=,,l 与C 的方程联立消去y 可得()22298189720kx kmx m +++-=,再根据判别式可得2298m k =+,再求出点,M N 的坐标,根据向量的数量积即可证明.【详解】(1)由题意可知221344019a b =⎪+=⎪⎩得29a =,28b =故所求椭圆C 的标准方程为22198x y +=;(2)证明:由题意可知,1l 的方程为3x =-,2l 的方程为3x =, 直线l 与直线1l ,2l 联立可得()3,3M k m --+,()3,3N k m +,所以()12,3F M k m =--+u u u u r ,()14,3F N k m =+u u u u r .所以221189FM F N m k ⋅=-+-u u u u r u u u u r . 联立221,98,x y y kx m ⎧+=⎪⎨⎪=+⎩得()22298189720k x kmx m +++-= 因为直线l 与椭圆C 相切, 所以()()()222184989720kmkm ∆=-+-=,化简,得2298m k =+.所以221189FM F N m k ⋅=-+-u u u u r u u u u r , 所以11FM F N ⊥u u u u r u u u u r ,故1MF N ∠为定值π2(注:可以先通过0k =计算出此时1π2MF N ∠=,再验证一般性) 【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量的数量积,直线方程的综合应用,考查计算能力,属于中档题. 21.已知函数2()1ln f x x ax =+-. (1)讨论函数()f x 的单调区间; (2)证明:322()xxf x e x ax e<⋅+-. 【答案】(1)见解析;(2)见解析【解析】(1)()212ax f'x x -=,分a 0≤和a 0>两种情况讨论单调性即可;(2)法一:将不等式()x 322xf x ?e x ax e <+-变形为x 22e 1nx 0e x⋅->,构造函数()x22e φx 1nx e x=⋅-,证明()min φx 0>即可;法二:将不等式()x 322xf x ?e x ax e <+-变形为x 222e 1nx ·e x x >,分别设()()x 222e 1nxφx ?r x =e x x=,,求导证明()()min max φx r x >即可.【详解】(1) ()()2f x 11nx ax x 0=+->,()212ax f'x x-=当a 0≤时,()f'x 0>,函数()f x 的单调增区间为()0,∞+,无减区间;当a 0>时,()x ,f'x 0⎛∈> ⎝,当x ∞⎫∈⎪⎪⎭,()f'x 0<,()f x ∴单增区间为⎛ ⎝上增,单调减区间为∞⎫+⎪⎪⎭上递减. (2)解法1: ()x 322xf x e x ax e <⋅+-,即证x 22e 1nx 0e x ⋅->,令()x 22e φx 1nx e x=⋅-,()x 0>,()()x 2222x 1e e xφ'x e x --=,令()()x2r x 2x 1e e x =--,()x2r'x 2xe e =-,()r'x 在()0,∞+,上单调递增,()r'10<,()r'20>,故存在唯一的()0x 1,2∈使得()r'x 0=,()r'x ∴)在()00,x 上单调递减,在()0x ,∞+上单调递增,()r 00Q <,()r 20=,∴当()x 0,2∈时,()r x 0﹤ , ()x 2,∞∈+时,()r x 0>; 所以()φx 在()0,2上单调递减,在()2,∞+上单调递增,()()φx φ211n20∴≥=->,得证.解法2:要证: ()x 322xf x ?e ax e ﹤+,即证: x 222e 1nx ·e x x >,令()()x 222e φx ?x 0e x =>,()()x232x x 2e φ'x e x-=,∴当()x 0,2∈时,()φ'x 0<,()x 2,∞∈+时,()φ'x 0>;所以()φx 在()0,2上单调递减,在()2,∞+上单调递增,∴ ()()1φx φ2=2≥; 令()1nx r x =x ,()211nxr'x =x-,,当()x 0,e ∈ 时,()r'x ,()x e,∞∈+时,()r'x 0<; 所以()r x 在()0,e 上单调递增,在()e,∞+上单调递减,()()1r x r e e ∴≤=,()()11φx r x 2e ∴≥>≥,x 222e lnxe x x∴⋅﹤,得证.【点睛】本题考查利用导数研究函数单调性,最值,证明不等式问题,第二问证明的方法比较灵活,对不等式合理变形,转化为函数问题是解题关键,是难题. 22.在平面直角坐标系中,曲线2212:C x y -=,曲线2C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)在极坐标系中,射线..6πθ=与曲线1C ,2C 分别交于A 、B 两点(异于极点O ),定点(3,0)M ,求MAB ∆的面积【答案】(1)22221:cos sin 2C ρθρθ-=,2:4cos C ρθ=;(2. 【解析】(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长AB ,再求高,最后求MAB ∆的面积. 【详解】(1)曲线1C 的极坐标方程为:2222cos sin 2ρθρθ-= ,因为曲线2C 的普通方程为:()2224x y -+= ,2240.x y x ∴+-=∴曲线2C 的极坐标方程为4cos ρθ=;(2) 由(1)得:点A 的极坐标为2,6π⎛⎫⎪⎝⎭, 点B的极坐标为6π⎛⎫⎪⎝⎭,∴22AB =-=,()3,0M 点到射线()06πθρ=≥的距离为33sin62d π==∴MAB ∆的面积为()113322222AB d ⋅=⨯⨯=.【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.23.设不等式2120x x -<--+<的解集为M ,,a b M ∈.(1)证明:111364a b +<; (2)比较14ab -与2a b -的大小,并说明理由. 【答案】(1)证明见解析;(2)|14|2||ab a b ->-. 【解析】试题分析:(1)首先求得集合M ,然后结合绝对值不等式的性质即可证得题中的结论; (2)利用平方做差的方法可证得|1-4ab |>2|a -b |. 试题解析:(Ⅰ)证明:记f (x ) =|x -1|-|x +2|,则f (x )=3-21,3,x ⎧⎪-⎨⎪-⎩, 2211.x x x ≤--<<≥,所以解得-12<x <12,故M =(-12,12).所以,|36a b +|≤13|a |+16|b |<13×12+16×12=14. (Ⅱ)由(Ⅰ)得0≤a 2<14,0≤b 2<14.|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=4(a 2-1)(b 2-1)>0. 所以,|1-4ab |>2|a -b |.。
2020年宁夏银川一中高考数学二模试卷(文科)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合{0A =,1,2,3,4},{|B x x n ==,}n A ∈,则A B I 的元素个数为( ) A .1
B .2
C .3
D .4
2.(5分)已知实数a ,b 满足()(2)35a bi i i ++=-(其中i 为虚数单位),则复数z b ai =-的共轭复数为( ) A .131
55
i -
+ B .13155
i -
- C .
13155
i + D .
13155
i - 3.(5分)已知平面α,直线m ,n ,若n α⊂,则“m n ⊥”是“m α⊥”的( ) A .充分不必要条件 B .充分必要条件
C .必要不充分条件
D .既不充分也不必要条件
4.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果(n = )
A .4
B .5
C .2
D .3
5.(5分)若21,0()(),0x x f x g x x ⎧->=⎨<⎩
是奇函数,则((2))f g -的值为( )
A .
78 B .78
-
C .7
D .7-
6.(5分)甲、乙、丙、丁四人商量是否参加志愿者服务活动.甲说:“乙去我就肯定去.”乙说:“丙去我就不去.”丙说:“无论丁去不去,我都去.”丁说:“甲、乙中只要有一人去,我就去.”则以下推论可能正确的是( ) A .乙、丙两个人去了 B .甲一个人去了
C .甲、丙、丁三个人去了
D .四个人都去了
7.(5分)已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b =,则11(S = )
A .44
B .44-
C .88
D .88-
8.(5分)不等式组2001x y y x ⎧⎪
⎨⎪⎩
…
剟…,所表示的平面区域为Ω,用随机模拟方法近似计算Ω的面积,
先产生两组(每组100个)区间[0,1]上的均匀随机数1x ,2x ,100x ⋯和1y ,2y ,100y ⋯,由此得到100个点(i x ,)(1i y i =,2,⋯,100),再数出其中满足2(1,2,,100)i i y x i <=⋯的点数为33,那么由随机模拟方法可得平面区域Ω面积的近似值为( ) A .0.33
B .0.66
C .0.67
D .13
9.(5分)将函数()2sin(2)3f x x π
=+图象上的每个点的横坐标缩短为原来的一半,纵坐标
不变,再将所得图象向左平移
12
π
个单位得到函数()g x 的图象,在()g x 图象的所有对称轴中,离原点最近的对称轴方程为( ) A .24
x π
=-
B .4
x π
=
C .524
x π=
D .12
x π
=
10.(5分)已知直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,12AA AB =,E 为1
AA 的中点,则异面直线BE 与1CD 所成角的余弦值为( )
A
B .15 C
D .3
5
11.(5分)已知点P 为双曲线22
221(0)x y a b a b
-=>>右支上一点1F 、2F 分别为双曲线的左右
焦点,点I 为△12PF F 的内心(三角形内切圆的圆心),若恒有12121
3IPF IPF IF F S S S -V V V …成立,
则双曲线的离心率取值范围为( ) A .(1,2]
B .(1,2)
C .(0,3]
D .(1,3]
12.(5分)已知函数()f x 在R 上都存在导函数()f x ',对于任意的实数都有2()
()
x f x e f x -=,当0x <时,()()0f x f x '+>,若2(2)a f ln =,(1)f b e -=,11
()44
c f ln =,则a ,b ,c 的大小关系是( ) A .a c b >>
B .a b c >>
C .c b a >>
D .c a b >>
二、填空题:本题共4小题,每小题5分,共20分. 13.(5分)已知(1,2)a =r
,(1,0)b =r ,则|2|a b -=r r .
14.(5分)若倾斜角为α的直线l 与曲线3y x =相切于点(1,1),则24cos sin 2αα-的值为 . 15.(5分)斜率
为
的直线l 过抛物线2:2(0)C y px p =>的焦点F ,若l 与圆22:(2)4M x y -+=相切,则p = .
16.(5分)已知数列{}n a 满足*12()n n a a n N +=∈,且12a =,n S 表示数列{}n a 的前n 项之和,则使不等式2311223122263
127
n n n S S S S S S ++++⋯+<成立的最大正整数n 的值是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分
17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,
已知cos cos a B b A +=
,sin2sin A A =.
(1)求A 及a ;
(2)若2b c -=,求BC 边上的高.
18.(12分)惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量(1020x x 剟,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30元.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为y 元. (1)求商店日利润y 关于日需求量x 的函数表达式. (2)根据频率分布直方图,
①估计这50天此商店该海鲜日需求量的平均数.
②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.
19.(12分)如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,BPC ∆为正三角形,3AB =,32BC =,现以BC 为折痕将BPC ∆折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).
(1)证明:平面PCD ⊥平面PAB ;
(2)若点E 在线段PB 上,且1
3PE PB =,当点Q 在线段AD 上运动时,求点Q 到平面EBC
的距离.
20.(12分)已知椭圆22
22:
1(0)
x y C a b a b +=>>的离心率为1
3
,左、右焦点分别为1F ,2F ,210
)A 为椭圆C 上一点. (1)求椭圆C 的方程;
(2)设椭圆C 的左、右顶点分别为1A ,2A ,过1A ,2A 分别作x 轴的垂线1l ,2l ,椭圆C 的一条切线:l y kx m =+与1l ,2l 交于M ,N 两点,求证:1MF N ∠是定值. 21.(12分)已知函数2()1f x lnx ax =+-. (1)讨论函数()f x 的单调区间; (2)证明:322()x
xf x e x ax e
<
+-g . (二)选考题:共10分.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]。