高中数学竞赛专题讲座---函数方程与迭代
- 格式:doc
- 大小:620.50 KB
- 文档页数:5
第一章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0).定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
函数方程与函数迭代函数方程问题一直是各国重大竞赛中的热点问题,以IMO 为例,在已进行的四十七届竞赛的试题中,有30多道是函数方程的试题,几乎是每届一题.在我国冬令营与国家集训队的测试题中,函数方程问题也是屡见不鲜的.究其原因,它往往是给出较弱的条件,却要从中得出甚强的结论(一般是要直接求出表达式).【基础知识】表示某一类(或某一个)函数所具有的一定性质的关系式叫做函数方程(其中()f x 为未知函数).如果一个函数对其定义域内变量的一切值均满足所给的方程,则称()f x 为这个函数方程的解.寻求函数方程的解或证明函数方程无解的过程,就是解函数方程.我们粗略地归纳其典型的解题方法,主要可以分成以下几类: 1.换元法: 2.解方程(组)法 3.待定系数法 4.代值减元法当所给的函数方程中变量不止一个时,和普通方程一样,求解时首先要设法减少变量个数,代值减元就是一种减少变量的方法,它通过适当地对自变量赋于特殊值,从而简化方程,逐步靠近未知结果,最终解决问题.5.柯西法先求出对于自变量取所有正整数的值时函数方程的解具有的形式,然后依次证明对自变量取整数值,有理数值以及取实数值时函数方程的解仍具有这种形式,从而得到方程的解.这里我们给出一个定理:柯西函数方程的解定理:若()f x 是单调(或连续)函数,且满足()()()f x y f x f y +=+(,),x y R ∈则()(1).f x xf =(我们将此定理的证明放于例题中进行讲解.)6.递归法借助数列对函数方程加以研究的方法.设()f n 是定义在R +上的函数,如果存在递推关系S 和初始条件1(1),f a =当知道(1),(2),,()f f f n 的值后,由S 可以惟一确定(1)f n +的值,我们称()f n 为递归函数.递推法主要解决递归函数问题.7.不动点法一般地,设函数()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为函数()y f x =图象的不动点.对于一些简单的函数,利用不动点,把函数变形后再迭代,最后利用数学归纳法证明,往往会使算法简单些.【典例精析】【例1】已知11()(),x xf x f x x--+=求().f x 〖分析〗令1,x t x -=则1,1x t =-再令1,1y t=-则1,y t y -=因此可以将所得三个等式看成是关于11(),(),()1x f x f f x x --的三个方程,便可解得().f x解:设1,x t x -=则1,1x t =-代入原式,得11()(),11f f t t t +=--即11()()1,11f f x x x+=+-- ○1 设1,1t x =-则代入原式,得111()()1.1t t f f t t t --+=+-即1121()(),1x x f f x x x--+=- ○2 将○1○2与原方程联立,解得321().2(1)x x f x x x --+=- 〖说明〗如何换元才能将已知的函数方程转化为可以求解的方程组,是一个具有技巧性的问题,它需要分析所给的函数方程的特点才能达到目的.本例通过再次换元得到关于11(),(),()1x f x f f x x--的方程组,消去11(),(),1x f f x x--从而求得().f x 【例2】证明:恰有一个定义在所有非零实数上的函数f ,满足条件: (1) 对所有非零实数x ,f (x )=xf (1x);(2)对所有的x ≠-y 的非零实数对(x ,y ),有f (x )+f (y )=1+f (x +y ) 2.证明:f (x )=x +1显然适合(1)、(2)。
高中数学竞赛专题训练:函数迭代一、单选题1.设1()f x =对任意自然数n ,定义11()(())n n f x f f x +=.则1993()f x 的解析式为()AB C D 2.函数()f x 是定义在R 上的奇函数,且()02=f ,对任意x R ∈,都有()()()42f x f x f +=+成立.则()1998=f .()A .3996B .1998C .1997D .03.已知函数()f x 在(0,)+∞上有定义且为增函数,并满足1()(())1f x f f x x⋅+=.则(1)f =()A .1B .0C .12+D .124.已知()11xf x x+-=,记()()1f x f x =,()()()()11,2,k k f x f f x k +== ,则()2007f x =()A .11x x+-B .11x x -+C .xD .1x-5.已知对每一对实数x 、y ,函数f 满足()()()1f x f y f x y xy +=+--.若()11f =,则满足()()f n n n Z =∈的个数是().A .1个B .2个C .3个D .无数多个6.函数()f x 是定义在R 上的奇函数,且对任意x R ∈都有()()()10 5 f x f x f x +=+-.若()50f =,则()2005f 的值为().A .2000B .2005C .2008D .07.设函数()f x 的定义域是(,)∞+∞对于下列四个命题:(1)若()f x 为奇函数,则()()f f x 也为奇函数;(2)若()f x 为周期函数,则()()f f x 也为周期函数;(3)若()f x 为单调递减函数,则()()f f x 为单调递增函数;(4)若方程()()f f x x =有实根,则方程()f x x =也有实根,其中,正确的命题共有个()A .1B .2C .3D .48.设()1211x f x x -=+,对2n ≥,定义()()()11n n f x f f x -=.若()2912x f x x +=-,则()2009 f x =______.9.设()()211xf x eg x ln x -=,=(+).则不等式()()()()1f g x g f x -的解集为_______.10.已知()[]12,0,1f x x x =-∈,那么方程()()()12f f f x x =的解的个数是_________.11.已知函数()f x 满足()()()3,1000;=+5,<1000.x x f x f f x x -≥⎧⎪⎨⎪⎩则()84f =________.12.设函数()f x 定义在R 上,对任意x R ∈,()110062f x +=+()310054f -=.则()2013f =___________.13.设定义在整数集上的函数f ,满足()()14,2000,n 19,2000.n n f f f n n -≥⎧⎪=⎨⎡⎤+<⎪⎣⎦⎩则()1989f =_____.14.设函数()f n 定义在正整数集上,对于任一正整数n ,有()()43f f n n =+,且对任意非负整数k ,有()1221k k f +=+.则()2303f =__________.15.设f(x)为定义在整数集上的函数,满足条件(1)()11f =,()20f =;(2)对任意的x 、y 均有()()()()()11f x y f x f y f x f y +=-+-则()2015f =______.三、解答题16.已知二次函数()()20f x ax bx c a =++≠.若方程()f x x =无实根,求证:方程()()f f x x =也无实根.17.已知()f x 是定义在实数集R 上的函数,()02f =,对任意x R ∈,有()()5254f x f x +=--,①()()3256f x f x -=-②,求()2012f 的值.18.对任意正整数m ,n ,定义函数(,)f m n 满足如下三个条件:①(1,1)1f =;②(1,)(,)2()f m n f m n m n +=++;③(,1)(,)2(1)f m n f m n m n +=++-.(1)求(3,1)f 和(1,3)f 的值;(2)求(,)f m n 的解析式.参考答案:1.C【详解】n=1时,()1f x =假设n k =时,()k f x =则1n k =+时,()1k f x +==所以()1993f x 故答案为C2.D【详解】令2x =-,则有()()()224f f f =-+,即()()()224.f f f +=()()()()42204f f f x f x ∴==⇒+=,即()f x 是以4为周期的函数.()()()199********.f f f ∴=⨯+==3.D【详解】设()1f a =,1x =.由已知函数等式得()()()1111f f f +=,()11af a +=,()11f a a+=.设1x a =+,有()()11111f a f f a a ⎛⎫+++= ⎪+⎝⎭,11111f a a a ⎛⎫+= ⎪+⎝⎭,()11 11f a f a a ⎛⎫+== ⎪+⎝⎭.由()f x 是增函数,则有1111a a+=+,解得a=当()112f =时,有()()11111a f f a a <=<+=<矛盾,所以()112f =.选D.4.B【详解】()111x f x x +=-,()()1223121111, 111f f x f x f x f x f x ++-==-==--+,()34311f f x x f +==-据此,()4111n xf x x++=-,()()424311, 1n n x f x f x x x ++-=-=+,()4n f x x=因2007为4n+3型,故选B.5.B【详解】令1y =得()()()111f x f f x x +=+--,即()()12f x f x x +=++.令0x =得()()102f f =+.由()11f =知()01f =-.当n N +∈时,()()()()()()()113101012nnk k n n f n f k f k f k f ==+⎡⎤=--+=++=-⎣⎦∑∑.同理,()()312n n f n -+-=--.所以,()()312n n f n +=-,n Z ∈.令()f n n =,解得2n =-或1n =.6.D【详解】由题意得()()()()5105fx f x f x -+=-+,所以,()()()101515f x f x f x +=-=--从而,()()()2550f x f x f x =--=-故()f x 是以50为周期的周期函数.因此,()()()20055040550f f f =⨯+==.7.C【详解】若()f x )为奇函数,则()()()()()()f f x f f x f f x -=-=-.故()()f f x 也为奇函数.因此,命题(1)正确.若()f x 为周期函数,设T 为()f x 的一个周期,则()()()()f f x T f f x +=.故()()f f x 也为周期函数,因此,命题(2)正确.若()f x 为单调递减函数,则对任何x y <,由:()()()()()()f x f y f f x f f y >=<.故()()f f x 为单调递增函数,因此,命题(3)正确.但命题(4)不正确例如,取:()2,011,0;0, 1.x x f x x x ⎧=≠⎪==⎨⎪=⎩或;则()()4,010,0;1, 1.x x f f x x x ⎧+≠⎪==⎨⎪=⎩或;.故方程()()f f x x =有01、两个实根,但0x ≠或1时,()2f x x x =+>,而()()01,10f f ==,知方程()f x x =没有实根.8.12xx+-【详解】因为()3012x x f x f x +⎛⎫== ⎪-⎝⎭,所以,()()311f x f x =.而2009306629=⨯+,于是,()()20092912xf x f x x+==-.故答案为12xx +-9.(]1,1-【详解】注意到()()()()2f g x g f x x -=.故()()()()2f g x g f x x -=.又定义域为()1,-+∞,从而,不等式的解集为(]1,1-.10.8【详解】∵()12f x x =-112,0,2121,,12x x x x ⎧⎡⎤-∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-∈⎢⎥⎪⎣⎦⎩即()f x 有关于x 的两个一次表达式.同理,()()f f x 有关于()f x 的两个一次表达式,而每个()f x 有关于x 的两个表达式,以所()()f f x 有关于x 的四个一次表达式.同理,()()()f f f x 有关于x 的八个不同的一次表达式,因此,所求方程解的个数是8.11.997【详解】记()()()()()n n f x f f f x个.则()()()()()1848489999f f f f === ()()()()()()18518418310041001998f ff===()()()()()()18418318210031000997f f f===()()()()()()18318218310029991004f f f ===()()()()()()18218118210019981003f ff===()()()18110001000997f f ==== .因此,()84997f =.12.12+【详解】由题意知()112f =+12=+()13100724f ==,()()1120131007100622f f =+==.13.()19891990f =【详解】(1989)[(2008)](1994)[(2013)](1999)[(2018)](2004)1990f f f f f f f f f f =======14.4607【详解】注意到23432303343434342=+⨯+⨯+⨯+⨯.而()()()()()4343f n f f f n f n +==+,则()()2332303343434342f f =++⨯+⨯+⨯=…()()()234323444433434343423434343421230342124607f =+⨯+⨯+⨯+=+⨯+⨯+⨯++=++-=15.1±【详解】在条件(2)中令0x =,则()()()()()011f y f f y f f y =-+,由()11f =,知()()010f f y -=.在上式中令0y =,则()()()01000f f f =⇒=.在条件(2)分别令1,1,2x =-得()()()()()1110f y f f y f f y +=-+()1f y =-,()()()()()1112f y f f y f f y -=--+()()()()1111f f y f f y =--=-+,()()()()()2211f y f f y f f y +=-+-()()1f f y =-,由()()()111f y f f y -=-+()()()12f y f f y =-+()()()21f y f f y ⇒=-()11f ⇒-=±.若()11f -=,则()()2f y f y +=,由条件(1)知()1,0,x f x x ⎧=⎨⎩为奇数为偶数,经检验,f 满足条件故()20151f =.若()11f -=-,则()()2f y f y +=-()()()01x 141,14x f x mod x mod ⎧⎪=≡⎨⎪-≡-⎩,为偶数,,经检验,f 满足条件故()20151f =-.综上,()20151f =±.16.见解析【详解】将函数式()()20f x ax bx c a =++≠代入方程()f x x =,移项后,得()210ax b x c +-+=()0a ≠.已知这个方程无实根,所以它的判别式为负,即()21140b ac ∆=--<.进而,由()()()()()2f f x a f x bf x c =++,将()f x 的表达式代入方程()()f f x x =,得()()222a ax bx cb ax bxc c x++++++=()0a ≠.变形,得()()222220a ax bx c x ax b ax bx c x bx c x ⎡⎤⎡⎤++-++++-++-=⎣⎦⎣⎦,提公因式,得()()22110ax b x c a ax bx c x b ⎡⎤⎡⎤+-++++++=⎣⎦⎣⎦,即()()()22110f x x a x a b x ac b ⎡⎤⎡⎤-+++++=⎣⎦⎣⎦.由条件知方程()0f x x -=无实根,所以,上面这个四次方程()()22110a x a b x ac b +++++=与有相同的实根.所得辅助二次方程的判别式是()()()2222221411444a b a ac b a b b ac ⎡⎤∆=+-++=+---⎣⎦()()()22221144440a b ac a a ⎡⎤=---=∆-<⋅-<⎣⎦,所以,这个辅助二次方程无实根,进而推出原四次方程()()f f x x =无实根.17.2【详解】在式①中取()1322x y y R =-∈,得()()212f y f y +=-.在式②中取()1233x y y R =+∈,得()()12f y f y =-,于是,()()2f y f y +=,即()f x 是一个周期为2的函数,故()()()201221006002f f f =⨯+==.18.(1)(3,1)11f =,(1,3)7f =(2)22(,)231f m n m mn n m n =++--+【分析】(1)由已知关系式直接推得即可;(2)由(1,1),(1,2),,f f 依次推出(1,)f n ,再由(1,),(2,)f n f n ,L ,依次推出(,)f m n 即可.【详解】解:(1)因(1,)(,)2()f m n f m n m n +=++,令1m n ==代入得:(2,1)(1,1)2(11)145f f =++=+=,令2m =,1n =代入得:(3,1)(2,1)2(21)5611f f =++=+=,又(,1)(,)2(1)f m n f m n m n +=++-,令1m n ==代入得:(1,2)(1,1)2(111)123f f =++-=+=.令1m =,2n =代入得:(1,3)(1,2)2(121)347f f =++-=+=.(2)由条件②可得(2,1)(1,1)2(11)22f f -=⨯+=⨯,(3,1)(2,1)2(21)23f f -=⨯+=⨯,……(,1)(1,1)2(11)2f m f m m m --=⨯-+=⨯.将上述1m -个等式相加得:2(,1)2(23)(1,1)1f m m f m m =++⋅⋅⋅++=+-.由条件③可得:(,2)(,1)2(11)2f m f m m m -=+-=,(,3)(,2)2(21)2(1)f m f m m m -=+-=+,……(,)(,1)2(11)2(2)f m n f m n m n m n --=⨯+--=⨯+-.将上述n 1-个等式相加得:2(,)2[(1)(2)(2)]1f m n m m m m n m m =+++++⋅⋅⋅++-++-22231m m n n m n =++--+.【点睛】本题主要考查了函数的递推关系式,注意观察规律,细心完成即可.。
第34讲函数迭代与函数方程本节主要内容有函数迭代与函数方程问题.在研究函数的表达式或函数性质时,通常是没有给出函数的解析式,往往只给出函数的某些性质,而要求出函数的解析式,或证明该函数具有另外的一些性质,或证明满足所给性质的函数不存在或有多少个,或求出该函数的某些特殊函数值……。
A 类例题例1 已知x x e f xsin )(3,则函数()f x 。
解令xe t;则ln 0xt t,。
将此代入x xe f xsin )(3式可得ttt f ln sin ln )(3(0t )。
即3()ln sin ln f x x x(0x )代入(1)式,显然其满足方程x x e f x sin )(3。
说明解函数方程(())()f x g x (其中()x 及()g x 是已知函数)时,可设()t x ,并在的反函数存在时,求出反函数1()xt ;将它们代回原来的方程式以求出()f x 。
但若()x 为未知函数时,这个方法就不能用了。
由于代换后的函数未必与原函数方程等价,所以最后一定要检验所得到的解是否满足原来的函数方程。
例2 已知)(x f 为多项式函数,解函数方程xxx f x f 42)1()1(2(1)分析由于)(x f 为多项式函数,注意)1(x f 与)1(x f 和)(x f 的次数是相同的。
解因为)(x f 为多项式函数,而)1(x f 与)1(x f 并不会改变)(x f 的次数,故由(1)可知)(x f 为二次函数。
不妨设c bxaxx f 2)(,则22(1)(1)(1)(2)()f xa xb x cax a b x a b c ,22(1)(1)(1)(2)()f x a x b x c axb a x a bc ,所以22(1)(1)222()24f xf x axbx a c xx ,所以22,24,0,ab ac解得1,2,1,a b c所以12)(2xxx f 。
易检验出此)(x f 确实满足x xx f x f 42)1()1(2。
【校本课程数学竞赛讲义】 第二章 函数§2.1 函数及其性质一、函数的基本性质:1. 函数图像的对称性 (1)奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立;偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。
(2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。
若某一函数与其反函数表示同一函数时,那么此函数的图像就关于直线y x =对称。
(3)若函数满足()(2)f x f a x =-,则()f x 的图像就关于直线x a =对称;若函数满足()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。
(4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。
2.函数的单调性函数的单调性是针对其定义域的某个子区间而言的。
判断一个函数的单调性一般采用定义法、导数法或借助其他函数结合单调性的性质(如复合函数的单调性)特别提示:函数(0)a y x a x=+>的图像和单调区间。
3.函数的周期性对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。
若在所有的周期中存在一个最小的正数,就称其为最小正周期。
(1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。
(2)若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为T a的周期函数。
(3)若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。
(4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。
函数方程与迭代1.迭代法先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则14(1)5i i x x -=-, 1,2,3,4,5i =.且0x x =.设44()(1)(4)455f x x x =-=+-.于是:14()(4)45x f x x ==+-, 224(())()(4)45x f f x x ==+-,334((()))()(4)45x f f f x x ==+-, 444(((())))()(4)45x f f f f x x ==+-,554((((()))))()(4)45x f f f f f x x ==+-,由于剩下的桃子数都是整数,∴55|4x +.∴最小的x 为:5543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代.一般地,设:f D D →是一个函数,对x D ∀∈,记(0)()f x x =,(1)()()f x f x =,(2)()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈,则称函数()()n f x 为()f x 的n 次迭代,并称n 为()()n f x 的迭代指数.反函数记为()()n f x -.一些简单函数的n 次迭代如下:(1)若()f x x c =+,则()()n f x x nc =+; (2)若()f x ax =,则()()n n f x a x =;(3)若()a f x x =,则()()n n a f x x =; (4)若()1x f x ax =+,则()()1n x f x nax =+; (5)若()f x ax b =+(1a ≠),则()1()1nn na f x a xb a -=+-; ()()n f x 的一般解法是先猜后证法:先迭代几次,观察规律并猜测表达式,证明时常用数学归纳法.1.求迭代后的函数值例1 自然数k 的各位数字和的平方记为1()f k ,且11()[()]n n f k f f k -=,求(11)n f (n N *∈)的值域. 解:由条件可知: Λ;169)652()256()11(;256)961()169()11(;169)94()49()11(;49)61()16()11(;164)4()11(;4)11()11(21621521421321221=++===++===+===+======+=f f f f f f f f f f f所以(11)n f (n N *∈)的值域为{4,16,49,169,256}。
例2 设12()1f x x =+,而11()[()]n n f x f f x +=,n N *∈.记(2)1(2)2n n n f a f -=+,求99a . 解:∵32)2(1=f ,∴811-=a ,1)2(2)2(1+=-n n f f ,2)2(1)2(2121)2(211)2(22)2(1)2(1111+-⋅-=++-+=+-----n n n n n n f f f f f f 即121--=n n a a ,故101989921)21(81-=--=a 。
例3 求解函数方程:x x x f x f x x f cos )11()1()11(=-++-++-)1,0(±≠x 解:设11)(+-=x x x g ,则x x g g g g x g ==))))(((()()4(并且x x g g x g 1))(()2(-==,x x x g g g x g -+==11)))((()3(,于是原方程变为:x x g f x g f x g f cos )]([][)]([)3()2(=++, ①令)(x g x =得:)(cos )()]([)]([)3()2(x g x f x g f x g f =++ ②令)()2(x g x =得:)(cos )]([)()]([)2()3(x g x g f x f x g f =++③令)()3(x g x =得:)(cos )]([))(()()3()2(x g x g f x g f x f =++ ④ 由①②③④得: x x g x g x g x f cos 2)(cos )(cos )(cos )(3)3()2(-++=,∴)cos 211cos 1cos 11(cos 31)(x xx x x x x f --++++-=. 2.不动点法 一般地,若()f x ax b =+,则把它写成()()11b b f x a x a a =-+--,因而 ……()()()11n n b b f x a x a a =-+-- 这里的1b a-就是方程ax b x +=的根.一般地,方程()f x x =的根称为函数()f x 的不动点. 如果0x 是函数()f x 的不动点,则0x 也是()()n fx 的不动点.可用数学归纳法证明.利用不动点能较快地求得函数()f x 的n 次迭代式. 3.相似法若存在一个函数()x ϕ以及它的反函数1()x ϕ-,使得1()((()))f x g x ϕϕ-=,我们称()f x 通过()x ϕ和()g x 相似,简称()f x 和()g x 相似,其中()x ϕ称为桥函数.如果()f x 和()g x 相似,即1()((()))f x g x ϕϕ-=,则有:()1()()((()))n n f x g x ϕϕ-=.4. 函数方程的一般解法函数方程的变化多,求解技巧性很强,往往涉及不同领域的数学知识,特别是附加了条件的函数,更是五花八门,各有巧妙。
迭代只是其中的一种方法,在高中数学各级竞赛中,都有可能会遇到函数方程的问题,还有可能会用到观察法、代换法、柯西法、赋值法(特殊值法)等几种典型的求解函数的方法。
如: (2)2()(),11b b f x a x a a =-+--(3)3()()11b b f x a x a a =-+--1.代换法例4(2007越南数学奥林匹克)设b 是一个正实数,试求所有函数R R f →:,使得)3(3)()(1)(1)(y y f b x y f b b b x f y x f y y -+⋅=+-+-+对任意实数x 、y 均成立。
解:将原方程变形为:1)(3))(()(-++⋅+=++y f b x y x y b x f b y x f (x , )R y ∈① 令x b x f x g +=)()(,则①等价于1)(3)()(-⋅=+y g x g y x g (x , )R y ∈②在②中令0=y 得1)0(3)()(-⋅=g x g x g )(R x ∈这表明1)0(0)(==g x g 或(1) 若0)(=x g )(R x ∈,则x b x f -=)( (2) 若1)0(=g ,在②式中令0=x 得:1)(1)(33)0()(--=⋅=y g y g g y g ,即0)(31)(=--y g y g )(R y ∈ ③ 考虑函数t t h t -=-13)(,它的导函数13ln 3)('1-=-t t h ,则11)(log log 0)('33<+=⇔=e t t h .于是可知0)(=t h 有两根11=t 和c t =2)10(<<c .于是③式等价于1)(=y g 或c R y ∈(, c 为满足10<<c 的常量)假设存在R y ∈0使c y g =)(0,则)(3)()()0(101)(0000y g c y g y y g g y g -⋅=⋅=-==-- ∴c cy g ≠-=-1)(0或1,∴c y g =)(0矛盾,因此1)(=y g )(R y ∈,∴x b x f -=1)( 综上知:x x b x f b x f -=-=1)()(和说明:代换法是解函数方程最基本方法,很多函数方程中所特有的性质是通过代换法去发现的。
本题也是通过代换法打开了解题的思路。
2.柯西法例5 设)(x f 为定义在实数集R 上的单调连续函数,试解函数方程)()()(y x f y f x f +=⋅。
解:由)()()(y x f y f x f +=⋅用归纳法得:)()()()(2121n n x x x f x f x f x f ΛΛ++=当n x x x ===Λ21时,有)()]([nx f x f n =. ①若1=x ,n x f n f )]([)(=,令a f =)1(,得n a n f =)(,在①式中令n x 1=得:)1()]1([f nf n = 因)(x f 定义在实数集R 上,n 是偶数时,必有0)1(≥f ,这样0≥a ,∴n a nf 1)1(= 若m 为正整数,利用上式得:n mm n m a a n f n n n f n m f n m f ===+++=⋅=)()]1([)111()1()(1Λ.在原方程中,令0=y 有:)()0()(x f f x f =⋅,因)(x f 单调)(x f 不恒为0,∴01)0(a f ==.在原方程中,令x y -= 有n m x y -=-=(n , )N m ∈,则有)0()()(f n m f n m f =⋅-即n mn m a a n m f n m f --===-1)()(1)((又因为)(n m f -有意义,∴0,a >这样,我们便在有理数集内求得了函数方程)0()(>=a a x f x .又因)(x f 单调,不能恒为1,则)10()(≠>=a a a x f x 且为指数函数,当α=a 为无理数,设i i b a <<α且a i , b i 为无限接近于α的有理数.则由)(x f 单调知ααa f =)(,∴原方程的解为)10()(≠>=a a a x f x 且说明:柯西法是由解柯西方程)()()(y f x f y x f +=+而归纳出来的方法。
3.特殊值法例6 (2008年IMO 第4题)求所有的函数),0(),0(:+∞→+∞f 满足对所有的正实数ω,x , y , z ,yz x =ω都有:22222222)()())(())((z y x z f y f x f f ++=++ωω解:令1====z y x ω得:1)1()1())1((2=⇒=f f f ,对任意0>t 令t =ω,1=x ,t z y ==得:t t t f t f 21)(21))((22+=+,去分母整理:0))()(1)((=--t t f t tf ,所以对每个0>t 有t t f =)(或者t t f 1)(= ① 若存在b , ),0(+∞∈c ,使得b b f ≠)(,c c f 1)(=,则由①知,b , c 都不等于1。