传输原理2_动量传输基本方程
- 格式:ppt
- 大小:1.33 MB
- 文档页数:34
动量传递原理范文动量(p)是一个物体的质量(m)和其速度(v)的乘积,可以用公式p=mv来表示。
动量是矢量量,具有大小和方向。
在碰撞过程中,动量可以以多种形式传递。
主要有弹性碰撞和非弹性碰撞两种情况。
1.弹性碰撞:在弹性碰撞中,碰撞物体之间相互作用的时间很短,且没有能量转化为其他形式。
在这种情况下,动量交换是完全弹性的,其中一个物体的动量增加,而另一个物体的动量减小。
总动量在碰撞过程中保持不变。
弹性碰撞通常发生在刚性物体之间,例如金属碰撞或球撞。
2.非弹性碰撞:在非弹性碰撞中,碰撞物体之间的相互作用时间较长,且会有一部分动能转化为其他形式的能量,例如热能。
在这种情况下,碰撞物体之间的动量交换是部分非弹性的。
总动量仍然守恒,但总机械能不守恒。
非弹性碰撞通常发生在柔软或可变形的物体之间,例如车辆碰撞或弹力球撞。
1.车辆碰撞:动量传递原理可以用来解释车辆碰撞时发生的事情。
当两辆车相撞时,它们之间的动量会交换。
如果碰撞是弹性的,动量交换是完全弹性的,其中一辆车的动量增加,而另一辆车的动量减小。
这就解释了为什么严重的车祸可能会导致车辆损坏以及车内乘客受伤的原因。
2.火箭发射:动量传递原理也适用于火箭发射。
当燃料在火箭喷射口燃烧时,产生的高速气体的动量向下传递给火箭本身,从而产生向上的推力。
这就是使火箭能够离开地面并进入太空的原因。
3.运动中的相互作用:动量传递原理也可以帮助我们理解运动中两个或多个物体之间的相互作用。
例如,当一个足球运动员向另一个运动员传球时,球的动量从一个人传递到另一个人。
这使得球能够在相互之间移动。
在物理中,动量传递原理是一个基本的概念,有助于我们理解和解释许多日常生活中和科学领域的现象。
通过应用动量传递原理,我们可以更好地理解碰撞、相互作用和广泛的物体运动。
《冶金传输原理》复习提纲Ⅰ、基本概念一、动量传输1、流体;连续介质模型;流体模型;动力粘度、运动粘度、恩式粘度;压缩性、膨胀性2、表面力、质量力;静压力特性;压强(相对压强、绝对压强、真空度);等压面3、Lagrange 法、Euler法,迹线、流线4、稳定流、非稳定流,急变流、缓变流,均匀流、非均匀流5、运动要素:流速、流量,水力要素:过流断面、湿周、水力半径、当量直径6、动压、静压、位压;速度能头、位置能头、测压管能头、总能头;动能、动量修正系数7、层流、湍流;自然对流、强制对流8、沿程阻力、局部阻力;沿程损失、局部损失9、速度场;速度梯度;速度边界层二、热量传输1、温度场、温度梯度、温度边界层;热流量、热流密度2、导热、对流、辐射3、导热系数、对流换热系数、辐射换热系数、热量传输系数4、相似准数Fo、Bi、Re、Gr、Pr、Nu5、黑体、白体、透热体;灰体;吸收率、反射率、透过率、黑度6、单色辐射力、全辐射力、方位辐射力;角系数;有效辐射;表面网络热阻、空间网络热阻7、解析法、数值分析法、有限差分法、集总参数法、网络元法三、质量传输1、质量传输;扩散传质、对流传质、相间传质2、浓度、速度、传质通量;浓度场、浓度梯度、浓度边界层3、扩散系数、对流传质系数4、Ar、Sc、Sh准数Ⅱ、基本理论与定律一、动量传输1、Newton粘性定律2、N-S方程3、连续方程、能量方程、动量方程、静力学基本方程二、热量传输1、F-K方程2、Fourier定律3、Newton冷却(加热)公式4、Planck定律、Wien定律、Stefen-Boltzman定律、Kirchhoff定律、Beer定律、余弦定律5、相似原理及其应用三、质量传输1、传质微分方程、Fick第一、二定律2、薄膜理论、双膜理论、渗透理论、更新理论Ⅲ、基本理论与定律在工程中的应用一、动量传输1、连通容器2、连续方程、能量方程、动量方程的应用、烟囱计算3、流体阻力损失计算二、热量传输1、平壁、圆筒壁导热计算2、相似原理在对流换热中的应用3、网络单元法在表面辐射换热中的应用4、通过炉墙的综合传热、火焰炉炉膛热交换、换热器5、不稳态温度场计算:解析法;有限差分法三、质量传输1、平壁、圆筒壁扩散计算2、相似原理在对流传质中的应用3、炭粒、油粒的燃烧过程4、相间传质(气—固、气—液、多孔材料)Ⅳ、主要参考题型一、填空1、当体系中存在着(、、)时,则发生动量、热量和质量传输,既可由分子(原子、粒子)的微观运动引起,也可以由旋涡混合造成的流体微团的宏观运动引起。
材料加工冶金传输原理自然对流传热的计算(原创实用版)目录一、材料加工冶金传输原理1.动量传输2.热量传输3.质量传输二、自然对流传热的计算1.自然对流空气冷却式冷凝器的传热计算2.强制通风空气冷却式冷凝器的传热计算三、材料加工冶金传输原理在实践中的应用1.材料加工中的应用2.冶金工程中的应用正文一、材料加工冶金传输原理材料加工冶金传输原理涵盖了流体力学、传热学及传质学课程的内容。
从动量、热量及质量传输的角度,阐述了流体流动过程、传热过程以及传质过程的基本理论。
1.动量传输:动量传输是指流体在运动过程中,流体微团之间及流体与固体壁面之间的相互作用。
动量传输的基本方程是牛顿运动定律在流体力学中的推广,即动量守恒定律。
2.热量传输:热量传输是指流体中温度不同的各部分之间由于温差而引起的热量流动。
热量传输的基本方程是热力学第一定律在流体力学中的推广,即能量守恒定律。
3.质量传输:质量传输是指流体中浓度不同的各部分之间由于浓度差而引起的质量流动。
质量传输的基本方程是质量守恒定律在流体力学中的推广。
二、自然对流传热的计算自然对流传热是指流体在自然对流条件下的传热过程。
对于小型冷藏柜和家用电冰箱等制冷装置中的自然对流空气冷却式冷凝器,可以采用一种比较简单的近似传热计算方法。
1.自然对流空气冷却式冷凝器的传热计算:自然对流空气冷却式冷凝器的传热计算主要包括冷凝器的热负荷、传热系数和传热面积等参数的确定。
通过这些参数的计算,可以得到冷凝器的传热效果。
2.强制通风空气冷却式冷凝器的传热计算:强制通风空气冷却式冷凝器的传热计算需要考虑强制通风对传热效果的影响。
通过对强制通风空气冷却式冷凝器的传热计算,可以优化制冷装置的性能。
三、材料加工冶金传输原理在实践中的应用材料加工冶金传输原理在材料加工和冶金工程实践中具有广泛的应用。
1.材料加工中的应用:在材料加工过程中,需要对金属进行熔化、铸造、轧制等操作。
在这些过程中,需要对流体流动、传热和传质等过程进行精确控制,以保证材料的性能和加工质量。
材料加工冶金传输原理自然对流传热的计算(原创实用版)目录一、材料加工冶金传输原理1.动量传输2.热量传输3.质量传输二、自然对流传热的计算1.自然对流空气冷却式冷凝器的传热计算2.强制通风空气冷却式冷凝器的传热计算正文一、材料加工冶金传输原理在材料加工和冶金工程中,流体流动、传热和传质过程是重要的环节,它们对整个工艺过程的产生和影响不容忽视。
为了更好地理解和掌握这些过程,我们需要从动量、热量和质量传输的角度进行深入研究。
1.动量传输动量传输是指流体在运动过程中,由于流速和压力的变化导致动量的传递。
在材料加工和冶金工程中,动量传输通常涉及到流体的输送和混合过程,以及流体与固体颗粒之间的作用力。
2.热量传输热量传输是指热量从高温区域向低温区域传递的过程。
在材料加工和冶金工程中,热量传输主要包括热传导、热对流和热辐射三种方式。
其中,热对流是指由于流体的流动导致热量的传递过程。
3.质量传输质量传输是指物质在流体中传递的过程。
在材料加工和冶金工程中,质量传输通常涉及到溶质、悬浮颗粒和气泡等在流体中的传递和分离过程。
二、自然对流传热的计算在制冷装置中,自然对流空气冷却式冷凝器和强制通风空气冷却式冷凝器是两种常见的传热设备。
下面分别介绍它们的传热计算方法。
1.自然对流空气冷却式冷凝器的传热计算自然对流空气冷却式冷凝器的传热计算通常采用牛顿冷却定律和热传导定律相结合的方法。
首先,需要确定冷凝器的热负荷和传热系数;其次,根据冷凝器的结构和材料,计算出冷凝器的热传导阻力和热容;最后,利用牛顿冷却定律计算出冷凝器的传热速率。
2.强制通风空气冷却式冷凝器的传热计算强制通风空气冷却式冷凝器的传热计算通常采用对流传热公式进行计算。
首先,需要确定冷凝器的热负荷和传热系数;其次,根据冷凝器的结构和材料,计算出冷凝器的对流换热系数;最后,利用对流传热公式计算出冷凝器的传热速率。
1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质从宏观上研究流体的运动规律:即流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算)4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为τyx说明动量传输的方向(y向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m2/s6.牛顿流体和非牛顿流体凡是切应力与速度梯度的关系服从牛顿粘性定律的流体,均称为牛顿流体。
常见的牛顿流体有水、空气等,非牛顿流体有泥浆、纸浆、油漆、沥青等。
对于不符合牛顿粘性定律的流体,称之为非牛顿流体。
第二章动量传输的基本方程1.研究流体运动的方法拉格朗日(Lagrange)法及欧拉法。
拉格朗日法的出发点是流体质点,即研究流体各个质点的运动参数随时间的变化规律,综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。
在研究流体的波动和振荡问题时常用此法。
2. 欧拉法的出发点在于流场中的空间点,即研究流体质点通过空间固定点时的运动参数随时间的变化规律,综合流场中所有点的运动参数变化情况,就得到整个流体的运动规律。
力学中的动量转移动量是物体运动的量度,它与物体的质量和速度有关。
在力学中,动量转移是指一个物体的动量向另一个物体转移的过程。
本文将探讨动量转移的基本原理、应用以及其在现实生活中的一些实例。
首先,我们来讨论动量转移的基本原理。
根据牛顿第二定律F=ma,力等于物体质量乘以加速度。
这里的力同时也代表物体受到的冲量,而冲量可以用来描述动量的变化。
根据动量的定义,动量p等于物体的质量m乘以其速度v。
所以,根据冲量的定义FΔt=Δp,我们可以得出动量转移公式Δp=FΔt。
动量转移的一个典型例子是弹球碰撞。
当一个球以一定的速度沿着直线运动,另一个球以一定的速度在同一直线上与之碰撞时,两个球的动量将发生转移。
根据动量转移公式,我们可以计算出碰撞时两球动量的变化。
动量转移在物理学中有着广泛的应用。
例如,在汽车碰撞的研究中,动量转移可以帮助我们理解碰撞发生时的力学过程。
当两辆车发生碰撞时,它们的动量发生转移,这会产生巨大的冲击力。
通过研究动量转移,我们可以设计更安全的汽车结构,以减少碰撞对驾驶员和乘客的伤害。
此外,动量转移也可以应用于运动员的训练和竞技中。
例如,在撞击运动中,如拳击和橄榄球,动量转移是关键要素之一。
运动员可以通过控制自身的动量转移,在撞击时增加对手的受力,从而增加成功的几率。
训练中,动量转移可以通过力量和速度的训练来提高,从而提高运动员的竞技水平。
此外,动量转移还可以帮助我们理解一些日常生活现象。
例如,当我们踢足球时,我们需要考虑踢球的力度和角度,以使球达到理想的速度和方向。
这涉及到对动量转移的理解和应用。
我们也可以看到动量转移在射箭、高尔夫等运动中的应用。
总结一下,动量转移在力学中起着重要的作用。
它是衡量物体运动的重要量度,可以帮助我们理解和分析各种运动和碰撞的过程。
动量转移不仅在物理学研究中有应用,也在运动员的训练和竞技中扮演重要角色。
在我们日常生活中,我们也可以观察到动量转移的现象,从而更好地理解运动和碰撞的力学原理。