随机过程第5章(Galton-Waston分支过程)
- 格式:ppt
- 大小:1.51 MB
- 文档页数:4
随机过程_课件---第五章第五章离散参数Markov 链5.1 Markov 链的基本概念1、Markov 链和转移概率矩阵定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,n X n = 。
把过程所取可能值得全体称为它的状态空间,记之为E ,通常假设{}0,1,2,E= 。
若n X i =就说“过程在时刻n 处于状态i ”,假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ij p ,即对任意时刻n1(|)n n ij P X j X i p +===若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链。
称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ??=是一步转移概率矩阵,简称为转移矩阵。
由ij p 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链。
且具有,0ij p ≥ , 01ij j p ∞==∑2、例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =。
于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+??==-其他当12p q ==时,称为简单对称随机游动。
例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k kp xEX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p e t g k )( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0(5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = p q DX =二项分布 kn k k n q p C k X P -==)( np EX = npq DX =泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21ex p{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
一、随机过程简介随机过程这一学科最早起源于对物理学的研究,如吉布斯(美国物理化学家、数学物理学家)、玻尔兹曼(奥地利物理学家)、庞加莱(法国数学家)等人对统计力学的研究,及后来爱因斯坦、维纳(Wiener ,美国数学家,控制论的创始人)、莱维(Levy ,法国数学家)等人对布朗运动的开创性工作。
1907年前后,马尔可夫(Markov)研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。
随机过程一般理论的研究通常认为开始于20世纪30年代。
1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。
1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。
一般认为,随机过程整个学科的理论基础是由柯尔莫哥洛夫(Kolmog orov )和杜布(Doob)奠定的。
第一章 随机过程的基本概念一、随机过程的定义例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。
例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。
令X n 表示第n 次统计所得的值,则X n 是随机变量。
为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。
例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。
以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。
第一章随机变量基础1历史上哪些学者对随机过程学科的基础理论做出了突出贡献?答:随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。
这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。
1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。
1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。
随机过程一般理论的研究通常认为开始于20世纪30年代。
1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。
1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。
2 全概率公式的含义?答:全概率公式的含义就是各种可能发生的情况的概率之和为1。
3 概率空间有哪几个要素,其概念体现了对随机信号什么样的建模思想?答:样本空间、事件集合、概率函数称为概率空间的三要素。
概率函数建立了随机事件与可描述随机事件可能性大小的实数间的对应关系,因此,概率空间是在观测者观测前对随机事件发生的可能性大小进行了量化,其有效性是通过多次观测体现出来的,也即在多次观测中,某个随机事件发生的频率可直接认为与其发生的概率相等,所以,概率空间的建模思想实际是对大量观测中某随机事件发生频率的稳定性的描述。
4 可用哪些概率函数完全描述一个随机变量?答:概率分布函数(cdf)、概率密度函数(pdf)、特征函数(cf)、概率生成函数(gf)。
5 可用哪些数字特征部分描述一个随机变量?答:均值、方差、协方差、相关系数和高阶矩。
6 随机变量与通常意义上的变量有何区别与联系?答:随机变量具有通常意义上的变量的所有性质和特征(即变量特性),还增加了变量取每个值的可能性大小的描述(即概率特性)。
因此,描述或刻画一个随机变量时,还必须要特别考察其概率函数或各阶矩函数。
概率论的发展过程1.概率英文:Probability,意思是某种事物发生的几率与机会。
在数学词典上的定义是“一个给定事件发生的几率,通常是一个由该事件与所有可能事件相除所得到的量”。
概率分理论概率(Theoretical Probability)和动态概率(Dynamical Probability)。
概率论所产生的学科有:统计学(Statistics),积分几何(Integral Geometry),博弈论(Ga me Theory),随机过程(Stochastic Process)和精算数学(Acturial Mathem atics)。
2.理论概率的发展过程(a) 早期的发展历程:概率起源与赌博(Gambling),最初发现它的是Pascal, 在与Fermat 的通信中(1654年)提出了概率的雏形。
Pascal利用概率来证明他的两个问题,而最早在该学科中有所研究的是Huygens,正是Huygens的研究(1657年),从而奠定了概率论今后一百年的发展方向。
(1713年),Jakob Bernoulli在他的Ars Conjectandi中充分证明了Huygens没有完成的理论,也就是后来的“大数定律”;同时De Moivre在他的Doctrine of Chance (1718年) 对Huygens的问题也有研究。
(b) 误差分析加速了概率论的发展:(1722年),Roger Cotes在他的Opera Miscellanea中提出了误差这个概念,但是最后是由Thomas Simpson (1755年)把它充分的论证。
经过研究,正误差和负误差发生的几率相等,在经过多次事件后,误差的极限趋于一个特定的数;同时在他的书中,他给出了极限图和最早的概率曲线。
(1774年),Laplace给出了比较理想的概率曲线公式以及它的性质;同时,Daniel Bernoulli提出了他的“概率最大求积定律”(1778年)。