高三数学教案:空间点、直线、平面之间的位置关系(3课时)
- 格式:doc
- 大小:87.00 KB
- 文档页数:4
《8.4.2 空间点、直线、平面之间的位置关系》教案【教材分析】空间点、直线、平面之间的位置关系是立体几何中最重要的位置关系,直线与直线、直线与平面、平面与平面的位置关系是本节的重点和难点.这些位置关系是根据交点个数来定义的,本节重点是结合图形判断空间中直线与直线、直线与平面、平面与平面的位置关系.【教学目标与核心素养】课程目标1.了解直线与直线之间的三种位置关系,会用图形语言和符号语言表示;2.了解直线与平面之间的三种位置关系,会用图形语言和符号语言表示;3.了解平面与平面之间的两种位置关系,会用符号语言和图形语言表示.数学学科素养1.数学抽象:异面直线的理解;2.逻辑推理:判断空间点、直线、平面之间的位置关系;3.直观想象:空间图形中点、直线、平面之间的位置关系.【教学重点和难点】重点:了解空间中直线与直线、直线与平面、平面与平面的位置关系;难点:会用图形语言、符号语言表示直线与直线、直线与平面、平面与平面之间的位置关系.【教学过程】一、情景导入我们知道,长方体有8个顶点,12条棱,6个面.12条棱对应12条棱所在的直线,6个面对应6个面所在的平面.观察如图所示的长方形,你能发现这些顶点、直线、平面之间的位置关系吗?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本128-131页,思考并完成以下问题1、什么是异面直线?2、空间两条直线的位置关系?3、直线与平面的位置关系?4、平面与平面的位置关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线.(2)画法:2.空间两条直线的位置关系3.直线与平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内有无数个公共的直线a与平面α相交有且只有一个公共的位置关系共面情况有无公共点相交在同一平面内有且只有一个公共点平行在同一平面内没有公共点异面不同在任何一个平面内没有公共点a⊂αa∩α=A直线a与平面α平行无公共点4.平面与平面的位置关系位置关系图形表示符号表示公共点两平面平行无公共点两平面相交有无数个公共点,这些点在一条直线上四、典例分析、举一反三题型一直线与直线的位置关系例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,AB的中点,试判断下列各对线段所在直线的位置关系:(1)AB与CC1;(2)A1B1与DC; (3)A1C与D1B.【答案】见解析.【解析】(1)因为C∈平面ABCD,AB⊂平面ABCD,又C∉AB,C1∉平面ABCD,所以AB与CC1异面.(2)因为A1B1∥AB,AB∥DC,所以A1B1∥DC.(3)因为A1D1∥B1C1,B1C1∥BC,所以A1D1∥BC,则A1,B,C,D1在同一平面内.所以A1C与D1B相交.解题技巧(判定两直线异面的常用方法)(1)定义法:由定义判断两直线不可能在同一平面内;(2)排除法(反证法):排除两直线共面(平行或相交)的情况.跟踪训练一a∥αα∥βα∩β=l1、正方体ABCD-A 1B 1C 1D 1中,与棱AB 异面且垂直的棱有( ) (A)8条 (B)6条 (C)4条 (D)3条 【答案】C【解析】如图所示,一共有12条棱,其中有三条与AB 平行,有四条与AB 相交,还剩四条,这四条是CC 1,DD 1,A 1D 1,B 1C 1都是与AB 异面且垂直.故选C. 题型二 直线与平面的位置关系例2如图所示,ABCD-A 1B 1C 1D 1为正方体,试判定BC 1与六个面的位置关系.【答案】见解析.【解析】因为B ∈面BCC 1B 1,C 1∈面BCC 1B 1,所以BC 1⊂面BCC 1B 1.又因为BC 1与面ADD 1A 1无公共点,所以BC 1∥面ADD 1A 1.因为C 1∈面CDD 1C 1,B ∉面CDD 1C 1,所以BC 1与面CDD 1C 1相交,同理BC 1与面ABB 1A 相交,BC 1与面ABCD 相交,BC 1与面A 1B 1C 1D 1相交.解题技巧 (直线与平面位置关系的解题思路)解决此类问题首先要搞清楚直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助空间想象能力进行细致的分析.跟踪训练二 1、下列说法中,正确的个数是( )①如果两条平行直线中的一条和一个平面相交,那么另一条也和这个平面相交②一条直线和另一条直线平行,它就和经过另一条直线的任何平面平行③若直线a在平面α外,则a∥α.(A)0 (B)1 (C)2 (D)3【答案】B【解析】由直线与平面的位置关系可知①正确;这条直线可能在经过另一条直线的平面内,所以②不正确,对于③包括两种情形,直线a∥α或直线a与α相交,故③不正确.故选B.题型三平面与平面的位置关系例3 α,β是两个不重合的平面,下面说法中,正确的是( )(A)平面α内有两条直线a,b都与平面β平行,那么α∥β(B)平面α内有无数条直线平行于平面β,那么α∥β(C)若直线a与平面α和平面β都平行,那么α∥β(D)平面α内所有的直线都与平面β平行,那么α∥β【答案】 D【解析】对于A,α与β可能相交或平行,错;对于Β,α与β可能相交或平行,错;对于C,α与β可能相交或平行,错;D符合面面平行的定义,正确.选D.解题技巧(平面与平面位置关系的解题思路)判断线线、线面、面面的位置关系,要牢牢地抓住其特征与定义、要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.常借助长方体模型进行判断.跟踪训练三1、平面α与平面β平行且a⊂α,下列四种说法中,①a与β内的所有直线都平行;②a与β平行;③a与β内的无数条直线平行,其中正确的个数是( )(A)0 (B)1 (C)2 (D)3【答案】C【解析】因为α∥β,a⊂α,所以a与β无公共点,所以a∥β,故②正确,所以a与β内的所有直线都没有公共点,所以a与β内的直线平行或异面,故①不正确,③正确.故选C.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本131页练习,131页习题8.5的剩余题.【教学反思】就本节课位置关系学生容易理解,但在做题时容易进入误区,例:“直线与平面不相交”与“直线与平面没有公共点”是相同的意义吗?答案:不是.前者包括直线与平面平行及直线在平面内这两种情况,而后者仅指直线与平面平行. 所以要求学生做题时要将其所有情况考虑全面.《8.4.2 空间点、直线、平面之间的位置关系》导学案【学习目标】知识目标1.了解直线与直线之间的三种位置关系,会用图形语言和符号语言表示;2.了解直线与平面之间的三种位置关系,会用图形语言和符号语言表示;3.了解平面与平面之间的两种位置关系,会用符号语言和图形语言表示.核心素养1.数学抽象:异面直线的理解;2.逻辑推理:判断空间点、直线、平面之间的位置关系;3.直观想象:空间图形中点、直线、平面之间的位置关系.【学习重点】:了解空间中直线与直线、直线与平面、平面与平面的位置关系;【学习难点】:会用图形语言、符号语言表示直线与直线、直线与平面、平面与平面之间的位置关系.【学习过程】一、预习导入阅读课本128-131页,填写。
第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。
第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系教案 A第1课时教学内容:2.1.1 平面教学目标一、知识与技能1.利用生活中的实物对平面进行描述,掌握平面的表示法及水平放置的直观图;2.掌握平面的基本性质及作用,提高学生的空间想象能力.二、过程与方法在师生的共同讨论中,形成对平面的感性认识.三、情感、态度与价值观通过实例认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.教学重点、难点教学重点:1.平面的概念及表示;2.平面的基本性质,注意它们的条件、结论、作用、图形语言及符号语言.教学难点:平面基本性质的掌握与运用.教学关键:让学生理解平面的概念,熟记平面的性质及性质的应用,使学生对平面的概念及其性质由感性认识上升到理性认识.教学突破方法:对三个公理要结合图形进行理解,清楚其用途.教法与学法导航教学方法:探究讨论,讲练结合法.学习方法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标.教学准备教师准备:投影仪、投影片、正(长)方形模型、三角板.学生准备:直尺、三角板.教学过程教学内容师生互动设计意图创设情境导入新课什么是平面?一些能看得见的平面实例.师:生活中常见的如黑板、桌面等,给我们以平面的印象,你们能举出更多例子吗?那么平面的含义是什么呢?这就是我们这节课所要学习的内容形成平面的概念..拓展创新应用提高4.教材P43 例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用.教师及时评价和纠正同学的表达方法,规范画图和符号表示.巩固提高.小结1.平面的概念,画法及表示方法.2.平面的性质及其作用.3.符号表示.4.注意事项.学生归纳总结、教师给予点拨、完善并板书.培养学生归纳整合知识能力,以及思维的灵活性与严谨性.课堂作业1.下列说法中,(1)铺得很平的一张白纸是一个平面;(2)一个平面的面积可以等于6cm2;(3)平面是矩形或平行四边形的形状.其中说法正确的个数为().A. 0B. 1C. 2D. 32.若点A在直线b上,在平面β内,则A,b,β之间的关系可以记作().A . A∈b∈βB. A∈b⊂βC. A⊂b⊂βD. A⊂b∈β3.图中表示两个相交平面,其中画法正确的是().4.空间中两个不重合的平面可以把空间分成()部分.答案:1.A 2. B 3.D 4. 3或4第2课时教学内容2.1.2 空间中直线与直线之间的位置关系教学目标A B C D一、知识与技能1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,提高空间想象能力;3.理解并掌握公理4和等角定理;4.理解异面直线所成角的定义、范围及应用.二、过程与方法1.经历两条直线位置关系的讨论过程,掌握异面直线所成角的基本求法.2.体会平移不改变两条直线所成角的基本思想和方法.三、情感、态度与价值观感受到掌握空间两直线关系的必要性,提高学习兴趣.教学重点、难点教学重点1.异面直线的概念.2.公理4及等角定理.教学难点异面直线所成角的计算.教学关键提高学生空间想象能力,结合图形来判断空间直线的位置关系,使学生掌握两异面直线所成角的步骤及求法.教学突破方法结合图形,利用不同的分类标准给出空间直线的位置关系,由两异面直线所成角的定义求其大小,注意两异面直线所成角的范围.教法与学法导航教学方法探究讨论法.学习方法学生通过阅读教材、思考与教师交流、概括,从而较好地完成教学目标.教学准备教师准备投影仪、投影片、长方体模型、三角板.学生准备三角板.教学过程创设情境导入新课异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线.通过身边实物,相互交流异面直线的概念.师:空间两条直线有多少种位置关系?设疑激趣点出主题.探索新知1.空间的两条直线的位置关系相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.异面直线作图时通常用一个或两个平面衬托,如下图:教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系.教师再次强调异面直线不共面的特点.多媒体演示提高上课效率.师生互动,突破重点.探索新知2.平行公理思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',那么BB'与DD'平行吗?公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c是三条直线如果a//b,b//c,那么a//c.例2空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行.在空间中,是否有类似的规律?生:是.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.例2的讲解让学生掌握了公理4的运用.续上表探索3.思考:在平面上,我们容易证明让学生观察、思考:等角定“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”.空间中,结论是否仍然成立呢?等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.∠ADC与∠A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC =∠ A'D'C',∠ADC + ∠A'B'C' = 180°教师画出更具一般性的图形,师生共同归纳出如下等角定理..探索新知探索新知4.异面直线所成的角如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角).例3(投影)师:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,π2);③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.以教师讲授为主,师生共同交流,导出异面直线所成的角的概念.例3让学生掌握了如何求异面直线所成的角,从而巩固了所学知识.续上表拓展创新应用提高教材P49 练习1、2.生完成练习,教师当堂评价.充分调动学生动手的积极性,教师适时给予肯定.小结本节课学习了哪些知识内容?2.计算异面直线所成的角应注意什么?学生归纳,然后老师补充、完善.小结知识,形成整体思维.课堂作业1.异面直线是指().A.空间中两条不相交的直线B.分别位于两不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线2.如右图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有().A. 2对B. 3对C. 4对D. 6对3.正方体ABCD-A1B1C1D1中与棱AA1平行的棱共有().A. 1条B. 2条C. 3条D. 4条4.空间两个角α、β,且α与β的两边对应平行,若α=60°,则β的大小为()..答案:1. D 2. B 3. C 4. 60°或120°第3课时教学内容2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系教学目标一、知识与技能1.了解空间中直线与平面的位置关系,了解空间中平面与平面的位置关系;2.提高空间想象能力.二、过程与方法1.通过观察与类比加深了对这些位置关系的理解、掌握;2.利用已有的知识与经验归纳整理本节所学知识.三、情感、态度与价值观感受空间中图形的基本位置关系,形成严谨的思维品质.教学重点、难点教学重点空间直线与平面、平面与平面之间的位置关系.教学难点用图形表达直线与平面、平面与平面的位置关系.教学关键借助图形,使学生清楚直线与平面,平面与平面的分类标准,并能依据这些标准对直线与平面、平面与平面的位置关系进行分类及判定.教学突破方法恰当地利用图形,用符号语言表述直线与平面、平面与平面的位置关系.教法与学法导航教学方法借助实物,让学生观察事物、思考关系,讲练结合,较好地完成本节课的教学目标.学习方法探究讨论,自主学习法.教学准备教师准备多媒体课件,投影仪,三角板,直尺.学生准备三角板,直尺.教学过程详见下表.教学过程教学内容师生互动设计意图创设情境导入新课问题1:空间中直线和直线有几种位置关系?问题2:一支笔所在的直线和一个作业本所在平面有几种位置关系?生1:平行、相交、异面;生2:有三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行.师肯定并板书,点出主题.复习回顾,激发学习兴趣.主题探究合作交流1.直线与平面的位置关系.(1)直线在平面内——有无数个公共点.(2)直线与平面相交——有且仅有一个公共点.(3)直线在平面平行——没有公共点.其中直线与平面相交或平行的情况,统称为直线在平面外,记作aα⊄.直线a在面α内的符号语言是a⊂α.图形语言是:直线a与面α相交的a∩α= A.图形语言是符号语言是:直线a与面α平行的符号语言是a∥α.图形语言是:师:有谁能讲出这三种位置有什么特点吗?生:直线在平面内时二者有无数个公共点.直线与平面相交时,二者有且仅有一个公共点.直线与平面平行时,三者没有公共点(师板书).师:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外.师:直线与平面的三种位置关系的图形语言、符号语言各是怎样的?谁来画图表示一个和书写一下.学生上台画图表示.师;好.应该注意:画直线在平面内时,要把直线画在表示平面的平行四边形内;画直线在平面外时,应把直线或它的一部分画在表示平面的平行四边形外.加强对知识的理解培养,自觉钻研的学习习惯,数形结合,加深理解.续上表主题探究合作交流2.平面与平面的位置关系(1)问题1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?(2)问题2:如图所示,围成长方体ABCD –A′B′C′D′的六个面,两两之间的位置关系有几种?(3)平面与平面的位置关系平面与平面平行——没有公共点.平面与平面相交——有且只有一条公共直线.平面与平面平行的符号语言是α∥β.图形语言是:师:下面请同学们思考以下两个问题(投影).生:平行、相交.师:它们有什么特点?生:两个平面平行时二者没有公共点,两个平面相交时,二者有且仅有一条公共直线(师板书).师:下面请同学们用图形和符号把平面和平面的位置关系表示出来……师:下面我们来看几个例子(投影例1).通过类比探索,培养学生知识迁移能力.加强知识的系统性.续上表拓展创新应用提高例1 下列命题中正确的个数是(B ).①若直线l上有无数个点不在平面α内,则l∥α.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线没有公共点.A. 0B. 1C. 2D. 3例 2 已知平面α∥β,直线aα⊂,求证a∥β.证明:假设a不平行β,则a在β内或a与β相交.∴a与β有公共点.又aα⊂.∴a与β有公共点,与面α∥面β矛盾.∴α∥β.学生先独立完成,然后讨论、共同研究,得出答案.教师利用投影仪给出示范.师:如图,我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB ⊂平面ABCD,所以命题③不正确;l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以命题④正确,应选B.师:投影例2,并读题,先让学生尝试证明,发现正面证明并不容易,然后教师给予引导,共同完成,并归纳反证法步骤和线面平行、面面平行的理解.例1 通过示范传授学生一个通过模型来研究问题的方法,加深对概念的理解.例2目标训练学生思维的灵活,并加深对面面平行、线面平行的理解.小结1.直线与平面、平面与平面的位置关系.2.“正难到反”数学思想与反证法解题步骤.3.“分类讨论”数学思想学生归纳总结、教师给予点拨、完善并板书.培养学生整合知识能力,以及思维的灵活..课堂作业1.直线与平面平行的充要条件是这条直线与平面内的().A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线都不相交【解析】直线与平面平行,则直线与平面内的任意直线都不相交,反之亦然;故应选C.2.“平面内有无穷条直线都和直线l平行”是“α//l”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【解析】如果直线在平面内,直线可能与平面内的无穷条直线都平行,但直线不与平面平行,应选B.3.如图,试根据下列要求,把被遮挡的部分改为虚线:(1)AB没有被平面α遮挡;(2)AB 被平面α遮挡.答案:略4.已知α,β,直线a,b,且α∥β,aα⊂,bβ⊂,则直线a与直线b具有怎样的位置关系?【解析】平行或异面.5.如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.【解析】三个平面两两相交,它们的交线有一条或三条.6.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.已知:l∥α,点P∈α,P∈m,m∥l,求证:mα⊂.证明:设l与P确定的平面为β,且αβ= m′,则l∥m′.又知l∥m,m m P'=,由平行公理可知,m与m′重合.所以mα⊂.教案 B第1课时教学内容:2.1.1 平面教学目标1.了解平面的概念,掌握平面的画法、表示法及两个平面相交的画法;2.理解公理一、二、三,并能运用它们解决一些简单的问题;3.通过实践活动,感知数学图形及符号的作用,从而由感性认识提升为理性认识,注意区别空间几何与平面几何的不同,多方面培养学生的空间想象力.教学重点:公理一、二、三,实践活动感知空间图形.教学难点:公理三,由抽象图形认识空间模型.学法指导:动手实践操作,由模型到图形,由图形到模型不断感知.教学过程一、引入在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明.在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你又认为如何去表示平面呢?二、新课以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行.实践活动:1.仔细观察教室,举出空间的点、线、面的实例.2.只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块.3.请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形.以上这些问题已经走出了平面的限制,是空间问题.今后我们将研究空间中的点、线、面之间的关系.图1问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系.练习一:试画出下列各种位置的平面.1.水平放置的平面2.竖直放置的平面图2(1)图2(2)3.倾斜放置的平面图34.请将以下四图中,看得见的部分用实线描出.小结:平面的画法和表示法.我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图5.平行四边形的锐角通常画成45o,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图6.αAB C DαβFEAB CD图5 图6 图7 平面常用希腊字母,,αβγ等表示(写在代表平面的平行四边形的一个角上),如平面图4(1)图4(2)图4(3)图4(4)α、平面β;也可以用代表平面的平行四边形的四个顶点,或相对的两个顶点的大写英文字母作为平面的名称,图5的平面α,也可表示为平面ABCD ,平面AC 或平面BD .前面我们感受了空间中面与面的关系及画法,现在让我们研究一下点、线与一个平面会有怎样的关系?显然,一个点与一个平面有两种位置关系:点在平面内和点在平面外.我们知道平面内有无数个点,可以认为平面是由它内部的所有的点组成的点集,因此点和平面的位置关系可以引用集合与元素之间关系.从集合的角度,点A 在平面α内,记为A α∈;点B 在平面α外,记为B α∉ (如图7).再来研究一下直线与平面的位置关系. 将学生分成小组,并动手实践操作后讨论:把一把直尺边缘上的任意两点放在桌面上,直尺的整个边缘就落在桌面上吗?请同学们再试着想一下,如何用图形表示直线与平面的这些空间关系?由“两点确定一条直线”这一公理,我们不难理解如下结论:公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.,,A l B l ∈∈且,,A B l ααα∈∈⇒⊂.图8例1 分别用符号语言、文字语言描述下列图形.图9(1) 图9(2) 图9(3)例2 识图填空(在空格内分别填上⊄⊂∉∈,,,). A____a ;A____α, B____a ;B____α, a ____α;a ____α= B , b ____α;B____b .图11问题情景:制作一张桌子,至少需要多少条腿?为什么?Al公理2 经过不在同一条直线上的三点,有且只有一个平面.实践活动:取出两张纸演示两个平面会有怎样的位置关系,并试着用图画出来. 图12试问:如图13是两个平面的另一种关系吗?(相对于同学们得出的关系) 由平面的无限延展性,不难理解如下结论:公理3 如果两个不重合平面有一个公共点,那么它们有且只有一条过这个公共点的直线.P l αβαβ∈⇒=且P l ∈.图13例3 如图14用符号表示下列图形中点、直线、平面之间的位置关系.【分析】根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来. 【解析】在(1)中,,,l a A a B αβαβ===.在(2)中,,,,,b l a a l P B l P βαβα⊂=⊂==.三、巩固练习教材P43练习1—4. 四、课堂小结(1)本节课我们学习了哪些知识内容? (2)三个公理的内容及作用是什么? (3)判断共面的方法. 五、布置作业P51 习题A 组 1,2.第2课时βl α P αABC教学内容:2.1.2 空间中直线与直线之间的位置关系教学目标:一、知识目标1.了解空间中两条直线的位置关系;2.理解异面直线的概念、画法,培养学生的空间想象能力;3.理解并掌握公理4.二、能力目标1.让学生在观察中培养自主思考的能力;2.通过师生的共同讨论培养合作学习的能力.三、情感、态度与价值观让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.教学重点、难点教学重点:1.异面直线的概念;2.公理4.教学难点:异面直线的概念.学法与教学用具1.学法:学生通过观察、思考与教师交流、概括,从而较好地完成本节课的教学目标;2.教学用具:多媒体、长方体模型、三角板.教学过程一、复习引入1.平面内两条直线的位置关系有(相交直线、平行直线).相交直线(有一个公共点);平行直线(无公共点).2.实例.十字路口——立交桥.立交桥中,两条路线AB,CD既不平行,又不相交(非平面问题).六角螺母二、新课讲解1.异面直线的定义不同在任何一个平面内的两条直线叫做异面直线.练习:在教室里找出几对异面直线的例子.注1:两直线异面的判别一: 两条直线既不相交、又不平行.两直线异面的判别二: 两条直线不同在任何一个平面内.合作探究一:分别在两个平面内的两条直线是否一定异面?答:不一定,它们可能异面,可能相交,也可能平行.空间两直线的位置关系:按平面基本性质分(1)同在一个平面内:相交直线、平行直线; (2)不同在任何一个平面内:异面直线. 按公共点个数分(1)有一个公共点: 相交直线;(2)无公共点:平行直线、异面直线. 2.异面直线的画法 说明:画异面直线时,为了体现它们不共面的特点,常借助一个或两个平面来衬托.abab合作探究二:如下图是一个正方体的展开图,如果将它还原为正方体, 那么 AB , CD ,EF , GH 这四条线段所在直线是异面直线的有 对?答:共有三对.3. 异面直线所成的角 (1)复习回顾在平面内,两条直线相交成四个角, 其中不大于90度的角称为它们的夹角, 用以刻画两直线的错开程度, 如图所示. (2)问题提出在空间,如图所示,正方体ABCD -EFGH 中, 异面直线AB 与HF 的错开程度可以怎样来刻画?(3)解决问题思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题. 异面直线所成角的定义:如图,已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b 则把a ′与b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角).AB G F H E DCab异面直线所成的角的范围(0°,90°).注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直, 记为a ⊥b .思考:这个角的大小与O 点的位置有关吗?即O 点位置不同时,这一角的大小是否改变?答:这个角的大小与O 点的位置无关. (4)理论支持(一)我们知道,在同一平面内, 如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢?观察:将一张纸如图进行折叠 , 则各折痕及边a ,b ,c ,d ,e ,… 之间有何关系?a ∥b∥c ∥d ∥e ∥ …公理4 在空间平行于同一条直线的两条直线互相平行.——平行的传递性 推广:在空间平行于一条已知直线的所有直线都互相平行.(二)在平面内, 我们可以证明 “ 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补 ”.空间中这一结论是否仍然成立呢? 观察:如图所示,长方体ABCD-A 1B 1C 1D 1中, ∠ADC 与∠A 1D 1C 1 ,∠ADC 与∠A 1B 1C 1两边分别对应平行,这两组角的大小关系如何? 答:从图中可看出, ∠ADC =∠A 1D 1C 1,∠ADC +∠A 1B 1C 1=180°.定理(等角定理) 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.证: 这个角的大小与O 点的位置无关. 【证明】如图,再过空间另一点O′作a″∥a ,设a ′与 b ′所成的角为∠1,a ″与 b 所成的角为∠2 ,a b ced 1A Ca ′Ob ′∵a ′∥a ,a ″∥a ,∴a ′∥a ″(公理4),同理 b ′∥b ,∴∠1=∠2(等角定理).21aa'a''bb'注3:在求作异面直线所成的角时,O 点常选在其中的一条直线上(如线段的端点,线段的中点等).三、例题选讲 1. 下图长方体中(1)说出以下各对线段的位置关系? ①EC 和BH 是相交直线 , ②BD 和FH 是平行直线, ③BH 和DC 是异面直线.(2)与棱AB 所在直线异面的棱共有4条. 课后思考:长方体的棱中共有多少对异面直线?例2如图,正方体ABCD-EFGH 中O 为侧面ADE 的中心,求(1)BE 与CG 所成的角?(2)FO 与BD 所成的角?【解析】(1)如图:∵CG ∥BF , ∴∠EBF (或其补角)为异面直线BE 与CG 所成的角, 又 BEF 中∠EBF =45° ,所以BE 与CG 所成的角为45°.(2)连接FH ,∵HD ∥EA ∥FB , ∴HD ∥FB ,∴四边形HFBD 为平行四边形,∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角.连接HA 、AF ,易得FH =HA =AF ,∴△AFH 为等边三角形,又依题意知O 为AH 中点, ∴∠HFO =30o 即FO 与BD 所成的夹角是30 o . 注4:求异面直线的步骤是:“一作(找)二证三求”. 四、课堂练习 例3 如图,已知长方体ABCD-EFGH 中,AB =32, AD =32,AE = 2.G FH EBCD AG FH E B CD A A B GFH E D C。
§2.1.1 平面一、教学目标:1、知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力。
2、过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识。
3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板四、教学思想(一)实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗引导学生观察、思考、举例和互相交流。
与此同时,教师对学生的活动给予评价。
师:那么,平面的含义是什么呢这就是我们这节课所要学习的内容。
(二)研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示师:在平面几何中,怎样画直线(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
D C BA α如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P41 图 说明平面内有无数个点,平面可以看成点的集合。
《直线、平面之间的位置关系》教学设计用符号语言、图形语言描述点、直线、平面之间的位置关系;理解直线与平面垂直的含义、了解点面距、线面距、面面距的定义教学重点:直线与平面垂直的含义、点面距、线面距、面面距的定义. 教学难点:从集合的角度理解点、线、面之间的相互关系.PPT 课件.【新知探究】问题1:空间中直线与平面的位置关系,以及平面与平面的位置关系有哪些位置关系?.师生活动:结合图11-1-17,总结空间中直线与平面的位置关系,以及平面与平面的位置关系.预设的答案:直线与平面的位置关系:一般地,如果l 是空间中的一条直线,α是空间中的一个平面,则:lα≠∅与l α=∅有且仅有一种情况成立.(1)当l α≠∅时,要么l α⊂,要么l 与α只有一个公共点; (2)当lα=∅时,称直线l 与平面α平行,记作://l α.平面与平面的位置关系:如果α与β是空间中的两个平面,则αβ≠∅ 与◆ 教学过程◆ 课前准备◆ 教学重难点 ◆◆ 教学目标αβ=∅有且仅有一种情况成立.(1)当αβ≠∅时,α与β的公共点组成一条直线;(2)当αβ=∅时,称平面α与平面β平行,记作://αβ.文字语言表达图形语言表达符号语言表达A是直线l上的点,A1不是直线l上的点A∈l,A1∉l A是平面α内的点,A1不是平面α内的点A∈α,A1∉α直线l在平面α内(或平面α过直线l)l⊂α直线l在平面α外直线l与平面α相交l∩α=Al⊄α直线l与平面α平行l∥α平面α与平面β相交于l α∩β=l 平面α与平面β平行α∥β设计意图:培养学生分析和归纳的能力.问题2:观察图中的长方体(1) A1A与AB是否垂直,A1A与AD是否垂直并说明理由;(2) 判断A1A与AC是否垂直;(3) 若直线在平面ABCD 内,且过点A ,判断A 1A 与l 是否垂直.师生活动:引导学生阅读教材,给出结论 预设的答案:直线与平面垂直:由观察可知,图中,不管直线的具体位置如何,只要,A l l ∈⊂平面ABCD ,则一定有1A A l ⊥.追问:如何定义直线与平面垂直?空间距离有哪些? 预设的答案:直线与平面垂直的定义:一般地,如果直线l 与平面α相交于一点A ,且对平面α内任意一条过点A 的直线m ,都有l m ⊥,则称直线l 与平面α垂直(或l 是平面α的一条垂线,α是直线l 的一个垂面),记作l α⊥),其中点A 称为垂足. 因此,图中长方体中,有1A A ⊥平面ABCD ,类似地,有1A A ⊥平面1111,A B C D 11A B ⊥平面11BCC B .点到平面的距离、直线到平面的距离:给定空间中一个平面α以及一个点A ,过A 可以作而且只可以作平面α的一条垂线.如果记垂足为B ,则称B 为A 在平面α内的射影(也称为投影),线段AB 为平面α的垂线段,AB 的长为点A 到平面α的距离.特别地,当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;平行平面间的距离:当平面与平面平行时,一个平面上任意一点到另一个平面的距离称为两平行平面之间的距离.因此,点1A 到面ABCD 的距离等于线段1A A 的长,直线11A B 到面ABCD 的距离等于线段1A A 的长,面1111A B C D 与面ABCD 之间的距离等于1A A 的长.设计意图:培养学生分析和归纳的能力. 【巩固练习】 例1.思考辨析(1)直线l 在平面α内,记作l ∈α.( ) (2)若a ∩b =∅,则a 与b 平行.( )(3)若l ∩α≠∅,则直线l 与平面α有公共点.( ) (4)若直线l 在平面α外,则直线l 与平面α平行.( )(5)若α∩β≠∅,则平面α与平面β相交,且交于一个点.( ) 师生活动:学生分析解题思路,给出答案. 预设的答案: (1)× (2)× (3)√ (4)× (5)× 设计意图:了解点、线、面位置关系的表示. 例2. 下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则l ⊥α; ②如果直线l 与平面α内的一条直线垂直,则l ⊥α; ③如果直线l 不垂直于α,则α内没有与l 垂直的直线; ④如果直线l 不垂直于α,则α内也可以有无数条直线与l 垂直. A .0 B .1 C .2 D .3 师生活动:学生分析解题思路,给出答案.预设的答案: B 当α内的无数条直线平行时,l 与α不一定垂直,故①不对; 当l 与α内的一条直线垂直时,不能保证l 与α垂直,故②不对; 当l 与α不垂直时,l 可能与α内的无数条直线垂直,故③不对;④正确. 设计意图:直线与平面垂直的概念辨析例3. 如图,长方体ABCD -A 1B 1C 1D 1中,AB =6 cm ,BC =4 cm ,AA 1=3 cm ,则 (1)点A 到平面DCC 1D 1的距离为________; (2)直线AA 1到平面BCC 1B 1的距离为________; (3)平面ABCD 与平面A 1B 1C 1D 1之间的距离为________. 师生活动:学生分析解题思路,给出答案. 预设的答案:(1)4 cm (2)6 cm (3)3 cm 设计意图:进一步认识空间距离及求法 【课堂小结】问题:(1)直线与平面、平面与平面位置关系有哪些? (2)直线与平面垂直是定义是什么?空间距离有哪些? 师生活动:学生尝试总结,老师适当补充.预设的答案:1.直线a 与平面α的位置关系:⎩⎨⎧a ∩α=∅⇒a ∥αa ∩α≠∅⇒⎩⎪⎨⎪⎧a 与α相交a 在α内;平面α与平面β的位置关系⎩⎪⎨⎪⎧α∩β=∅⇒α与β平行α∩β≠∅⇒α与β相交2.直线与平面垂直:(1)定义:一般地,如果直线l 与平面α相交于一点A ,且对平面α内任意一条过点A 的直线m ,都有l m ⊥,则称直线l 与平面α垂直.(2)点面距:若点A 是平面α外一点,AB ⊥α,B 为垂足,则线段AB 的长 为点A 到平面α的距离.(3)线面距、面面距转化为点面距.设计意图:通过梳理本节课的内容,能让学生想出几何体的基本元素、及点、线、面的位置关系,从而发展学生的逻辑推理、数学建模和直观想象的核心素养.布置作业: 【目标检测】1. 给出下列四个命题:①若直线l ∩m =∅,则l 与m 平行;②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,直线b ⊂α,则a ∥α;④若m ⊂α,m ∩β=M . 那么平面α与平面β相交,其中真命题的个数为( ) A .1 B .2 C .3 D .4 设计意图:考查空间两个平面的位置关系 2. 下面叙述中:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线l 是平面α的一条垂线,则直线l 垂直于 平面α内的所有直线;④若直线l 垂直于平面α,则称平面α是直线l 的一个垂面. 其中正确的有( )A .1个B .2个C .3个D .4个3.在正方体ABCD -A 1B 1C 1D 1中,判断下列直线、平面间的位置关系: ①A 1B 与D 1C ________;②A1B与B1C________;③D1D与平面BCC1B1________;④AB1与平面BCC1________;⑤平面ABB1与平面DCC1_________;⑥平面ABB1与平面DD1A1________.设计意图:考查空间两条直线、空间两个平面的位置关系4.线段AB长为5 cm,在水平面上向右移动4 cm后记为CD,将CD沿铅垂线方向向下移动3 cm后记为C′D′,再将C′D′沿水平方向向左移动4 cm后记为A′B′,依次连接构成长方体ABCD-A′B′C′D′.(1)该长方体的高为________cm;(2)平面A′B′BA与平面CDD′C′间的距离为________cm;(3)点A到平面BCC′B′的距离为________cm.设计意图:考查空间距离的求法参考答案:1.A对于①,直线l∩m=∅,即直线l与直线m没有公共点,l与m可能平行,也可能异面,∴l不一定与m平行.故①错.对于②,直线a在平面α外包括两种情形:a∥α,a与α相交,故②错.对于③,由直线a∥b,b⊂α,只能说明a和b无公共点,但a可能在平面α内,故③错.对于④,∵m⊂α,m∩β=M,∴点M∈α,M∈β,故平面α与平面β相交,故④正确.2.C①中若两条直线为平行直线,则这条直线不一定与平面垂直,所以不正确;由定义知②③④正确.3.①平行②异面③平行④相交⑤平行⑥相交4.(1)3(2)4(3)5如图,在长方体ABCD-A′B′C′D′中,AB=5cm,BC=4 cm,CC′=3 cm,∴长方体的高为3 cm;平面A′B′BA与平面CDD′C′之间的距离为4 cm;点A到平面BCC′B′的距离为5 cm.。
课题:2.1.1平面教学目标:1、了解平面的概念;掌握平面的画法、表示法及两个平面相交的画法。
2、理解公理一、二、三,并能运用它们解决一些简单的问题。
3、通过实践活动,感知数学图形及符号的作用,从而培养学生由感性认识提升为理性认识;注意区别空间几何与平面几何的不同,多方面培养学生的空间相象力。
教学重点:公理一、二、三;实践活动感知空间图形教学难点:公理三;由抽象图形认识空间模型学法指导:动手实践操作,由模型到图形,由图形到模型不断感知。
教学过程:一、引言:在平面几何中,我们已经了解了平面图形都是由点和线构成的,我们所做的一切都是在一个无形的平面中进行,请同学谈谈到底平面是什么样子的?可以举实例说明。
在平面几何中,我们也知道直线是无限延伸的,我们是怎样表示这种无限延伸的?那么你认为平面是否有边界?你有认为如何去表示平面呢?二、新课:以上问题经过学生分小组充分讨论,由各小组代表陈述你这样表示的理由?教师暂不作评判,继续往下进行。
实践活动:1、仔细观察教室,举出空间的点、线、面的实例。
2、只准切三刀,请你把一块长方体形状的豆腐切成形状、大小都相同的八块。
3、请你准备六根游戏棒,以每根游戏棒为一边,设法搭出四个正三角形。
以上这些问题已经走出了平面的限制,是空间问题。
今后我们将研究空间中的点、线、面之间的关系。
图1 问题:指出上述活动中几何体的面,并想想如何在一张纸上画出这个几何体?至此我们应感受到画几何体与我们的视角有一定的关系。
练习一试画出下列各种位置的平面。
1、水平放置的平面2、竖直放置的平面图2(2)图2(3)4、请将以下四图中,看得见的部分用实线描出.图4(1)图4(2)图4(3)图4(4)小结:平面的画法和表示法。
我们常常把水平的平面画成一个平行四边形,用平行四边形表示一个平面,如图5。
平行四边形的锐角通常画成45︒,且横边长等于其邻边长的2倍。
如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把被遮挡部分用虚线画出来,如图6。
9.3空间点、直线、平面之间的位置关系1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 作用:可用来证明点、直线在平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.作用:①可用来确定两个平面的交线;②判断或证明多点共线;③判断或证明多线共点. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 作用:①用来确定一个平面;②证明点线共面.推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面. 公理3及它的三个推论是确定点、线共面的依据. 公理4:平行于同一条直线的两条直线互相平行. 作用:判断空间两条直线平行的依据. 2.空间直线的位置关系 (1)位置关系的分类:⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角:①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间直线与平面,平面与平面之间的位置关系图形语言符号语言公共点直线与平面相交a∩α=A1个平行a∥α0个在平面内a⊂α无数个平面与平面平行α∥β0个相交α∩β=l无数个1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.『试一试』1.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行;(3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;(4)直线l与α垂直的充分必要条件是l与α内的两条直线垂直.上述命题中,真命题的序号是________(写出所有真命题的序号).『解析』由面面平行的判定定理可知,(1)正确.由线面平行的判定定理可知,(2)正确.对(3)来说,l只垂直于α和β的交线l,得不到l是α的垂线,故也得不出α⊥β.对(4)来说,l只有和α内的两条相交直线垂直,才能得到l⊥α.也就是说当l垂直于α内的两条平行直线的话,l不垂直于α.『答案』(1)(2)2.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.『解析』b与α相交或b⊂α或b∥α都可以.『答案』b与α相交或b⊂α或b∥α1.求异面直线所成角的方法(1)平移法:即选点平移其中一条或两条直线使其转化为平面角问题,这是求异面直线所成角的常用方法.(2)补形法:即采用补形法作出平面角. 2.证明共面问题的两种途径(1)首先由条件中的部分线(或点)确定一个平面,再证其他线(或点)在此平面内; (2)将所有条件分为两部分,然后分别确定平面,再证明这两个平面重合. 3.证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上; (2)直接证明这些点都在同一条特定直线上. 4.证明共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点. 『练一练』(2014·镇江期末)如图,在多面体ABC DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1.(1)证明:四边形ABED 是正方形;(2)判断B ,C ,F ,G 是否四点共面,并说明理由; (3)连结CF ,BG ,BD ,求证:CF ⊥平面BDG . 『解』(1)证明:⎭⎪⎬⎪⎫平面ABC ∥平面DEFG平面ABED ∩平面ABC =AB 平面ABED ∩平面DEFG =DE ⇒AB ∥DE . 同理AD ∥BE ,则四边形ABED 是平行四边形. 又AD ⊥AB ,AD =AB ,所以四边形ABED 是正方形. (2)取DG 的中点P ,连结P A ,PF . 在梯形EFGD 中,PF ∥DE 且PF =DE .又AB ∥DE 且AB =DE ,所以AB ∥PF 且AB =PF ,所以四边形ABFP 为平行四边形,则AP ∥BF .在梯形ACGD 中,AP ∥CG ,所以BF ∥CG , 所以B ,C ,F ,G 四点共面.(3)证明:同(1)中证明方法知四边形BFGC 为平行四边形. 又有AC ∥DG ,EF ∥DG ,从而AC ∥EF .⎭⎬⎫⎭⎪⎬⎪⎫AC ∥EF AC ⊥AD ⇒EF ⊥AD BE ∥AD⇒BE ⊥EF .又BE =AD =2,EF =1,故BF = 5.而BC =5,故四边形BFGC 为菱形,所以CF ⊥BG .连结AE ,又由AC ∥EF 且AC =EF 知CF ∥AE . 在正方形ABED 中,AE ⊥BD ,故CF ⊥BD .⎭⎪⎬⎪⎫CF ⊥BGCF ⊥BD BG ∩BD =B ⇒CF ⊥平面BDG .考点一平面的基本性质及应用1.(2013·南京、盐城三模)已知m ,n 是两条不同的直线,α,β是两个不同的平面.给出下列命题:(1)若m ⊂α,m ⊥β,则α⊥β;(2)若m ⊂α,α∩β=n ,α⊥β,则m ⊥n ; (3)若m ∥α,m ⊂β,α∩β=n ,则m ∥n . 其中真命题是________(填序号).『解析』(2)中,m ∥n ,m 与n 相交都有可能. 『答案』(1)(3) 2.下列命题:①经过三点确定一个平面; ②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. 其中正确命题有________个.『解析』对于①,未强调三点不共线,故①错误;②正确;对于③,三条直线两两相交,如空间直角坐标系,能确定三个平面,故③正确;对于④,未强调三点共线,则两平面也可能相交,故④错误.『答案』23.如图,已知:E ,F ,G ,H 分别是正方体ABCD A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.证明:连结C 1B ,HE ,GF ,如图所示.由题意知HC 1綊EB ,∴四边形HC 1BE 是平行四边形, ∴HE ∥C 1B .又C 1G =GC ,CF =BF , 故GF 綊12C 1B ,∴GF ∥HE ,且GF ≠HE ,∴HG 与EF 相交,设交点为K ,则K ∈HG . 又HG ⊂平面D 1C 1CD , ∴K ∈平面D 1C 1CD .∵K ∈EF ,EF ⊂平面ABCD , ∴K ∈平面ABCD .∵平面D 1C 1CD ∩平面ABCD =DC , ∴K ∈DC ,∴EF ,HG ,DC 三线共点.『备课札记』 『类题通法』1.证明共点问题的关键是先确定点后,再证明此点在第三条直线上,这个第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.2.证明过程中要注意符号语言表达准确,公理成立的条件要完善.考点二空间两直线的位置关系『典例』 (1)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是________.『解析』 依据题意,b ,c 分别为a 在α,β内的射影,可判断b ,c 相交、平行或异面均可.『答案』相交、平行或异面(2)已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.①求证:BC与AD是异面直线;②求证:EG与FH相交.『证明』①假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾.所以BC与AD是异面直线.②如图,连结AC,BD,则EF∥AC,HG∥AC,因此EF∥HG;同理EH∥FG,则EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与HF相交.『备课札记』『类题通法』1.异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.2.客观题中,也可用下述结论:过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.『针对训练』若直线l不平行于平面α,且l⊄α,则下列结论正确的是________.(填写序号)①α内的所有直线与l异面②α内不存在与l平行的直线③α内存在唯一的直线与l平行④α内的直线与l都相交『解析』如图,设l∩α=A,α内直线若经过A点,则与直线l相交;若不经过点A,则与直线l异面.『答案』②『课堂练通考点』1.(2014·泰州期末)在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:(1)若a∥b,b∥c,则a∥c;(2)若a⊥b,b⊥c,则a⊥c;(3)若a∥γ,b∥γ,则a∥b;(4)若a⊥γ,b⊥γ,则a∥b.其中真命题的序号为________.『解析』根据公理4“平行于同一条直线的两条直线互相平行”知(1)是正确的;根据线面垂直性质定理“同垂直一个平面的两条直线平行”知(4)是正确的;(2)(3)均不恒成立.故填(1)(4).『答案』(1)(4)2.已知m,n,l是三条直线,α,β是两个平面,下列命题中,正确命题的序号是________.(1)若l垂直于α内两条直线,则l⊥α;(2)若l平行于α,则α内有无数条直线与l平行;(3)若m∥β,m⊂α,n⊂β,则m∥n;(4)若m⊥α,m⊥β,则α∥β.『解析』(1)中只有当两条直线相交时,l⊥α才成立,所以(1)不正确;若l∥α,则过l 任作平面β与α相交,则交线必与l平行,由于β的任意性,故(2)正确;(3)m与n可以平行可以异面,故(3)不正确;(4)正确.『答案』(2)(4)3.(2013·南通三模)已知直线l,m,n,平面α,m⊂α,n⊂α,则“l⊥α”是“l⊥m,且l⊥n”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”之一).『解析』当l⊥α时,有l⊥m且l⊥n;当l⊥m且l⊥n时,由于m,n不一定相交,故l不一定垂直于α.『答案』充分不必要4.设a,b,c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a,b是异面直线,b,c是异面直线,则a,c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________.『解析』∵a⊥b,b⊥c,∴a与c可以相交、平行、异面,故①错.∵a,b异面,b,c异面,则a,c可能异面、相交、平行,故②错.由a,b相交,b,c相交,则a,c可以异面、相交、平行,故③错.同理④错,故真命题的个数为0.『答案』05.(2014·苏州调研)设α,β为两个不重合的平面,m,n为两条不重合的直线,给出下列四个命题:(1)若m⊥n,m⊥α,n⊄α,则n∥α;(2)若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β;(3)若m⊥n,m∥α,n∥β,则α⊥β;(4)若n⊂α,m⊂β,α与β相交且不垂直,则n与m不垂直.其中所有真命题的序号是________.『解析』(1)(2)正确;(3)错误,α,β相交或平行;(4)错误,n与m可以垂直,不妨令n =α∩β,则在β内存在m⊥n.『答案』(1)(2)。
第二节空间点、直线、平面之间的位置关系课程标准1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解四个基本事实和一个定理.2.能运用基本事实、定理和已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:以空间几何体为载体,考查基本事实及其结论在判断位置关系、交线问题、求角中的应用.求异面直线所成的角是高考的热点,在各个题型中均有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.符号:A,B,C三点不共线⇒存在唯一的α使A,B,C∈α.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.符号:A∈l,B∈l,且A∈α,B∈α⇒l⊂α.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.基本事实4:平行于同一条直线的两条直线平行.符号:a∥b,b∥c⇒a∥c.2.基本事实的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间点、直线、平面之间的位置关系项目直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥b a ∥αα∥β相交关系图形语言符号语言a ∩b =A a ∩α=A α∩β=l 其他关系图形语言-符号语言a ,b 是异面直线a ⊂α-【微点拨】(1)直线在平面外分直线与平面平行和直线与平面相交两种情况.(2)两条直线没有公共点分直线与直线平行和直线与直线异面两种情况.4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O分别作直线a'∥a,b'∥b,把a'与b'所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:,【基础小题·自测】类型辨析改编易错高考题号14231.(多维辨析)(多选题)下列结论错误的是()A.如果两个平面有三个公共点,则这两个平面重合B.经过两条相交直线,有且只有一个平面C.两两相交的三条直线共面D.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线【解析】选ACD.A中的两个平面可能相交;B正确;C中的三条直线相交于一点时可能不共面;D中的两条直线可能是平行直线.2.(易错题)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.(多选题)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【解析】选ABD.如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确.在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1,连接B1C,则B1C⊥BC1,因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确.连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB,因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=22,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误.因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.4.(必修二P134例1变形式)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.【解析】(1)因为四边形EFGH为菱形,所以EF=EH,因为EF=12AC,EH=12BD,所以AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH.因为EF∥AC,EH∥BD,且EF=12AC,EH=12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD【核心考点·分类突破】考点一空间位置关系的判断[例1](1)(多选题)下列选项正确的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l【解析】选AD.对于选项A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交于B,则交点B在平面α内,同理,l3与l2的交点A也在平面α内,所以AB⊂α,即l3⊂α,选项A正确.对于选项B,若三点共线,则过这三个点的平面有无数个,选项B错误.对于选项C,空间中两条直线可能相交、平行或异面,选项C错误.对于选项D,若直线m⊥平面α,则m垂直于平面α内所有直线.因为直线l⊂平面α,所以直线m⊥直线l,选项D正确.(2)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号)【解析】题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以题图②④中GH 与MN异面.答案:②④【解题技法】1.点、线共面的判断方法(1)纳入平面法:要证明“点共面”或“线共面”,可先由部分点或直线确定一个平面,再证其余点或直线也在这个平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(3)证明四点共面常通过证明四点组成的四边形为平行四边形或梯形来解决. 2.两直线位置关系的判断【微提醒】平面外一点与平面内一点的连线与平面内不经过该点的直线是异面直线.【对点训练】1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】选C.由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据基本事实4,知a∥b,与a,b为异面直线矛盾,D错误.2.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是__________(写出所有错误命题的序号).【解析】由基本事实4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b不同在任何一个平面内,故④错误.答案:②③④考点二基本事实及其应用[例2]如图,在长方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点.求证:(1)E,F,D,B四点共面;(2)BE,DF,CC1三线共点.【证明】(1)如图,连接EF,BD,B1D1,因为EF是△B1C1D1的中位线,所以EF∥B1D1,因为BB1与DD1平行且相等,所以四边形BDD1B1是平行四边形,所以BD∥B1D1,所以EF∥BD,所以E,F,D,B四点共面;(2)因为EF∥BD,且EF≠BD,所以直线BE和DF相交,延长BE,DF,设它们相交于点P,因为P∈直线BE,直线BE⊂平面BB1C1C,所以P∈平面BB1C1C,因为P∈直线DF,直线DF⊂平面CDD1C1,所以P∈平面CDD1C1,因为平面BB1C1C∩平面CDD1C1=CC1,所以P∈CC1,所以BE,DF,CC1三线共点.【解题技法】1.证明空间点共线问题的方法(1)一般转化为证明这些点是某两个平面的公共点,再根据基本事实3证明这些点都在这两个平面的交线上.(2)选择其中两点确定一条直线,然后证明其余点也在该直线上.2.共面、共点问题(1)先确定一个平面,然后再证其余的线(或点)在这个平面内;(2)利用确定平面的定理,如由点构造平行直线、构造相交直线等.【对点训练】1.如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过()A.点AB.点BC.点C但不过点MD.点C和点M【解析】选D.因为AB⊂γ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据基本事实3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.所以γ与β的交线必经过点C和点M.2.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD 上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=13BC,CH=13DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.考点三异面直线所成的角[例3](1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为()A.33535B.43535C.3714D.277【解析】选C.连接AO2,设AO2的延长线交下底面圆周上的点为E,连接CE,易知∠CAE(或其补角)即为异面直线AC与BD所成的角,连接CD(图略),在Rt△BCD 中,∠BCD=90°,BD=2,∠CBD=30°,得BC=3,CD=1.又AB=DE=AE=BD=2,AC=B2+B2=7,CE=B2+B2=5,所以在△CAE中,cos∠CAE=B2+B2-B22B·B==3714,即异面直线AC与BD所成角的余弦值为3714.(2)(2023·武汉模拟)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1,D,E分别为AC,BC的中点,则异面直线C1D与B1E所成角的余弦值为()A .33B .55C .1010D .3010【解析】选D .设AB =2,取A 1B 1的中点F ,连接C 1F ,DF ,DE ,则B 1F =12A 1B 1,因为D ,E 分别为AC ,BC 的中点,所以DE ∥AB ,DE =12AB ,因为A 1B 1∥AB ,A 1B 1=AB ,所以DE ∥B 1F ,B 1F =DE ,所以四边形DEB 1F 为平行四边形,所以DF ∥B 1E ,所以∠C 1DF 为异面直线C 1D 与B 1E 所成的角或补角.因为AB ⊥BC ,AB =BC =AA 1=2,D ,E 分别为AC ,BC 的中点,所以DF =B 1E =12+22=5,C 1F =12+22=5,C 1D =(2)2+22=6,所以cos ∠C 1DF =121D ==3010.【解题技法】求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步:一作、二证、三求.①一作:根据定义作平行线,作出异面直线所成的角;②二证:证明作出的角是异面直线所成的角;③三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【对点训练】1.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π6【解析】选D.如图,连接A1C1,BC1,因为AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体的棱长为2,则PB=6,PC1=2,BC1=22,则PB2+P12=B12,在Rt△PBC1中,因为sin∠PBC1=B1B1=2=12,所以直线PB与AD1所成的角为π6.2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD, SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为()A .222B .53C .1316D .113【解析】选D .如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.因为SE =14SB ,所以SE =13BE.又OB =3,所以OF =13OB =1.因为SO ⊥OC ,SO =OC =3,所以SC =32.因为SO ⊥OF ,所以SF =B 2+D 2=10.因为OC ⊥OF ,所以CF =10.所以在等腰△SCF 中,tan ∠CSF =113.即异面直线SC 与OE 所成角的正切值为113.【加练备选】平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A .32B .22C .33D .13【解析】选A .如图所示,过点A 补作一个与正方体ABCD-A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.因为△AF 1E 为正三角形,所以sin ∠EAF 1=sin 60°=32.。
1.4.1用空间向量研究直线、平面的位置关系(第三课时)(人教A版普通高中教科书数学选择性必修第一册第一章)一、教学目标1..能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.2. 能用向量方法证明必修内容中有关直线、平面垂直关系的判定定理.3. 能用向量方法证明空间中直线、平面的垂直关系.二、教学重难点1.用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系2.用向量方法证明空间中直线、平面的垂直关系三、教学过程1.创设情境,从图形中探究新知问题1:类似空间中直线、平面平行的向量表示,在直线与直线、直线与平面、平面与平面的垂直关系中,直线的方向向量、平面的法向量之间有什么关系?观察下图回答。
【预设的答案】位置关系向量表示线线垂直设直线l1,l2的方向向量分别为u1,u2,则l1⊥l2⇔u1⊥u2⇔u1·u2=0线面垂直设直线l的方向向量为u,平面α的法向量为n,则l⊥α⇔u∥n⇔∃λ∈R,使得u=λn面面垂直设平面α,β的法向量分别为n1,n2,则α⊥β⇔n1⊥n2⇔n1·n2=0【设计意图】类比直线、平面平行的向量表示,提出运用向量解空间中的垂直问题,引导学生回顾空间中线线、线面、面面的平行问题的解法方法,类比学习用空间向量解决空间中的垂直问题,进一步体会空间几何问题代数化的基本思想.热身活动1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”. (1)若两条直线的方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )(4)若两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β互相垂直.( )【预设的答案】 (1)× (2)√ (3)× (4)√【设计意图】进一步将空间中线线、线面、面面的位置关系,转化为向量语言。
第3课时 空间点、直线、平面之间的位置关系1.理解空间直线、平面位置关系的定义. 2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.『梳理自测』一、平面的基本性质1.长方体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .62.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.『答案』1.C 2.1或4◆以上题目主要考查了以下内容:图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.⎭⎪⎬⎪⎫A ∈lB ∈lA ∈αB ∈α⇒l ⊂α 公理2过不在同一条直线上的三点,有且只有一个平面.A ,B ,C 三点不共线⇒有且只有一个平面α,使A ∈α,B ∈α,C ∈α.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线若P∈α且P∈β,则α∩β=a,且P∈a.二、空间中两直线的位置关系1.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与GH所成的角为()A.45° B.60°C.90° D.120°2.和两条异面直线都相交的两条直线的位置关系是()A.异面B.相交C.平行D.异面或相交3.空间两个角α,β的两边分别对应平行,且α=60°,则β为()A.60° B.120°C.30° D.60°或120°『答案』1.B 2.D 3.D◆以上题目主要考查了以下内容:(1)空间两直线的位置关系图形语言符号语言公共点平行直线a∥b0个相交直线a∩b=A1个异面直线a,b是异面直线0个(2)平行公理和等角定理①平行公理平行于同一条直线的两条直线平行.用符号表示:设a,b,c为三条直线,若a∥b,b ∥c,则a∥c.②等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(3)异面直线所成的角①定义:已知两条异面直线a,b,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫做异面直线所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. 三、空间中直线与平面、平面与平面的位置关系1.如果a ⊂α,b ⊂α,l∩a =A ,l∩b =B ,那么下列关系成立的是( ) A .l ⊂α B .l ⊄α C .l∩α=A D .l∩α=B2.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成________个部分.『答案』1.A 2.7◆以上题目主要考查了以下内容:图形语言符号语言 公共点 直线与平面 相交a∩α=A1个平行a ∥α 0个 在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l无数个『指点迷津』1.两种方法异面直线的判定方法:(1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 2.三个推论 公理2的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 3.三个作用(1)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(2)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法. (3)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.考向一 平面的基本性质及应用如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC ∥AD 且BC =12AD ,BE ∥AF 且BE=12AF ,G ,H 分别为FA ,FD 的中点. ①证明:四边形BCHG 是平行四边形; ②C ,D ,F ,E 四点是否共面?为什么?『审题视点』 ①线GH ∥AD ∥BC 及等量关系判定平行四边形. ②利用EF ∥CH 构造平面.『典例精讲』 ①由题设知,FG =GA ,FH =HD , 所以GH ∥AD 且GH =12AD ,又BC ∥AD 且BC =12AD ,故GH ∥BC 且GH =BC , 所以四边形BCHG 是平行四边形. ②C ,D ,F ,E 四点共面.理由如下:由BE ∥AF 且BE =12AF ,G 是FA 的中点知,BE ∥GF 且BE =GF ,所以四边形EFGB 是平行四边形, 所以EF ∥BG.由①知BG ∥CH ,所以EF ∥CH , 故EC ,FH 共面. 又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.『类题通法』 证明点或线共面问题,一般有两种途径:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.1.(2014·台州模拟)以下四个命题中:①不共面的四点中,其中任意三点不共线;②若点A、B、C、D共面,点A、B、C、E共面,则点A、B、C、D、E共面;③若直线a、b共面,直线a、c共面,则直线b、c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2 D.3『解析』选B.①中显然是正确的;②中若A、B、C三点共线则A、B、C、D、E五点不一定共面.③构造长方体或正方体,如图显然b、c异面故不正确.④中空间四边形中四条线段不共面,故只有①正确.考向二空间中两直线的位置关系(2014·江南十校联考)如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠2,有以下四个结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1是异面直线.其中正确结论的序号是________.(注:把你认为正确命题的序号都填上)『审题视点』过M、N作某些垂直于棱的直线找平行关系或者构造平面判定.『典例精讲』过N作NP⊥BB1于点P,连接MP,可证AA1⊥平面MNP,∴AA1⊥MN,①正确.过M、N分别作MR⊥A1B1、NS⊥B1C1于点R、S,则当M不是AB1的中点、N不是BC1的中点时,直线A1C1与直线RS相交;当M、N分别是AB1、BC1的中点时,A1C1∥RS,∴A1C1与MN可以异面,也可以平行,故②④错误.由①正确知,AA1⊥平面MNP,而AA1⊥平面A1B1C1D1,∴平面MNP∥平面A1B1C1D1,故③对.综上所述,其中正确命题的序号是①③.『答案』①③『类题通法』空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.2.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.『解析』如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.『答案』②③④考向三异面直线所成的角(2014·宁波调研)正方体ABCD-A1B1C1D1中.(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.『审题视点』(1)平移A1D到B1C,找出AC与A1D所成的角,再计算.(2)可证A1C1与EF垂直.『典例精讲』(1)如图所示,连接AB 1,B1C,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)如图所示,连接AC、BD,在正方体ABCD-A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E、F分别为AB、AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.『类题通法』求异面直线所成角的一般步骤为:(1)平移:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点,如线段的中点或端点,也可以是异面直线中某一条直线上的特殊点.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.3.(2014·天津和平模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( )A .15B .31010C .1010 D .35『解析』选B .连结A 1B.由题意知A 1D 1綊BC ,所以四边形A 1D 1CB 为平行四边形,故D 1C ∥A 1B.所以∠A 1BE 为异面直线D 1C 与BE 所成的角.不妨设AA 1=2AB =2,则A 1E =1,BE =2,A 1B =5,在△A 1BE 中,cos ∠A 1BE =A 1B 2+EB 2-A 1E 22A 1B·EB =5+2-12×5×2=31010,故选B .平面直线所成的角与三角形内角混淆已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.『正解』 如图,取AC 的中点P. 连接PM 、PN. 则PM ∥AB , 且PM =12AB.PN ∥CD , 且PN =12CD ,所以∠MPN 为AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因PM ∥AB ,所以∠PMN是AB与MN所成的角(或所成角的补角).又因AB=CD,所以PM=PN,则△PMN是等边三角形,所以∠PMN=60°,即AB与MN所成的角为60°.若∠MPN=120°,则易知△PMN是等腰三角形.所以∠PMN=30°,即AB与MN所成的角为30°.故直线AB和MN所成的角为60°或30°.『易错点』①在△MPN中,找不清AB与CD、AB与MN所成的角.②只得出∠MPN=60°一种情况,而忽略另一种情况∠MPN=120°,即混淆了异面直线所成的角与三角形内角.『警示』(1)在用平行平移将异面直线所成的角转化为三角形的内角时,不要忽视对三角形的内角“即为两异面直线所成的角(或其补角)”的叙述;也就是平移线段后形成的三角形的内角为钝角时,其对应的异面直线所成的角为它的补角.求异面直线所成的角务必注意范围『0°,90°』.(2)解三角形时要注意分析三角形是否为特殊三角形,可使解答简单:如本题的等腰三角形.1.(2013·高考浙江卷)设m、n是两条不同的直线,α,β是两个不同的平面()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β『解析』选C.可以借助正方体模型对四个选项分别剖析,得出正确结论.A项,当m∥α,n∥α时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m∥α,m∥β时,α,β可能平行也可能相交,故错误;C项,当m∥n,m⊥α时,n⊥α,故正确;D项,当m∥α,α⊥β时,m可能与β平行,可能在β内,也可能与β相交,故错误.故选C.2.(2013·高考全国新课标卷)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l『解析』选D.结合给出的已知条件,画出符合条件的图形,然后判断得出.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D.3.(2012·高考重庆卷)设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是()A.(0,2)B.(0,3)C.(1,2) D.(1,3)『解析』选A.根据题意构造四面体ABCD,AB=a,CD=2,AC=AD=BC=BD=1,取CD中点E,连结BE,AE,则AE=BE=2 2.又∵a<22+22=2,∴0<a< 2.故选A.4.(2013·高考江西卷)如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.『解析』取CD的中点为G,由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内.所以直线EF与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.『答案』4。
第一课时 2.1.1 平面教学要求:能够从日常生活实例中抽象出数学中所说的“平面”理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解可以作为推理依据的三条公理.教学重点:理解三条公理,能用三种语言分别表示.教学难点:理解三条公理.教学过程:一、复习准备:1. 讨论:长方体的8个顶点、12条棱所在直线、6个面之间有和位置关系?2. 举例:生活中哪些物体给我们以平面的形象?二、讲授新课:1. 教学平面的概念及表示:① 平面的概念: A.描述性说明; B.平面是无限伸展的;理解两点:无限好比在平面上画直线;一个平面把空间分成两部分。
② 平面的画法:A.任意角度观察桌面、黑板面,感到象什么?美术中如何画一张纸?B.画法:通常画平行四边形来表示平面。
(注意通常两字)水平平面:通常画成锐角成45°,横边等于邻边的两倍。
非水平平面:只要画成平行四边形。
直立的平面:一组对边为铅垂线。
相交的平面:一定要画出交线;遮住部分的线段画虚线或不画。
C.练习: 画一个平面、相交平面③ 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。
④ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.2. 教学公理1:①揭示公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)②应用:检验桌面是否平; 判断直线是否在平面内③符号:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ;直线l 的平面α内,记作l ⊂α。
④用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂3.教学公理2:①揭示公理2:经过不在同一条直线上的三点,有且只有一个平面。
学习过程一、复习预习1 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:DCBAα(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L公理3作用:判定两个平面是否相交的依据二、知识讲解考点/易错点1 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; LAαCBAαPαLβ共面直线平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
第一课时 2.1.1 平面
教学要求:能够从日常生活实例中抽象出数学中所说的“平面”理解平面的无限延展性;正确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解可以作为推理依据的三条公理.
教学重点:理解三条公理,能用三种语言分别表示.
教学难点:理解三条公理.
教学过程:
一、复习准备:
1. 讨论:长方体的8个顶点、12条棱所在直线、6个面之间有和位置关系?
2. 举例:生活中哪些物体给我们以平面的形象?
二、讲授新课:
1. 教学平面的概念及表示:
① 平面的概念: A.描述性说明; B.平面是无限伸展的;
理解两点:无限好比在平面上画直线;一个平面把空间分成两部分。
② 平面的画法:A.任意角度观察桌面、黑板面,感到象什么?美术中如何画一张纸?
B.画法:通常画平行四边形来表示平面。
(注意通常两字)水平平面:通常画成锐角成45°,横边等于邻边的两倍。
非水平平面:只要画成平行四边形。
直立的平面:一组对边为铅垂线。
相交的平面:一定要画出交线;遮住部分的线段画虚线或不画。
C.练习: 画一个平面、相交平面
③ 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。
④ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.
2. 教学公理1:
①揭示公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)
②应用:检验桌面是否平; 判断直线是否在平面内
③符号:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ;
直线l 的平面α内,记作l ⊂α。
④用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂
3.教学公理2:
①揭示公理2:经过不在同一条直线上的三点,有且只有一个平面。
②理解:不在同一条直线上;一点、两点、三点、四点的情况;有且只有一个,等价于确定 ③实例:一扇门。
记写:平面ABC 。
4 .教学公理3:
①揭示公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 ②理解:例如墙角;平面在空间无限伸展;有且只有一个的含义:存在一个,最多一个。
③符号:平面α和β相交,交线是a ,记作α∩β=a 。
④ 符号语言:,P A B A B l P l ∈⇒=∈
5. 练习:用符号表示点、直线、面之间的关系(图见P47).
6. 小结:平面概念;三条公理的文字语言、图形语言、符号语言.
三、巩固练习:
1. 练习:P48 1~4
2. 根据符号语言画出下列图形:① a ∩α=A ,B ∈a ,但B ∉α;② a ∩b =A ,b ⊂α,a ⊄α
3. 过直线l 上三点A 、B 、C 分别作三条互相平行的直线a 、b 、c ,讨论四条直线共面? 第二课时 2.1.2 空间直线与直线之间的位置关系
教学要求:了解空间两条直线的三种位置关系,理解异面直线的定义,掌握平行公理,掌握等角定理,掌握两条异面直线所成角的定义及垂直
教学重点:掌握平行公理与等角定理.
教学难点:理解异面直线的定义与所成角
教学过程:
一、复习准备:
1. 提问:同一平面上的两条直线位置关系有哪几种?三条公理的内容?
2. 按符号画出图形:a ⊂α,b ∩α=A ,A ∉a
3. 探究:教室内的哪些直线实例?有什么位置关系?
二、讲授新课:
1. 教学两条直线的位置关系:
① 实例探究 → 定义异面直线:不同在任何一个平面内的两条直线.
→ 以长方体为例,寻找一些异面直线? →性质:既不平行,又不相交。
→举例:教室内,日常生活中… →画法:以辅助平面衬托:(三种)
→讨论:分别在两个平面内的两条直线,是不是异面直线?
②讨论:空间两条直线的位置关系:(整理如下)
⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点.
2. 教学平行公理:
① 提出公理4:平行于同一条直线的两条直线互相平行? →示例:三棱镜
② 出示例:空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且C F
C B =C G
C D =1
3,求证:EFGH 是梯形。
分析:如何画图?证明哪组对边平行且不相等?由已知有哪些结论?什么是空间四边形? (四个顶点不在同一平面上的四边形) → 学生试叙述证明过程,教师板书。
→变题:变换比例式…. →小结:平面几何中的性质,如何在立体几何中使用?
3. 教学等角定理:
① 讨论:平面几何中,两角对边分别平行,且方向相同,则两角有何关系?到立体几何中呢? ② 提出定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两角相等。
→试将题改写成数学符号语言题,并画出立体图形。
→ 探究:如何证明角相等?
③ 推广:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。
→ 图形表示
→ 讨论:与点O 的位置是否有关?为什么?最简单的取法如何取? → 垂直
→探究:给出正方体和几条面、体的对角线,找出几对异面直线,并指出所成角
4. 小结:空间两直线的位置关系;公理4;等角定理;异面直线的定义、垂直、所成角.
三、巩固练习:1. 教材P53 1、2题.
2. 已知空间边边形ABCD 各边长与对角线都相等,求异直线AB 和CD 所成的角的大小. 第三课时 2.1.3 空间直线与平面之间的位置关系 & 2.1.4 平面与平面之间的位置关系
教学要求:了解直线与平面的三种位置关系,理解直线在平面外的概念,了解平面与平面的两种位置关系.
教学重点:掌握线面、面面位置关系的图形语言与符号语言.
教学难点:理解各种位置关系的概念.
教学过程:
一、复习准备:
1. 提问:公理1~4的内是什么?空间两条直线有哪几种位置关系?
2. 探究:以长方体为例,探求一面对角线与各面的位置关系? 生活中直线与平面的位置关系?
二、讲授新课:
1. 教学直线与平面的位置关系:
① 讨论:直线和平面有哪几种位置关系? →操作演示,示范说明。
② 定义:直线和平面平行:直线和平面没有公共点。
→小结:三种位置关系:直线在平面内、相交、平行; →探究:公共点情况;
→定义:直线在平面外:相交或平行的情况。
③三种位置关系的图形画法:
④ 三种位置关系的符号表示:
a ⊂α a ∩α=A a ∥α (后两个统称为a ⊄α)
⑤ 练习:举出直线和平面的三种位置关系的生活实例; 结合空间几何体举例
⑥ 练习:教材P54 例4; 练习题
→ 小结方法:操作演示; 反例排除
2. 教学平面与平面的位置关系:
① 以长方体为例,探究相关平面之间的位置关系? 联系生活中的实例找面面关系. ② 讨论得出:相交、平行。
→定义:平行:没有公共点;相交:有一条公共直线。
→符号表示:α∥β、 α∩β=b →举实例:…
③ 画法:相交:……
平行:使两个平行四边形的对应边互相平行
④ 练习: 画平行平面;画一条直线和两个平行平面相交;画一个平面和两个平行平面相交 ⑤ 探究:A. 分别在两平行平面的两条直线有什么位置关系?
B. 三个平面两两相交,可以有交线多少条?
C. 三个平面可以将空间分成多少部分?
3. 小结:线面位置关系;面面位置关系.
三、巩固练习:
1. 三个平面两两相交于三条直线,交线不平行,求证:三条交线交于一点.
2. 已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA上的点,且EH与FG 交于点O, 求证:B、D、O三点共线.
3. 求证:空间四边形各边的中点共面.
4. 作业:P58 2、3题.。