高中物理圆周运动
- 格式:ppt
- 大小:3.60 MB
- 文档页数:4
高中物理《圆周运动》教学设计(优秀7篇)圆周运动教案篇一一、教学任务分析本节课的教学内容是上海市二期课改新教材,即上海科学技术出版社出版的《物理》(修订本)高中一年级第一学期第五章《A、圆周运动快慢的描述》部分,本节课是高一必修内容。
学生虽然已经初步学习了有关运动的知识,但如何研究圆周运动的特征是新的学习内容。
圆周运动的定义,及描述圆周运动的线速度、角速度的知识在本章中具有重要的地位。
本节课的教学既要着重让学生理解波速、波长、频率的关系,又要让学生对波形图有初步的认识,并在学习的过程中让学生体验观察法、比较法等在物理学习中的作用,从而培养学生多方面的能力。
二、教学目标:1、知识与技能:(1)、理解匀速圆周运动。
(2)、理解匀速圆周运动中的线速度和角速度。
(3)、能够运用匀速圆周运动的有关公式分析和解决有关问题的能力。
2、过程与方法:(1)、通过对两种运动的比较学习,使学生能运用对比方法研究问题。
(2)、通过对描述匀速圆周运动的物理量的学习,使学生了解、体会研究问题要从多个的侧面考虑。
(3)、通过对线速度、角速度的关系探究使学生体验获得知识的过程,并感悟科学探究法在物理学习中的作用。
3、情感、态度与价值观:(1)、通过录像使学生对“物理来自生活”形成深刻印象。
(2)、通过对手表指针的运动的观察、探索并得到线速度、角速度的定义式及关系使学生正确认识物理学是一门实验科学。
(3)、通过对内容的观察让学生树立学以致用的价值观,并增强对物理学的好感。
通过合作学习,加强学生之间的协作关系和团队精神。
三、教学重点和难点教学重点:1、线速度、角速度的概念和计算。
2、什么是匀速圆周运动教学难点:要学生理解从不同角度比较快慢可能得出相反的结论。
对匀速圆周运动是变速运动的理解。
四、教具准备高中物理圆周运动教案篇二(一)知识与技能1、理解线速度、角速度、转速、周期等概念,会对它们进行定量的计算。
2、知道线速度与角速度的定义,知道线速度与周期,角速度与周期的关系。
1、轻绳或细杆作用下物体在竖直面内的圆周运动(1)轻杆作用下的运动如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动,小球在最高点A时,若杆与小球m之间无相互作用力,那么小球做圆周运动的向心力仅由重力提供:得=,由此可得小球在最高点时有以下几种情况:当=0时,杆对球的支持力F N = mg,此为过最高点的临界条件。
②当=时,,=0③当0<<时,m g>>0且仍为支持力,越大越小④当>时,>0,且为指向圆心的拉力,越大越大(2)细绳约束或圆轨道约束下的运动:如图所示为没有支撑的小球(细绳约束、外侧轨道约束下)在竖直平面内做圆周运动过最高点时的情况。
①当,即当==时,为小球恰好过最高点的临界速度。
②当<,即>=时(绳、轨道对小球还需产生拉力和压力),小球能过最高点③当>,即<=时,小球不能通过最高点,实际上小球还没有到达最高点就已经脱离了圆周轨道。
竖直面内的圆周运动一般不是匀速圆周运动,而是变速圆周运动,此时由物体受到的合力沿半径方向的分力来提供向心力,一般只研究最高点和最低点,此情况下,经常出现临界状态,应注意:(1)绳模型:临界条件为物体在最高点时拉力为零(2)杆模型:临界条件为物体在最高点时速度为零例1、一根绳子系着一个盛水的杯子,演员抡起绳子,杯子就在竖直面内做圆周运动,到最高点时,杯口朝下,但杯中的水并不流出来,如图所示,为什么呢?解析:对杯中水,当=时,即=时,杯中水恰不流出,若转速增大,<时,>时,杯中水还有远离圆心的趋势,水当然不会流出,此时杯底对水有压力,即N+=,N=-;而如果>,<时,水会流出。
例2、如图所示,轻杆OA长l=0.5m,在A端固定一小球,小球质量m=0.5kg,以O点为轴使小球在竖直平面内做圆周运动,当小球到达最高点时,小球的速度大小为=0.4m/s,求在此位置时杆对小球的作用力。
(g取10 m/s 2)解法一:先判断小球在最高位置时,杆对小球有无作用力,若有作用力,判断作用力方向如何小球所需向心力==0.5×=0.16 N小球受重力=0.5×10=5 N重力大于所需向心力,所以杆对小球有竖直向上的作用力F,为支持力以竖直向下为正方向,对小球有-F=解得:F= 4.84 N解法二:设杆对小球有作用力F,并设它的方向竖直向下,对小球则有-F=F=-=-4.84 N“-”表示F方向与假设的方向相反,支持力方向向上。
圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。
高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。
高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。
匀速圆周运动加速度方向始终指向圆心。
做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。
速度(矢量,有大小有方向)改变的。
(或是大小,或是方向)(即a≠0)称为变速运动。
速度不变(即a=0)、方向不变的运动称为匀速运动。
而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。
所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。
匀变速运动加速度不变(须的大小和方向都不变)的运动。
匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。
圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。
本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。
本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。
(过渡句)知道了教材特点,我们再来了解一下学生特点。
也就是我说课的第二部分:学情分析。
【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
圆周运动教案(最新7篇)圆周运动教案篇一一、教学目标知识与技能1、知道什么是圆周运动,什么是匀速圆周运动。
2、知道线速度的物理意义、定义式、矢量性,知道匀速圆周运动线速度的特点。
3、知道角速度的物理意义、定义式及单位,了解转速和周期的意义。
4、掌握线速度和角速度的关系,掌握角速度与转速、周期的关系。
5、能在具体的情景中确定线速度和角速度与半径的关系。
过程与方法1、通过线速度的平均值以及瞬时值的学习使学生体会极限法在物理问题中的应用,让学生体验用比较的观点、联系的观点分析问题的方法。
情感态度与价值观1、通过对圆周运动知识的学习,培养学生对同一问题多角度进行分析研究的习惯。
二、重点、难点重点:线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系。
难点:1、理解线速度、角速度的物理意义及概念引入的必要性。
2、让学生分析传动装置中主动轮、被动轮上各点的线速度、角速度的关系。
三、教学过程(一)复习回顾师、某物体做曲线运动,如何确定物体在某一时刻的速度方向呢?生:质点在某一点的速度方向沿曲线在这一点的切线方向。
(二)新课引入师:今天这节课我们来学习一个在日常生活常见的曲线运动____圆周运动,那么什么叫圆周运动呢?生:物体沿着圆周的运动叫做圆周运动。
师:组织学生举一些生产和生活中物体做圆周运动的实例。
生1:行驶中的汽车轮子。
生2:公园里的“大转轮”。
生3:自行车上的各个转动部分。
生4:时钟的分针或秒针上某一点的运动轨迹是圆周。
师:演示1:用事先准备好的用细线拴住的小球,演示水平面内的圆周运动,提醒学生注意观察小球运动轨迹有什么特点?演示2:教师在讲台上转动微型电风扇,让学生观察电风扇叶片的转动,注意观察用红色胶带选定的点的运动轨迹有什么特点?生:它们的轨迹都是一个圆周。
师:很好,以上我们所观察的两个物体,它们的运动轨迹都是一个圆,物体沿着圆周的运动我们称它为圆周运动,在日常生活中,圆周运动是一种常见的运动,那么什么样的圆周运动最简单呢?师:最简单的直线运动是匀速直线运动。
【知识梳理】一、匀速圆周运动:质点沿圆周运动,假如在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
〔举例:电风扇转动时,其上各点所做的运动;地球和各个行星绕太阳的运动,都认为是匀速圆周运动。
〕注意:匀速圆周运动是变速曲线运动,匀速圆周运动的轨迹是圆,是曲线运动,运动的速度方向时刻在变化,因此匀速圆周运动不是匀速运动,而是变速曲线。
“匀速〞二字仅指在相等的时间里通过相等的弧长。
二、线速度:物体做匀速圆周运动时,通过的弧长S 与时间t 的比值就是线速度的大小。
用符号v 表示: tS v =1、线速度是物体做匀速圆周运动的瞬时速度。
2、线速度是矢量,它既有大小,也有方向.线速度的方向-----在圆周各点的切线方向上.3、匀速圆周运动的线速度不是恒定的,方向是时刻变化的三、角速度:圆周半径转过的角度ϕ与所用时间t 的比值。
用ω表示:公式:tϕω=单位:s rad /匀速圆周运动的快慢也可以用角速度来描绘。
物体在圆周上运动得越快,连接运动物体和圆心的半径在同样的时间内转过的角度就越大。
对某一确定的匀速圆周运动而言,角速度ω是恒定。
四、周期和频率匀速圆周运动是一种周期性的运动.周期〔T 〕:做匀速圆周运动的物体运动一周所用的时间,单位是s 。
周期也是描绘匀速圆周运动快慢的物理量,周期长运动慢,周期短运动快。
频率〔f 〕:物体ls 由完成匀速圆周运动的圈数,单位是赫兹,记作“Hz 〞.周期和频率互为倒数.频率也是描绘匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。
Tf 1=转速n :做匀速圆周运动的物体单位时间内转过的圈数叫转速。
单位是r/s 、r/min 。
五、线速度、角速度、周期间的关系 1、定性关系三个物理量都是描绘匀速圆周运动的快慢,匀速圆周运动得越快,线速度越大、角速度越大、周期越小. 2、定量关系设想物体沿半径为r 的圆周做匀速圆周运动,那么在一个周期内转过的弧长为π2r ,转过的角度为π2,因此有 T r v π2=,Tπω2= 比拟可知:v =ωr =2πnr =2πfr 结论:由v =r ω知,当v 一定时,ω与r 成反比;当ω一定时,v 与r 成正比;当r 一定时,v 与ω成正比。
一、描述圆周运动的物理量及其相互关系 1、线速度⑴定义:质点做圆周运动通过的弧长s 和所用时间t 的比值叫做线速度.⑵大小:2s rv t T π==单位为m/s.⑶方向:某点线速度的方向即为该点的切线方向.(与半径垂直) ⑷物理意义:描述质点沿圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,方向时刻改变。
2、角速度⑴定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度 跟所用时间t 的比值,就是质点运动的角速度.⑵大小: 单位:rad/s. ⑶物理意义:描述质点绕圆心转动的快慢.注:对于匀速圆周运动,角速度大小不变。
说明:匀速圆周运动中有两个结论:⑴同一转动圆盘(或物体)上的各点角速度相同.⑵不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等。
3、周期、频率、转速⑴周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期。
用T 表示,单位为s 。
⑵频率:做匀速圆周运动的物体在1 s 内转的圈数叫做频率。
用f 表示,其单位为转/秒(或赫兹),符号为r/s(或Hz)。
⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢。
转速是指物体单位时间所转过的圈数,常用符号n 表示,转速的单位为转/秒,符号是r/s ,或转/分(r/min)。
4、向心加速度⑴定义:做圆周运动的物体,指向圆心的加速度称为向心加速度. ⑵大小:ϕ2t T ϕπω==⑶方向:沿半径指向圆心.⑷意义:向心加速度的大小表示速度方向改变的快慢.说明:①向心加速度总指向圆心,方向始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小。
②向心加速度方向时刻变化,故匀速圆周运动是一种加速度变化的变加速曲线运动(或称非匀变速曲线运动).③向心加速度不一定是物体做圆周运动的实际加速度。
对于匀速圆周运动,其所受的合外力就是向心力,只产生向心加速度,因而匀速圆周运动的向心加速度是其实际加速度。
高中物理中的圆周运动圆周运动是高中物理学中一个重要的概念,广泛应用于各个领域,如天体运动、机械运动等。
本文将从定义、特点、应用等方面进行探讨,以帮助读者更好地理解圆周运动。
一、定义圆周运动是指物体在固定点作圆形轨迹运动的过程。
在这个过程中,物体的运动方向始终垂直于轨迹半径,速度大小保持不变,从而形成一个稳定的周期性运动。
二、特点1. 运动轨迹:圆周运动的运动轨迹为圆,即物体绕着一个固定点做匀速圆周运动。
2. 运动方向:圆周运动的运动方向始终垂直于轨迹半径,即与圆的切线方向垂直。
3. 速度不变:在圆周运动中,物体的速度大小保持不变。
由于物体的运动方向发生改变,所以速度具有方向性,称为瞬时速度。
4. 加速度存在:虽然速度大小不变,但由于物体方向发生改变,因此存在加速度。
这个加速度被称为向心加速度,它的方向指向轨迹的中心。
三、应用1. 天体运动:行星绕着太阳运动、卫星绕着行星运动等都是圆周运动。
根据开普勒定律,行星绕太阳的轨道是椭圆形,但当椭圆轨道的离心率趋近于零时,行星的轨道近似为圆形,表现出圆周运动的特征。
2. 机械运动:圆周运动在机械系统中得到广泛应用。
例如,汽车转向时,车轮绕着其转轴做圆周运动;风扇转动时,扇叶围绕转轴做圆周运动。
这些运动的设计和分析都涉及到圆周运动的概念。
3. 地理运动:地球绕太阳运动也是一种圆周运动。
地球绕太阳的轨道是近似圆形的,这种圆周运动导致了地球的季节变化、日照时间的长短等自然现象。
四、公式推导与分析圆周运动涉及到许多重要的公式和物理量,包括角速度、角加速度、向心力等。
下面为简要的推导过程:1. 角速度(ω):角速度是描述物体角度变化率的物理量,定义为单位时间内物体通过的角度。
在圆周运动中,角速度等于弧长与半径的比值,即ω = v / r,其中v为物体的线速度,r为轨道半径。
2. 角加速度(α):角加速度是描述角速度变化率的物理量,定义为单位时间内角速度的改变量。
在圆周运动中,角加速度等于线加速度与半径的比值,即α = a / r,其中a为物体的线加速度。