增压器匹配.
- 格式:ppt
- 大小:1.87 MB
- 文档页数:3
第1章 增压器及其进气增压系统的结构和原理1.1概述1.1.1 发动机进气增压技术简介近年来,发动机进气增压技术已经成为国内外内燃机发展的重要方向之一。
这是因为发动机进气增压技术具有许多优点:1.能够提高发动机的升功率——提高了发动机的动力性;2.能够降低发动机比油耗和比质量——提高了发动机经济性;3.能够减轻发动机的排放污染——提高了发动机的排放性;4.能够扩大发动机变型系列等。
当前,由于汽车一方面在向高速、重载方向发展,对发动机的动力性和燃料经济性提出了更高的要求;另一方面发动机尾气的排放污染,各国排放法规的日益苛刻,使人们极力寻求减小大气污染的措施。
这种种方面的原因,使汽车发动机进气增压技术获得迅速发展,其中以美国、德国、瑞典等国家发展较快。
在美国,10L以上排量的柴油机几乎全部采用增压技术,小排量柴油机和汽油机采用增压技术也占相当大的比重。
欧洲和日本近年来增压发动机也发展迅速,特别是柴油机。
发动机增压方法很多,其中涡轮增压器在技术上最为成熟,并且有很多突出的优点,因此涡轮增压成为汽车发动机增压的主要类型而获得广泛应用。
此外,在研究和发展涡轮增压系统的同时,其他增压系统也相继有所发展,例如气波增压系统。
本指南主要讲述涡轮增压系统,其他增压系统仅简单介绍。
1.1.2发动机进气增压的基本原理(1)发动机进气增压的基本理论进气增压是提高发动机升功率的有效方法之一。
所谓增压器,就是利用专门的装置(增压器)将空气或者可燃混合气预先进行压缩,再送入发动机汽缸的过程。
虽然汽缸的工作容积不变,但因增压后,每个循环进入汽缸的新气密度增大,使实际充气量增加,这样可以向缸内喷入更多的燃料而获得充分燃烧,因此提高了发动机的升功率和总输出功率。
一般来讲,增压压力愈高,充入汽缸的新气密度愈大,发出的功率也就愈高。
增压可以提高发动机的功率,但增压器本身所消耗的功率和增压器效率直接影响发动机的有效功率和燃料经济性。
机械增压器要消耗一部分曲轴功,因此其燃料消耗一般高于非增压的发动机。
增压器与柴油机的匹配计算摘要发动机与增压器的匹配是否良好,对发动机的运行起着十分重要的作用。
本文主要的内容是用计算出发动机与增压器匹配的最佳运行点。
总结出各种匹配的要求和匹配不好的原因。
1. 增压参数的确定为了保证发动机与增压器的良好匹配,即达到预定的增压发动机各项性能指标,首先要正确确定增压参数。
增压参数主要有:1)增压压力K p 或压比K π;2)空气流量A m (Kg/s )或容积流量V m (m³/s );3)涡轮前废气平均温度T t ;4)大气压力0p 和大气温度0t 。
增压参数中最重要的是通过计算正确确定流量A m 和压比K π。
如果流量A m 选择不当,不但使增压器与发动机匹配不好,更重要的是涡轮流通能力确定不当,从而导致增压压力K p 远离设计值。
而K π根据A m 计算得出,如果A m 确定不合适,将导致K π有较大的偏差。
正确确定K p 或K π也很重要,如果K p 选的过低,将造成达不到预定的增压发动机功率和出现发动机排气温度T t 过高的后果;如果K p 选的过高,又会导致过高的发动机最大爆发压力max p 以和增压器过高的转速。
在不同的地方大气压力0p 和大气温度0t 也是不相同的,这要根据当地的情况来决定,一般情况是取标准值。
[]81.1 用计算法确定增压参数增压后发动机所需要的空气流量A m (即压气机流量K m )为K m =03600L g N s e e ⋅⋅∂⋅⋅η Kg/s (1—1) 式中 e g ——燃油消耗率,Kg/(Kw.h );∂——过量空气系数;s η——扫气效率。
另外,对四冲程发动机K m 又可表示为:s v K h K v n m ηηρ⋅⋅⋅⋅⋅=1201 (1—2) 式中 n ——发动机转速,r/min ;v η——发动机容积效率。
故压气机出口的空气密度:sv h K K v n m ηηρ⋅⋅⋅⋅=120 (1—3) 以式(2—1)求得的K m 代入式(2—3),即可求得K ρ。
- 55 -工 业 技 术0 引言涡轮增压器技术是提高发动机效率、降低燃油消耗、减少废气排放的有效手段。
增压发动机在减小排量的情况下通过提升进气压力能够使相同排量的发动机动力性能提升,同时增压发动机的燃油经济性与自然吸气的发动机相比有所提升。
根据整车车型动力性、经济性的目标要求,该文设计开发了节能高效的涡轮增压发动机。
1 发动机匹配目标的确定影响增压发动机性能的设计开发内容包括控制系统的标定、进气歧管总成及排气歧管总成的走向、整车进气系统压降和排气系统背压等,但是涡轮增压器的匹配是否优良是最为关键的[1]。
涡轮增压器的匹配结果直接影响燃油经济性和发动机的动力性能(功率、扭矩)。
增压器的匹配内容主要包括方案匹配和性能匹配。
1.1 发动机设计目标1.1.1 发动机设计目标参数确定根据整车目标的确定,要求发动机有很好的低速扭矩和中速中负荷的燃油经济性[2]。
具体设计开发的技术目标参数见表1。
1.1.2 确定压缩比该款发动机为汽油发动机,发动机和涡轮增压器匹配的关键主要避免爆震的产生,所以要控制好发动机排气温度、进气压力、增压器转速范围。
由于增压后排温易升高,所以增压发动机的压缩比要比自然吸气发动机的低,保证燃烧稳定性。
通过对比研究最后确定为压缩比为9∶1。
1.1.3 确定中冷技术由于增加发动机提升了进气的压力,导致进气温度的升高,为了保证燃烧的稳定性,必须采用冷却系统将进气温度降下来,同时对发动机的动力性、经济性均有提高,经过研究确定采用空对空中冷器冷却增压后的空气温度。
1.1.4 确定涡轮机的叶片大小涡轮机的大小直接影响了整车的使用性能,影响发动机随油门提升扭矩的 响应速度,由于小涡轮质量轻,低速响应性较好,但这可能要损失高速段的动力性。
通过对于匹配目标的研究确定选择小涡轮增压器进行匹配。
2 涡轮增压器匹配方案确定2.1 涡轮增压器匹配方案选择为了保证涡轮增压器匹配的合理性,确定了3款涡轮增压器进行匹配选择,并统一进行编号,具体方案见表2。
涡轮增压器与发动机的匹配与调整1、涡轮增压器与发动机的匹配概述总的来说,发动机与增压器的匹配有三个⽅⾯,即发动机与压⽓机匹配、发动机与涡轮的匹配和压⽓机与涡轮的匹配。
细分的话,应该包括:增压器的压⽓机、增压器的废⽓涡轮、发动机的排⽓管系统、发动机的进⽓系统、中冷器、空⽓滤清器、消⾳器、进排⽓配⽓相位、运转⼯况参数、环境参数等。
2、发动机对压⽓机的要求a、发动机对压⽓机的要求:1)、压⽓机不但要求达到预定的压⽐,⽽且要具有⾼的效率。
即压⽓机效率越⾼,在同⼀增压压⼒时,空⽓温度越低,从⽽得到的增压空⽓的密度就越⾼,增压效果就越好。
2)、不同⽤途的发动机对压⽓机特性的要求也不同。
对于发电⽤的固定式发动机及按螺旋桨特性⼯作的船⽤发动机⼀般的压⽓机特性均能满⾜要求,⽽车⽤发动机由于转速范围宽⼴,故就要求相应的压⽓机特性具有宽⼴的流量范围,⽽且要有较宽的⾼效区。
怎样评价发动机与压⽓机的匹配:1)、需要经试验得出的压⽓机特性曲线,同时要有发动机各转速下耗⽓特性曲线,将发动机的耗⽓特性曲线与压⽓机的特性曲线相叠合就可以看出匹配情况。
2)、发动机的特性曲线应穿过压⽓机的⾼效区,⽽且最好使发动机的运⾏线与压⽓机的⾼效率的等效率圈相平⾏。
对于车⽤发动机,则要求最⼤扭矩点正好位于压⽓机最⾼效率区附近。
如果发动机运⾏线整个位于压⽓机特性右侧,则表明所选的压⽓机流量偏⼩,使联合⼯作时压⽓机处于低效区⼯作,在这种情况下就要重选较⼤型号的增压器,或加⼤压⽓机通流部分尺⼨,使压⽓机特性向右移动。
如果向反,发动机运⾏线整个偏于压⽓机特性左侧,则⼀⽅⾯发动机低转速时压⽓机效率降低,同时有可能出现喘振。
在这种情况下就要重选择较⼩型号的增压器或减⼩压⽓机通流部分尺⼨,使压⽓机特性向左移动。
3)、发动机的⽓耗特性线离开压⽓机喘振线有⼀定的距离。
否则如发动机耗⽓特性曲线离喘振线太近或甚⾄与之相交的话,在联合⼯作时就可能出现喘振。
⼀般,要求发动机低转速的耗⽓特性曲线离开压⽓机喘振线的距离也即所谓的喘振裕度约为10%Gcmin(喘振流量)。
第五章柴油机与涡轮增压器的匹配山东大学学院能源与动力工程学院能源与动力工程第五章柴油机与涡轮增压器的匹配本章的主要教学内容:1.增压特性匹配及联合运行线的调节2.增压柴油机的热负荷及解决途径3.增压柴油机的机械负荷及解决途径4.改善增压柴油机低工况及瞬态特性的途径第五章柴油机与涡轮增压器的匹配教学目的与要求:要求比较系统地掌握:增压特性匹配及联合运行线的调节;增压柴油机的热负荷及解决途径;增压柴油机的机械负荷及解决途径;改善增压柴油机低工况及瞬态特性的途径。
5.1 增压特性匹配及联合运行线的调节在压气机特性曲线上,将该工况下以增压比和空气流量表征的增压器和柴油机联合运 5.1.1 联合运行线行点确定下来,柴油机按某一特性运行时的所有工况点都可在压气机特性曲线上确定下来,形成增压器和柴油机联合工作后的联合运行线。
5.1 增压特性匹配及联合运行线的调节5.1.2 涡轮增压器与柴油机配合运行的基本要求5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1.3 联合运行线的调节5.1.3.1 涡轮喷嘴环出口通流面积的调整改变涡轮喷嘴环出口通流面积的方法是用改变运行线的方法适应压气机特性5.1 增压特性匹配及联合运行线的调节最佳喷嘴环出口流通面积寻找方法5.1 增压特性匹配及联合运行线的调节5.1.3.2 改变压气机扩压器的进口角改变压气机特性线的方法的方法适应运行线5.2 增压柴油机的热负荷及解决途径5.2.1 增压柴油机的热负荷问题5.2.2 热负荷的一种表达式5.2增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.3 影响热负荷大小的主要因素分析5.2.4 降低热负荷的主要措施5.2 增压柴油机的热负荷及解决途径5.2.4.1 适当增大进、排气门叠开角5.2 增压柴油机的热负荷及解决途径5.2.4.2 增大叠开期内的进、排气管压力差5.2 增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.4.3 增大进、排气门的时间-截面5.2 增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.4.4 增压中冷5.2 增压柴油机的热负荷及解决途径5.2.4.5 强化冷却系统5.2 增压柴油机的热负荷及解决途径5.2.4.6 改善供油系统及燃烧系统5.2 增压柴油机的热负荷及解决途径5.3 增压柴油机的机械负荷及解决途径5.3.1 增压柴油机的机械负荷问题5.3 增压柴油机的机械负荷及解决途径5.3.2 降低机械负荷的途径5.3.2.1 适当降低柴油机的压缩比5.3 增压柴油机的机械负荷及解决途径5.3.2.2 适当减小供油提前角5.3 增压柴油机的机械负荷及解决途径5.3.2.3 调整涡轮增压器5.3 增压柴油机的机械负荷及解决途径5.3.2.4 优化供油系统5.3 增压柴油机的机械负荷及解决途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4.1增压柴油机低工况性能分析5.4 改善增压柴油机低工况及瞬态特性的途径5.4.1增压柴油机低工况性能分析5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4.2 改善增压柴油机低工况性能的措施5.4 改善增压柴油机低工况及瞬态特性的途径5.4.2.2 采用高工况放气对车用发动机来说,为解决低工况的性能问题,较多采用如图所示的高工况放气系统。
涡轮增压汽油机匹配计算及性能预测涡轮增压汽油机是一种采用涡轮增压器提高气缸进气压力的汽油机。
它具有高功率、高扭矩、低油耗、低废气排放等优点,因此广泛应用于高性能汽车、赛车以及航空航天领域。
涡轮增压汽油机的匹配计算是设计高性能发动机的关键之一,本文将探讨涡轮增压汽油机的匹配计算及性能预测。
涡轮增压汽油机的匹配计算可分为三个步骤:参数选择、涡轮增压器匹配和喷油器匹配。
第一步骤是参数选择,需要确定涡轮增压汽油机的基本参数,包括气缸数、缸径、行程、压缩比、气门数量和排量等。
这些参数将直接影响发动机性能及涡轮增压器选择。
第二步骤是涡轮增压器匹配,需要根据发动机参数选择合适的涡轮增压器。
涡轮增压器的主要参数包括压缩比、进出口直径、转子直径和转速等。
选取合适的涡轮增压器可使发动机性能得到最大化,同时也需要考虑选用涡轮增压器的成本、重量和可靠性等因素。
第三步骤是喷油器匹配,需要根据发动机的最大输出功率和最大输出扭矩来计算出所需的燃油量和喷油器喷油量。
喷油器的选择需要考虑油品质量、喷雾效果、喷油形状和喷油压力等参数,以确保发动机能够稳定运行。
涡轮增压汽油机的性能预测主要涉及功率、扭矩、燃油消耗量、废气排放量等方面的预测。
常用方法包括流动模拟计算和试验验证两种。
流动模拟计算主要采用CFD(Computational Fluid Dynamics)软件,计算出涡轮增压器、进气道和排气道等部位流场分布、压力分布和温度分布等参数,进而预测出发动机的性能参数。
试验验证则是采用实验方法测量涡轮增压汽油机的关键性能参数,包括功率、扭矩、燃油消耗量、废气排放量等。
试验流程繁琐,成本较高,但是结果更加精确可靠。
总之,涡轮增压汽油机匹配计算及性能预测是设计高性能发动机必不可少的环节。
通过合理选取涡轮增压器、喷油器等部件并结合合适的流动模拟计算和试验验证方法可提高发动机性能,同时也能降低成本和优化设计。
另外,涡轮增压汽油机在匹配计算和性能预测过程中,还需要考虑一些限制因素,如冷却、机油供应、噪声和振动等。
增压器匹配常见问题及解决方法匹配试验中常见问题的处理及注意事项一、增压器匹配试验中常见问题及处理方法:1.增压压力低原因①:发动机进排气系统漏气解决方法:检查发动机管进排道系统是否漏气;原因②:执行器开启压力过低或执行器弹簧弹性系数过小解决方法:调整执行器开启压力,以发动机要求为准调紧执行器套管;换弹簧弹性系数偏大的执行器。
原因③:增压器本身漏气解决方法:检查压壳、轴承体和涡轮箱特别是放气阀门孔是否漏气;原因④:发动机进排气系统阻塞解决方法:检查发动机管道系统增压器压气机端是否阻塞;原因⑤:增压器选型问题解决方法:增压器涡轮转子选择过大,换小涡轮转子方案;涡轮箱流通能力偏大,换流通能力偏小涡轮箱。
压气机叶轮选择过大,换小叶轮方案,扩压盘选择过大,换小扩压盘方案。
原因⑥:发动机功率低和扭矩小解决方法:发动机故障或增压器方案选型不当。
2.排温高原因①:执行器开启压力过低或执行器弹簧弹性系数过小,阀门开启幅度过大解决方法:调整执行器开启压力,以发动机要求为准调紧执行器套管;换弹簧弹力大的执行器。
原因②:涡轮端选择问题解决方法:检查阀门是否漏气;更换涡轮端流通能力大方案。
3.高速性能差原因①:压气机端选择过小解决方法:换叶轮进出口加大或叶高加大方案。
原因②:涡轮端选择过小。
解决方法:更换涡轮端流通能力大方案。
原因③:执行器开启压力过低解决方法:调整执行器压力,以适合发动机要求为准。
4.低速性能差原因①:压气机端选择过大解决方法:换叶轮进出口减小或叶高减小方案。
原因②:涡轮端选择过大。
解决方法:更换涡轮端流通能力小或小涡轮转子方案。
原因③:阀门关闭不严。
解决方法:检查阀门是否关闭严实,关闭不严必须更换新的涡轮箱组件。
5.整体性能差原因①:增压器选择存在问题解决方法:更换新的方案或重新设计方案。
6.喘振(增压器出现强烈的颤动)原因①:叶轮过大、涡轮端流通能力过小解决方法:换叶轮小、涡轮端流通能力大方案。
7.堵塞(流量不再增加或增加很小,增压压力不再增加或增加很小)原因①:叶轮过小、涡轮端流通能力过小解决方法:换叶轮大、涡轮端流通能力大方案。
由于石油日益短缺,柴油机油耗越来越受到关注。
增压器与柴油机的合理匹配,可在满足动力性及排放标准的情况下,保证高的柴油机燃料经济性,因此增压器配机试验是必要的。
一艘新船舶选定柴油机后,据功率、转速等,选择增压器并通过台架性能和排放试验,以满足船舶的螺旋桨特性要求。
本文研究MAN增压器与MAN二冲程电控柴油机的匹配,以达到如下规定指标:1)扫气压力、排气温度、空气流量、增压器效率、燃油消耗率;2)喘振稳定性(喘振裕度);3)废气排放标准。
增压器配机试验中,常会遇到一个或几个设计指标不能满足的情况,这就需更换增压器不同档位的流通元件从而调整增压器流通元件流通面积,但需要哪一种流通元件及哪一档,要基于增压器气体和柴油机性能参数的精确测量和档位间隔对应的增压器和柴油机行为参数的间隔。
一MAN增压器的特性MAN增压器已广泛应用于二冲程和四冲程柴油机,使用滑动轴承和非冷却式废气涡壳。
按废气流过涡轮叶片的方向,分为轴流式涡轮TCA(Turbocharger Axial)系列和径流式涡轮TCR(Turbocharger radial)系列。
后者适合于小流量。
TCA系列涡轮增压器主要应用于大功率船用低速柴油机,有七种规格:TCA33、TCA44、TCA55、TCA66、TCA77、TCA88和TCA88-25,适合脉冲或定压增压,覆盖2000kW~30000kW柴油机功率范围,见表1。
配二冲程柴油机时,压气机压比最高达4.8,见表2;空气流量为6.2m³/s~58.0m³/s,见图1。
图1增压器的应用范围效率、压比、流量高,振动小,重量轻、结构紧凑,寿命长,易维修、运行安全、产品成本和寿命期成本低。
已应用于MAN公司的二冲程柴油机系列S35MC-C,S35ME-B,S40MC-C,S40ME-B,S50ME-B,G50ME-B,G60ME-C,G70ME-C,G80ME-C,K80ME-C,缸数为5~12缸。
1.发动机涡轮增压系统匹配及动态特性的仿真分析涡轮增压是提高发动机动力性和改善经济性的最有效措施。
高空环境条件对航空发动机提出了功率恢复的特殊要求,而增压技术是实现发动机高海拔功率恢复的重要措施。
目前,国外小型航空活塞式发动机涡轮增压技术已经比较成熟,国内正在致力于这方面的研究。
本文以ROTAX914发动机为研究对象,对GT25涡轮增压器与发动机的匹配、JK48可变截面涡轮增压器与发动机的匹配以及涡轮增压控制系统的动态特性进行了研究。
本论文在对发动机涡轮增压器进行选型的基础上,应用MATLAB/Simulink软件建立了GT25增压器与发动机匹配、JK48增压器与发动机匹配以及增压控制系统动态特性的仿真模型;研究了不同海拔下发动机与增压器的匹配规律。
通过研究,确定了GT25增压器与发动机的匹配规律,建立了增压器放气阀开度随发动机转速和海拔高度变化的MAP图,分析了充量系数和过量空气系数对GT25增压器与发动机匹配规律的影响。
对JK48可变截面涡轮增压器与ROTAX914发动机的匹配规律进行了仿真研究。
确定了JK48增压器与发动机的匹配规律,建立了叶片转角随发动机转速和海拔高度变化的MAP图,讨论了涡轮效率、涡轮流量系数以及发动机充量系数等因素对JK48可变截面涡轮增压器与发动机匹配的影响。
对涡轮增压控制系统的动态特性进行了仿真研究;结果表明,在一定的负载转动惯量下,控制系统具有较好的动态响应特性、准确性和稳定性。
研究了控制算法对增压控制系统动态特性的影响,比较了普通PID和积分分离PID算法下控制系统的动态特性。
通过研究,确定了负载转动惯量对增压控制系统性能的影响规律。
研究结果可以为我国四冲程活塞式航空发动机研发过程中涡轮增压器的选型、增压器与发动机的匹配以及涡轮增压控制系统的设计等提供一定的分析依据。
2. 车用发动机与涡轮增压器匹配研究涡轮增压技术作为提高柴油机功率、改善其燃油经济性、降低排放的最有效措施之一,已经得到了广泛的应用。