第五讲平面控制网数据处理
- 格式:ppt
- 大小:845.50 KB
- 文档页数:2
平面控制测量操作方法
平面控制测量是指通过一系列控制测量点来保证建筑物或道路等建筑结构的平面度、垂直度和水平度。
下面是平面控制测量的操作方法:
1.测量前,应调查控制点周围的地形,确定测量区域的边界。
2.根据需要建立控制测量基准点,确定各控制测量点的坐标,测量点可采用钉桩、地标等方式标定。
3.确定控制测量点的观测方位,选择适合的观测仪器进行测量,如全站仪、自动水平仪等。
4.按照先后顺序进行观测,遵守精密测量的操作规程,记录仪器刻度值或读取数据,注明测量点的编号和观测时间。
5.计算各控制测量点的坐标,进行误差调整和精度评定。
根据需要,制作控制测量图,标明建筑物或道路等建筑结构的平面度、垂直度和水平度。
6.在建筑施工过程中,按照控制测量图进行实际测量并进行调整,确保建筑结构的准确平面度、垂直度和水平度。
7.最后,进行控制测量成果的归档和保存,在下次测量前进行检查和验证。
第6章 CPIII控制网数据处理当前我国客运专线的建设多采用无碴轨道技术,由于设计速度高,为保证列车在高速运行时的安全性,以及乘客的舒适度,高速客运专线的轨道必须具有高平顺性和高稳定性。
除轨道结构的合理尺寸、良好的材质和制造工艺外,轨道的高精度铺设是实现轨道初始高平顺性的关键。
而高精度CPIII控制网是无碴轨道施工的保证,并为日后运营维护提供控制基准。
6.1 CPIII控制网基础知识CPIII控制网是沿线路布设控制无碴轨道施工的三维施工控制网,起闭于上一级的基础平面控制网(CPI)或线路控制网(CPII)。
CPIII控制网点对称布设于线路两侧,每对间距约为15m左右,控制点间的纵向间距以50~60m为宜;CPIII平面网采用自由测站后方交会进行施测,其原始观测值为测站到测点的平距与方向,每两测站间有4对公共观测点,由此构成了一个控制网点间具有强相关性、精度分布较为均匀的边角交会网。
由于采用了全新的构网方式,需要发展相应的严密数据处理方法来对CPIII平面网观测数据进行处理。
6.1.1 CPIII相关概念(1)工程独立坐标系:为满足铁路工程建设要求采用的以任意中央子午线和高程投影面进行投影而建立的平面直角坐标系。
(2)基础框架平面控制网CP0:为满足线路平面控制测量起闭联测的要求,沿线路每50km左右建立的卫星定位测量控制网,作为全线勘测设计、施工、运营维护的坐标基准。
(3)基础平面控制网CPⅠ:在基础框架平面控制网(CP0)或国家高等级平面控制网的基础上,沿线路走向布设,按GPS静态相对定位原理建立,为线路平面控制网起闭的基准。
在勘测阶段按静态GPS相对定位原理建立。
点间距为4km左右,测量精度为GPS B级网。
(4)线路平面控制网CPⅡ:在基础平面控制网(CPⅠ)上沿线路附近布设,为勘测、施工阶段的线路平面控制和轨道控制网起闭的基准。
可用GPS静态相对定位原理测量或常规导线网测量,在勘测阶段建立。
第六章→第一节→概述为了限制误差传递和误差积累,提高测量精度,无论是测绘还是测设必须遵循“先整体后局部,先控制后碎部,由高级到低级”的原则来组织实施。
测量工作的基本程序也就分为控制测量,碎部测量两步。
控制测量分为平面控制测量和高程控制测量。
测定控制点平面位置()的工作,称为平面控制测量。
测定控制点高程()的工作,称为高程控制测量。
一、平面控制测量(一)建立平面控制网的方法平面控制测量的任务就是用精密仪器和采用精密方法测量控制点间的角度、距离要素,根据已知点的平面坐标、方位角,从而计算出各控制点的坐标。
建立平面控制网的方法有导线测量、三角测量、三边测量、全球定位系统GPS测量等。
随着电磁波测距技术的发展,导线测量已是平面控制测量的主要方法。
1、导线测量导线测量—将各控制点组成连续的折线或多边形、所示。
这种图形构成的控制网称为导线网,也称导线,转折点(控制点)称为导线点。
测量相邻导线边之间的水平角与导线边长,根据起算点的平面坐标和起算边方位角,计算各导线点坐标,这项工作称为导线测量2、三角测量三角测量—将各控制点组成互相连接的一系列三角形,如图6-2所示,这种图形构成的控制网称为三角锁,是三角网的一种类型。
所有三角形的顶点称为三角点。
测量三角形的一条边和全部三角形内角,根据起算点的坐标与起算边的方位角,按正弦定律推算全部边长与方位角,从而计算出各点的坐标,这项工称为三角测量。
3、三边测量三边测量—指使用全站型电子速测仪或光电测距仪,采取测边方式来测定各三角形顶点水平位置的方法。
三边测量是建立平面控制网的方法之一,其优点是较好的控制了边长方面的误差,工作效率高等。
三边测量只是测量边长,对于测边单三角网,无校核条件。
4、GPS测量全球定位系统GPS测量—全球定位系统是具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。
GPS以全天候、高精度、自动化、高效率等显著特点,成功地应用于工程控制测量,例如,南京长江第三桥、西康铁路线18km秦岭隧道、线路控制测量等方面。
交换机数据平面、控制平面、管理平面分离设计——网络设备稳定的重要技术白皮书福建星网锐捷网络有限公司版权所有侵权必究前言网络依赖性的增强中国从90年代开始进行了大规模的信息化建设,不论是建网机构、上网人数和网络应用都在迅猛地发展着,随着中国信息化建设的不断推进和深化,人民的生活更加丰富和便捷,工作更加高效,企业更富有竞争力,所有的一切都在往极有意义的方面进展,我们看到了网络对于社会各方面明显的推动作用。
但网络的另一面也越来越引发我们的注意,我们看到不论企业或是社会对于网络的依赖性都在随着信息化建设的推进而逐渐地增强,特别是发展到21世纪以后,网络已经深深地渗透进社会生活的方方面面,网络取代了大量的传统业务方式和工作方式,大量的企业日常办公无法离开网络,大量的企业商务运做无法离开网络,网络成为了新的极其重要的基础设备。
社会、企业和个人对于网络的依赖性进入了前所未有的阶段,并且其依赖性依然在快速地增强,这巨大的发展变化对网络的持续提供服务能力提出了严格的要求,带来了对网络稳定可靠性的更加普遍的关注。
网络稳定性的保障网络的稳定性保障主要从两个方面来考虑:网络结构的稳定和网络设备的稳定,网络结构是由网络设备组建而成的,因此网络设备的稳定是最根本的基础,没有网络设备的稳定将使网络结构的稳定变得极其脆弱而大大减低整个网络的稳定性。
网络设备的稳定可以从软件和硬件两个方面来全面考虑,如硬件方面的重要器件冗余备份、重要器件在线热拔插、整机电磁干扰屏蔽特性等等,软件方面主要可以考虑软件模块化设计和软件模块压力测试,让软件的不稳定因素控制在模块范围内不干扰其它软件模块,除此之外,还有一个非常重要的软硬件相互结合的稳定技术——交换机数据平面、控制平面、管理平面相互分离设计技术。
目录1 交换机数据、控制、管理平面分离设计 (1)1.1 交换机数据、控制、管理平面的概念 (1)1.1.1 交换机数据平面 (1)1.1.2 交换机控制平面 (1)1.1.3 交换机管理平面 (1)1.2 为什么需要对数据、控制和管理平面进行相互的分离? (2)2 锐捷网络高端产品的三平面分离设计 (5)1 交换机数据、控制、管理平面分离设计1.1 交换机数据、控制、管理平面的概念1.1.1 交换机数据平面交换机的基本任务是处理和转发交换机各不同端口上各种类型的数据,对于数据处理过程中各种具体的处理转发过程,例如L2/L3/ACL/QOS/组播/安全防护等各功能的具体执行过程,都属于交换机数据平面的任务范畴。