传染病模型(微分方程)
- 格式:doc
- 大小:343.50 KB
- 文档页数:7
传染病最简单模型:已感染人数 (病人) x(t),每个病人每天有效接触(足以使人致病)人数为λ 有()()()x t t x t x t t λ+∆-=∆ 又设()00x x =,得微分方程dxx dtλ= 解得0()t x t x e λ=SI 模型:区分已感染者(病人)和未感染者(健康人)。
总人数N 不变,λ为日接触率,病人和健康人的比例分别为i(t),s(t)。
则有di si dt λ=,又有s(t)+i(t)=1。
所以有0(1),(0)dii i i i dtλ=-=。
求解出01()11(1)ti t e i λ-=+- ,传染速度最快时刻为101ln(1)mt i λ-=-SIS 模型:传染病无免疫性。
总人数N 不变,病人的日接触率为λ,病人和健康人的比例分别为i(t),s(t),接触数σ(感染期内每个病人的有效接触人数)。
病人日治愈率为μ,所以有diN Nsi Ni dtλμ=- , 0(0)i i =。
由s(t)+i(t)=1,/σλμ=,就推出1[(1)]di i i dt λσ=---。
SIR 模型:传染病有免疫性。
总人数N 不变,病人、健康人和移出者的比例分别为i(t),s(t),r(t) ,病人的日接触率为λ,病人日治愈率为μ,接触数/σλμ=。
且有s(t)+i(t)+r(t)=1。
则有r(0)=r0很小,故000i s +≈。
推出00d ,(0)d d ,(0)d i si i i i ts si s s t λμλ⎧=-=⎪⎪⎨⎪=-=⎪⎩ 经济增长模型;1 )道格拉斯(Douglas)生产函数 Q(t),K(t),L(t),0f 分别表示某地区在t 时刻的产值、资金、劳动力和技术。
静态模型令z=Q/L ,y=K/L ,则z 是每个劳动力产值,y 是每个劳动力投资。
由于z 随y 增加而增长,但增速递减。
)(/0y g f L Q z ==,10,)(<<=ααy y g ,α)/(0L K L f Q =αα-=10),(L K f L K Q 此为Douglas 生产函数。
传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数;结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答;一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等;如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去;为此,必须从诸多因素中,抓住主要因素,去掉次要因素;先把问题简化,建立相应的数学模型;将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型;从而使模型逐步完善;下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路;一.最简单的模型假设:1 每个病人在单位时间内传染的人数是常数k;2 一个人得病后经久不愈,并在传染期内不会死亡;以it表示t时刻的病人数,k表示每个病人单位时间内传染的人数,i0=i表示最初时有0i个传染病人,则在t 时间内增加的病人数为()()()0i t t i t k i t t +∆-=∆两边除以t ∆,并令t ∆→0得微分方程()()()000di t k i t dt i i ⎧=⎪⎨⎪=⎩………… 2.1 其解为 ()00k t i t i e =这表明传染病的转播是按指数函数增加的;这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长;但由2.1的解可知,当t →∞时,it →∞,这显然不符合实际情况;最多所有的人都传染上就是了;那么问题在那里呢 问题是就出在于两条假设对时间较长时不合理;特别是假设1,每个病人单位时间内传染的人数是常数与实际情况不符;因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的;为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型;二. 模型的修改将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用it 和st 表示t 时刻这两类人的人数;i 0= 0i ;假设:1 每个病人单位时间内传染的人数与这时未被传染的人数成正比;即()0k ks t =;2 一人得病后,经久不愈,并在传染期内不会死亡;由以上假设可得微分方程()()()()()()0di t ks t i t dt s t i t n i i⎧=⎪⎪⎪+=⎨⎪=⎪⎪⎩………… 2.2这是变量分离方程,用分离变量法可求得其解为()011knt n i t n e i =⎛⎫+- ⎪⎝⎭ ………… 2.3其图形如下图2-1所示模型 2.2 可以用来预报传染较快的疾病前期传染病高峰到来的时询; 医学上称di t dt-为传染病曲线,它表示传染病人的增加率与时间的关系,如图2-2所示;由 2.3式可得 2020111knt knt n kn e i di dt n e i --⎛⎫- ⎪⎝⎭=⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎣⎦ ………… 2.4 再求二阶导数()22d i t dt ,并令()220d i t dt =,可解得极大点为 01ln 1n i t kn⎛⎫- ⎪⎝⎭= ………… 2.5从 2.5 式可以看出,当传染病强度k或人口总数n增加时,t都1将变小,即传染病高峰来得快;这与实际情况吻合;同时,如果知道了传染率kk由统计数据得到,即可预报传染病高峰t到来的时间,这对1于预防传染病是有益处的;模型 2.2 的缺点是:当t→∞时,由2.3式可知it→n,即最后人人都要得病;这显然与实袜情况不符;造成这个结果的原因是假设2 中假设一人得病后经久不愈,也不会死亡;为了得到与实际情况更吻合的模型,必须修改假设 2 ;实际上不是每个人得病后都会传染别人,因为其中一部份会被隔离,还有由于医治和人的身抵抗力会痊愈,有的人会死亡从而也就不再会传染给别人了;因此必须对模型作进一步的修改,建立新的模型;三. 模型的进一步完善从上面的分析我们看到模型 2.2 的假设 2 是不合理的;即不可能一人得病后会经久不愈,必有一部份人因医治或自身的免疫力,或是被隔离,或是死去而成为不会再继续传染给别人的第三类人;因此我们把人群分成三类:第一类由能够把疾病传染给别人的那些传染者组成的;用 It 表示 t 时刻第一类人数;第二类是由并非传染者但能够得病而成为传染者的那些人组成的,用 St 表示 t 时刻第二类人数;第三类包括患病后死去的人,病愈后具有长期免疫力的人,以及在得病后被隔离起来的人;用Rt 表示 t 时刻第三类人数;假设疾病传染服从下列法则:1 在所考虑的时期内人口总数保持在固定水平N,即不考虑出生及其他原因引起的死亡,以及人口的迁入迁出的情况;2 易受传染者人数St 的变化率正比于第一类的人数It 与第二类人粉St 的乘积;3 由第一类向第三类转变的速度与第一类的人数成正比; 在这三条假设情况下可得如下微分方程: dS rsIdt dI rsI I dt dR I dt λλ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩………… 2.6 其中r 、λ为比例常数,r 为传染率,λ为排除率;由方程2.6的三个方程相加得则 ()()()()S t I t R t N ++==常数人口总数故 ()()()Rt N S t I t =-- 因此只要求出 St 、It 即可求出 Rt ;方程组 2.6 的第一个和第二个方程与 Rt 无关;因此,由 dS rSI dt dI rSI I dtλ⎧=-⎪⎪⎨⎪=-⎪⎩ ………… 2.7得 1dI rSI I dS rSI rSλλ-==-+- ………… 2.8 积分得 ()ln I S S S c r λ=-++由初始条件:当()()00000,,t t I t I S t S ===时 并记 r λρ=代入上式可确定常数 000ln c I S S ρ=+-最后得 ()000ln S I S I S S S ρ=+-+ ………… 2.9下面我们讨论积分曲线 2.9 的性质,由2.8知所以当S <ρ时,IS 是S 的增函数,S >ρ时,IS 是S 的减函数;又有I0=-∞,()000,I S I => 由连续函数的中间值定理及单调性知,存在唯一点S ∞,00S S ∞<<,使得()00I S =, 而当 0S S S ∞≤< 时,IS >0 ;由 2.7 知I=0时,0,0dS dI dt dt==,所以(),0S ∞为方程组 2.7 的平衡点;当0t t ≥ 时,方程2.9的的图形如图2-3;当t 由0t 变到 ∞ 时,点St,It 沿曲线 2.9 移动,并沿S 减少的方向移动,因为 St 随时间的增加而单调减少;因此,如果0S 小于ρ,则 It 单调减少到零,St 单调减少到S ∞;所以,如果为数不多的一群传染者0I 分散在居民0S 中,且0S ρ<,则这种病会很快被消灭;如果0S ρ>,则随着 St 减少到ρ时,It 增加,且当S=ρ时,It 达到最大值;当St <ρ 时 It 才开始减少;由上分析可以得出如不结论:只有当居民中的易受传染者的人数超过阈值 r λρ=时传染病才会蔓延;用一般常识来检验上面的结论也是符合的;当人口拥挤,密度高,缺少应有的科学文化知识,缺乏必要的医疗条件,隔离不良而排除率低时,传染病会很快蔓延;反之,人口密度低,社会条件好,有良好的医疗条件和较好的管理而排除率高时,则传染病在有限范围内出现会很快被消灭;传染病学中的阈值定理 设0S r ρ=+,且假设r ρ同1相比是小量;并设最初传染者人数0I 很小,则最终患病人数为2r;即是易受传染者的人数最初比阈值高多少,那么最终就会比阈值低多少;这就是有名的传染病阈值定理;生物数学家Kermack 和Mekendrick 在1927年首先证明了这个定理证明从略根据阈值定理就可以由起初易受传染者的人数来估计最终患病的人数;这定理解释了研究人员长期以来难以解释的为什么对于某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数的现象;在传染病发生的过程中,不可能准确地调查每一天或每一星期的得病人数;因为只有那些来医院就医者才能被人知道他们得了病,并把他们隔离起来防止传染;因此,统计的记录是每一天或星期新排除者的人数,而不是新得病的人数;所以,为了把数学模型所预示的结果同疾病的实际情况进行比较,必须解出2.6中的第三个方程;因为 /dS dS dR rSI r S S dR dt dt I dS dR S λλρρ==-=-=-=-所以 ()0R S R S e ρ-=从而有 0R dR N R S e dt ρλ-⎛⎫=-- ⎪ ⎪⎝⎭………… 2.10 方程 2.10 虽是可分离变量的方程,但是不能用显式求解,如果传染病不严重,则R/ρ是小量,取泰勒级数前三项有从而 20200011212dR R R N R S dt S S R N S R λρρλρρ⎧⎫⎡⎤⎛⎫⎪⎪=---+⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭⎡⎤⎛⎫⎛⎫=-+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦其解 ()20011tanh 2S R t a a t S ρλφρ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦其中()1220010211tanh1S N SSaSaρρφρ-⎡⎤-⎛⎫=-+⎢⎥⎪⎝⎭⎢⎥⎣⎦⎛⎫=-⎪⎝⎭因此2221sec22dR ah a tdt Sλρλφ⎛⎫=-⎪⎝⎭………… 2.11方程 2.11 在dRtdt-平面上定义了一条对称钟形曲线,称为疾病传染曲线;疾病传染曲线很好地说明了实际发生的传染病的情况:每天报告的新病案的数目逐渐上升到峰值,然后又减少下来;Kermak和Mekendrick把 2.11 得到的值, 同取自1905年下半年至1906年上半年在印度孟买发生的瘟疫资料进行比较,他们假设其中t按星期计,在图2-4中的实际数字图中用“.”表示同理论曲线非常一致;这就表明模型2.6是在固定居民中传染病传播的准确而可靠的数学模型;对于传染病传播的数学模型还有人用随机模型,这不是本章的内容,读者可参看有关的其他资料;本节所介绍的传染病传播的数学模型的建模方法,是实际数学建模步骤和方法的典型例子;在实际建模过程中往往都是从简单的开始得出数学模型,再和实际比较逐步修改假设和模型,最终达到完善的地步;这是值得大家仿效和学习的;。
数学建模传染病模型例题一、传染病模型简介传染病模型是数学建模的一个重要分支,主要用于描述传染病在人群中的传播规律。
通过构建合适的数学模型,可以研究传染病的传播动力学、预测疫情发展趋势以及评估防控措施的效果。
本文将重点介绍几种常见的传染病模型及其应用。
二、传染病模型的类型及应用1.SIR模型SIR模型是一种基于微分方程的传染病模型,其中S、I、R分别代表易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
该模型通过描述易感者感染、感染者康复以及康复者不再易感的动态过程,揭示了传染病在人群中的传播规律。
SIR模型在分析疫情爆发、研究防控措施等方面具有广泛应用。
2.SEIR模型SEIR模型是在SIR模型基础上发展的一种传染病模型,其中E代表潜伏者(Exposed)。
与SIR模型相比,SEIR模型增加了潜伏期这一概念,使得模型更加符合实际情况。
该模型可以用于研究传染病的传播速度、预测疫情发展趋势以及评估疫苗的效果。
3.SI模型SI模型是一种简化的传染病模型,仅包含易感者和感染者两个群体。
该模型适用于分析短期传染病,如流感等。
通过研究易感者与感染者的动态关系,可以预测疫情爆发的时间和规模。
三、传染病模型的参数估计与预测传染病模型的参数估计是数学建模的关键环节,通常采用最大似然估计、贝叶斯估计等方法。
此外,基于传染病模型的预测技术在疫情防控中也具有重要意义。
通过构建时间序列模型,如ARIMA、SVM等,可以预测未来一段时间内疫情的发展趋势。
四、数学建模在传染病防控中的实际应用数学建模在传染病防控中具有广泛应用,如疫情监测、防控措施评估、疫苗研究等。
通过对传染病模型的深入研究,可以为政府部门提供科学依据,协助制定针对性的防控策略。
五、案例分析本文将结合具体案例,如我国2003年非典疫情、2020年新冠肺炎疫情等,详细阐述传染病模型在实际应用中的重要作用。
通过分析案例,可以加深对传染病模型的理解,为今后疫情防控提供借鉴。
传染病的传播模型与方法传染病是指可以通过接触、空气传播、食水传播等途径感染他人的疾病。
传染病的传播具有一定的规律性,了解传染病的传播模型和相应的控制方法对于防控传染病具有重要意义。
本文将探讨传染病的传播模型及其应对方法。
一、传染病传播的基本模型传染病的传播可以用数学模型来描述和研究。
其中,最简单的模型是SIR模型,即易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)。
这个模型假设人群分为三类,并描述了从易感者向感染者转变的过程,以及感染者康复的过程。
这个模型可以用如下的微分方程来表示:dS/dt = -βSIdI/dt = βSI - γIdR/dt = γI其中,S、I、R分别表示易感者、感染者和康复者的人数,β表示感染率,γ表示康复率。
通过解这个方程组,可以得到感染病例随时间的变化。
二、应对传染病的方法针对传染病的传播模型,我们可以采取一些控制方法来防止疫情的扩大。
1. 提高个人防护意识个人防护是控制传染病传播的重要手段。
人们应该养成勤洗手、佩戴口罩、尽量避免前往人群密集的场所等良好的卫生习惯,使得交叉感染的机会降低。
2. 加强疫苗接种疫苗接种是预防传染病最有效的方法之一。
政府和医疗机构应加强疫苗的研发、生产和接种工作,提高疫苗接种率,有效控制传染病的传播。
3. 追踪和隔离感染者追踪和隔离感染者是控制传染病传播的重要措施之一。
一旦发现感染者,应追踪其接触人员,并对接触者进行观察和隔离,以避免疫情的扩散。
4. 加强流行病学监测流行病学监测对于掌握疫情动态、制定及时的控制策略至关重要。
政府和卫生部门应加强对传染病的监测和统计工作,及时掌握疫情的变化趋势,为制定控制策略提供科学依据。
5. 暴发地区封控措施对于传染病的暴发地区,应采取封控措施,限制人员流动,减少人群聚集,以避免疫情的扩散。
三、结语传染病的传播模型及相应的控制方法是研究传染病防控的重要内容。
SIR传染病模型1.SIR传染病模型是⼀种常微分⽅程模型。
⽤于描述可治好,且治好之后不再感染的传染病的情况。
如⿇疹,疟疾等。
2.具体假设:它把⼀定封闭区域的全部⼈分成3种,分别是S,I,R。
S是易感种群,他们是没有感染的⼈,但易被感染。
I是已感种群,他们是当前感染的⼈,可成为康复者。
R是已愈种群,他们是之前感染,现已康复的⼈。
⽅程组1:S'=-bSI (1)I'=bSI-vI (2)R'=vI (3)(1)说明S减⼩的速率S'与S成正⽐,也就是易感种群更⼤,感染疾病的可能性更⼤。
⽽与I成正⽐这是显然的,另外b是感染系数,与疾病本⾝有关。
(2)bSI可以看成是输送到I的速率,vI可是看成从I输送到R的速率。
(3)R增⼤的速率与I成正⽐,这与实际也是⼀样的,v是康复系数,与治疗⽔平有关。
于是这⾥有(S+I+R)'=0,从⽽N=S+I+R是⼀个常数,它是区域⼈⼝的⼤⼩。
由⽅程组1,我们得到如下式⼦:I'/S'=-1+v/(bS)于是⼜有dI/dS=-1+v/(bS)从⽽有I=I(S)=-S+v/b*lnS+C(C是常数)通过求出I(S)的导数我们得到I(S)的稳定点是S=v/b3编程我们⽤matlab画出I(S)的图像:%先给出3个数据v0=.1;b0=.1;C0=3;I=@(S,v,b,C)-S+v/b*log(S)+C;%这⾥创建函数fplot(@(S)I(S,v0,b0,C0),[0 5])%这⾥画主图xlabel S% x轴ylabel I% y轴hold on; %还画其它fplot(@(x)0,[0 5])%画I=0这⼀直线x=[v0/b0;v0/b0];y=[0;I(v0/b0,v0,b0,C0)];line(x,y)%画S=v/b这⼀直线4分析由图像可以看出3个染病阶段,⼀开始S很⼤,I=0;然后S变⼩,I上升到峰值;最后S再变⼩,I回到0;可以看出,稳定点S=v/b的数值对传染病的蔓延程度肆虐与否起了⾄关重要的作⽤。
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。
关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
传染公式数学
传染公式是描述传染病传播动态的数学模型,通常使用微分方程
或差分方程的形式表示。
下面是一个常见的传染公式,称为SIR模型:dS/dt = -β * S * I
dI/dt = β * S * I - γ * I
dR/dt = γ * I
其中,S,I和R分别代表易感人群、感染人群和康复/移除人群的数量,t代表时间。
β是感染率,γ是康复率或移除率。
该模型假设人群总数固定,不考虑人口的出生和死亡,并且假设
所有人都有相同的感染和康复速率。
模型的基本思想是,感染人群的
数量受到易感人群和感染人群之间的相互作用的影响,康复/移除人群
的数量受到感染人群的影响。
拓展:
除了SIR模型,还有其他一些常见的传染病传播模型,如SEIR模型、SI模型、SIS模型等。
这些模型会更加复杂,考虑到更多的因素,例如潜伏期、免疫力衰减等。
传染公式还可以用于预测传染病的传播趋势和控制策略。
通过调
整模型中的参数,比如感染率和康复率,可以研究不同的控制措施对
传染病传播的影响,从而辅助制定科学的防控策略。
传染公式是数学模型在传染病研究中的应用之一,它能够提供对
传染病传播的定量描述和预测,为公众健康政策制定和流行病控制提
供科学依据。
传染病数学模型传染病是一种严重的公共卫生问题,它可以通过空气、水和食物等媒介传播,对人类社会造成极大的危害。
为了有效地控制传染病的传播,需要对传染病进行数学建模,以便更好地预测和控制其传播。
一、引言传染病数学模型是一种利用数学工具来模拟传染病的传播和扩散的模型。
通过建立数学模型,可以对传染病的传播过程进行模拟和分析,预测其未来的发展趋势,为制定有效的防控措施提供科学依据。
二、传染病数学模型的建立1、确定模型的基本假设和参数建立传染病数学模型需要先确定模型的基本假设和参数。
这些假设和参数包括:传染病的传播途径、潜伏期、感染期、易感人群的数量、人口的流动等。
2、建立数学方程基于上述假设和参数,可以建立传染病传播的数学方程。
常用的方程包括:SIR(易感者-感染者-康复者)模型、SEIR(易感者-暴露者-感染者-康复者)模型、SEIRD(易感者-暴露者-感染者-康复者-死亡者)模型等。
这些模型可以描述传染病的传播过程,并预测其未来的发展趋势。
三、传染病数学模型的应用1、预测和控制传染病的传播通过建立数学模型,可以对传染病的传播过程进行模拟和分析,预测其未来的发展趋势,为制定有效的防控措施提供科学依据。
例如,通过模拟不同防控措施的效果,可以找到最有效的防控策略,减少传染病的传播。
2、评估疫苗接种的效果通过建立数学模型,可以评估疫苗接种的效果。
例如,通过比较接种疫苗和不接种疫苗的传播情况,可以得出疫苗接种对控制传染病传播的作用。
四、结论传染病数学模型是一种有效的工具,可以帮助我们更好地理解和控制传染病的传播。
通过建立数学模型,可以对传染病的传播过程进行模拟和分析,预测其未来的发展趋势,为制定有效的防控措施提供科学依据。
通过评估疫苗接种的效果,可以为制定合理的疫苗接种策略提供支持。
标题:数学模型在数学论文指导传染病模型1中的应用在当今世界,传染病的爆发和传播已经成为全球面临的共同挑战。
为了有效控制疾病的传播,我们需要对传染病模型进行深入研究。
实验二:传染病模型1、SI 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
2、SIS 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数。
即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从染病者中治愈的人与病人数量成正比,比例系数为γ,单位时间内治愈的人不具有免疫,将再成为易感者。
3、SIR 模型的建立基于以下三个假设,求出平衡点、给出参数、图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从传染者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γ)(t I 。
求解过程1、SI 模型:由题目条件假设可以得到微分方程:K()()dIK S t I t dtβ=,又因为()()1S t I t +=, 令初始时刻病人的比例为0I ,则有:0()(1()),(0)dII t I t I I dtβ=-= %求平衡点,r 为有效传染率,x 病人比例 syms r xsolve('r*x*(1-x)','x') ans = 0 1 %方程求解syms i r t dsolve('Di=r*i*(1-i)','i(0)=i0','t')ans =1/(1-exp(-r*t)*(-1+i0)/i0) %绘制图形r=0.5,i0=0.01 fplot('1/(1-exp(-r*t)*(-1+i0)/i0)',[0,40]) fplot('1/(1-exp(-0.5*t)*(-1+0.01)/0.01)',[0,40]) function di=isf(t,i)di=0.5*i*(1-i); [t,i]=ode45(@isf,[0 40],[0.01]);plot(t,i)t ♓i♎♓ ♎♦图示4 SI 模型的i~t 曲线 图示5 SI 模型的di/dt~i 曲线2、SIS 模型 根据SI 模型及增加的假设条件,可得:)()()(t KI t I t KS dtdiKγβ-=,即: 0)0(),())(1)((I I t I t I t I dtdi=--=γβ 记 γβσ=, 则方程改写为 )]1([σβ---=i i i dt di%求解方程syms r b i t % b 为有效传染率,r 为治愈率dsolve('Di=b*i*(1-i)-r*i','i(0)=i0','t')ans =(b-r)/(b-exp(-(b-r)*t)*(-b+r+i0*b)/i0/(b-r)*b+exp(-(b-r)*t)*(-b+r +i0*b)/i0/(b-r)*r)%求平衡点syms x %(b=0.5,r=0.2)solve('0.5*x*(1-x)-0.2*x; ')ans =0..60000000000000000000000000000000%绘制图形function di=sisf(t,i)di=0.5*i*(1-i)-0.2*i;[t,i]=ode45(@sisf,[0 40],[0.01]);plot(t,i)t♓t ♓图示6 SIS 模型的i~t 曲线(σ>1) 图示7 SIS 模型的i~t 曲线(σ≤1)fplot('-0.5*x*[x-(1-1/20)]',[0,1]) fplot('-0.5*x*[x-(1-2)]',[ 0,1])i♎♓ ♎♦i♎♓ ♎♦图示8SIS 模型的di/dt~i 曲线(σ>1) 图示9SIS 模型的di/dt~i 曲线(σ≤1) 3、 SIR 模型模型的方程为{00()()(),(0)()(),(0)dIS t I t I t I I dtdSS t I t S S dtβγβ=-==-=function dx=sirf(t,x)dx=zeros(2,1);dx(1)=0.5*x(1)*x(2)-0.2*x(1); %x(1)表示i,x(2)表示s dx(2)=-0.5*x(1)*x(2);[t,x]=ode45(@sirf,[0 50],[0.01 0.99]);plot(t,x(:,1),t,x(:,2)),grid,pauseplot(x(:,2),x(:,1)),grid00.20.40.60.81s图示10 SIR模型的图形)(),(tStI图示11 SIR模型的相轨线备注:由于Matlab与Word连接不好,所绘制的图形上标的字符在Word中看不清楚。
传染病常微分方程传染病常微分方程是研究传染病传播过程的数学模型。
它可以帮助我们了解疾病的传播规律以及采取相应的防控措施。
传染病的传播过程可以用一个简单的常微分方程来描述。
假设人群总数为N,其中感染者的人数为I。
那么传染病的传播速率可以用以下公式来表示:dI/dt = β * I * (N - I) / N其中,β表示传染率,即一个感染者每天能传染给多少人。
(N - I)/N 表示还未感染的人群比例,乘以I表示与感染者接触的人数。
dI/dt 表示感染者人数的变化率。
通过求解这个微分方程,我们可以得到传染病的传播过程。
初始时刻,感染者的人数为I0,那么在未来的某个时刻t,感染者的人数为I(t)。
通过对微分方程进行求解,我们可以得到传染病的传播曲线。
传染病的传播过程是一个动态的过程。
在传染病暴发初期,感染者的人数急剧增加,传播速度很快。
但是随着时间的推移,感染者的人数逐渐增多,未感染者的人数减少,传播速度逐渐减慢。
最终,感染者的人数趋于一个稳定的值。
通过对传染病常微分方程的研究,我们可以得出以下结论:1. 传染率β越大,传播速度越快。
2. 人群总数N越大,传播速度越快。
3. 初始感染者人数I0越大,传播速度越快。
了解传染病的传播过程对于制定防控策略非常重要。
通过对传染病常微分方程的研究,我们可以预测传染病的传播趋势,及时采取相应的防控措施,减少感染者的人数,保护人民的生命安全。
传染病常微分方程是研究传染病传播过程的数学模型。
通过对这个模型的研究,我们可以了解传染病的传播规律,预测传播趋势,及时采取有效的防控措施。
这对于保护人民的生命安全具有重要意义。
我们应该重视传染病的防控工作,共同努力,共克时艰。
Advances in Applied Mathematics 应用数学进展, 2023, 12(6), 2700-2717 Published Online June 2023 in Hans. https:///journal/aam https:///10.12677/aam.2023.126272传染病的微分方程模型陆晓薇,陈敏风广东外语外贸大学数学与统计学院,广东 广州收稿日期:2023年5月13日;录用日期:2023年6月7日;发布日期:2023年6月14日摘要新冠肺炎自爆发以来,严重影响了人们正常的生活秩序,因此有必要利用数学模型将其传播特点数量化,研究其传播规律,并提供预测与防控的理论支撑。
本文将从最简单的SI 传染病数学模型入手,分析得出比较符合此次COVID-19病毒传播规律的SEIR 传染病数学模型。
在此基础上,提出具有检疫隔离、封城措施的新冠肺炎传播模型,另提出具有疫苗接种的传播模型,对比分析其各自优劣之处,给出适当的防疫建议。
关键词新型冠状病毒肺炎,SEIR 传染病数学模型,修正SEIR 传染病数学模型,新冠疫苗Differential Equation Model of Infectious DiseasesXiaowei Lu, Minfeng ChenSchool of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou GuangdongReceived: May 13th , 2023; accepted: Jun. 7th , 2023; published: Jun. 14th , 2023AbstractSince the outbreak of COVID-19, it has seriously affected people’s normal life order. Therefore, it is necessary to use mathematical models to quantify its transmission characteristics, study its trans-mission laws, and provide theoretical support for prediction and prevention and control. This pa-per will start with the simplest SI infectious disease mathematical model, and analyze the SEIR in-fectious disease mathematical model that is more consistent with the COVID-19 virus transmission law. On this basis, the transmission model of COVID-19 with quarantine isolation and city closure measures is proposed, and the transmission model with vaccination is also proposed. Their advan-tages and disadvantages are compared and analyzed, and appropriate epidemic prevention sug-陆晓薇,陈敏风gestions are given.KeywordsCOVID-19 Virus, SEIR Infectious Disease Mathematical Model, Modified SEIR Infectious Disease Mathematical Model, 2019-nCoV VaccineThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 绪论1.1. 研究背景及意义1.1.1. 选题背景2019年12月,武汉市陆续出现不明原因肺炎病人,2020年2月世界卫生组织将其命名为“COVID-19”。
seir模型公式标题:深入解析SEIR传染病模型及其公式应用一、引言SEIR模型,全称为易感(Susceptible)、暴露(Exposed)、感染(Infectious)和移除(Recovered)模型,是一种广泛应用在流行病学研究中的数学模型,用于描述传染病在人群中的传播动态。
该模型通过将人群分为易感者、潜伏期感染者、传染期患者以及康复或死亡者四类群体,并通过特定的数学公式来刻画各类人群之间的转换关系。
二、SEIR模型基本公式SEIR模型的基本微分方程组如下:1. 易感人群变化率:dS/dt = -β * S * I / N2. 潜伏期感染者变化率:dE/dt = β * S * I / N - α * E3. 传染期患者变化率:dI/dt = α * E - γ * I4. 康复或死亡者变化率:dR/dt = γ * I其中,- S(t)代表时刻t时的易感人群数量;- E(t)代表时刻t时的潜伏期感染者数量;- I(t)代表时刻t时的传染期患者数量;- R(t)代表时刻t时的康复或死亡者数量;- N为总人口数,即S+E+I+R保持不变;- β表示疾病接触率,即单位时间内一个易感者与一个感染者接触并被感染的概率;- α表示潜伏期结束转为传染期的速度,即潜伏期平均持续时间的倒数;- γ表示康复或死亡率,即患者平均传染期的倒数。
三、SEIR模型的应用价值SEIR模型通过以上公式精确量化了传染病在不同阶段的人群动态,有助于预测疾病的发展趋势、评估防控措施的效果、指导公共卫生政策制定等。
特别是在COVID-19疫情期间,SEIR模型及变种模型在全球范围内的疫情防控策略制定中发挥了重要作用。
四、结论SEIR模型作为一种强大的理论工具,在理解和预测传染病传播动态方面具有不可替代的价值。
通过对模型公式的理解与运用,我们可以更科学、准确地分析传染病的发展规律,为制定有效的疫情防控策略提供有力的数据支持。
同时,结合实际情况对模型进行改进和扩展也是未来研究的重要方向。
t微分方程建模(传染病模型)的求解。
1、模型1:SI 模型。
假设:(1)t 时刻人群分为易感者(占总人数比例的()s t )和已感染者(占总人数比例的()y t ) (2)每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。
分析:根据假设,每个患者每天可以使()s t λ个健康者变为病人,因为病人数为()Ny t ,所以每天共有()()Ns t y t λ个健康者变为病人。
即:dyNNsy dtλ=,且()()1s t y t +=,设初始时刻病人比例为b ,则: (1)(0)dyy y dty bλ⎧=-⎪⎨⎪=⎩,用MATLAB 解此微分方程: >> syms a b>> f=dsolve('Dy=a*y*(1-y)','y(0)=b','t') f =1/(1-exp(-a*t)*(-1+b)/b) %11()1111(1)t ty t b e e b bλλ--==--+- 当0.09,0.1b λ==时,分别在坐标系oty 中作出()y t 的图像,坐标系oyy '中作出(1)y y y λ'=-的图像,>> a=0.1;>> b=0.09;>> h=dsolve('Dy=a*y*(1-y)','y(0)=b','t') h =1/(1-exp(-a*t)*(-1+b)/b) >> f=subs(h) f =1/(1+91/9*exp(-1/10*t)) ()y t 的图像>> ezplot(f,[0,60]) >> grid on>> figure (2)>> fplot('0.1*y*(1-y)',[0,1])>> grid on(1)y y y λ'=-的图像模型分析:(1)当12y =时,dydt达到最大值,则此时病人增速最快。
(2)当t →∞时,()1y t →,即所有的人被传染,全部变为病人,这显然是不符合实际的,其原因是没有考虑到病人可以治愈,人群中的健康者只能变为病人,而病人不会变为健康者。
2、模型2:SIS 模型。
假设:(1)t 时刻人群分为易感者(占总人数比例的()s t )和已感染者(占总人数比例的()y t ) (2)每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。
(3)病人每天被治愈的占病人总数的比例为μ,称为日治愈率,显然1μ为这种传染病的平均传染期。
则dyNNsy Ny dtλμ=-。
则建立微分方程模型为: (1)(0)dyy y ydty b λμ⎧=--⎪⎨⎪=⎩用MATLAB 解此微分方程:>> h2=dsolve('Dy=a*y*(1-y)-c*y','y(0)=b','t') h2 =(a-c)/(a-exp(-(a-c)*t)*(-a+c+b*a)/b/(a-c)*a+exp(-(a-c)*t)*(-a+c+b*a)/b/(a-c)*c )>> pretty(h2)/ exp(-(a - c) t) (-a + c + b a) a (a - c)/|a - -------------------------------- \ b (a - c)exp(-(a - c) t) (-a + c + b a) c\ + --------------------------------| b (a - c) /化简:()().().()()()a c t a c t a ce a c ba a e a c ba c a b a c b a c ------++-++-+--2()()()().().()a c t a c t b a c ab a c e a c ba e a c ba c -----=---+++-++ 2()()()().()a c tb ac ab a c c a e a c ba ---=-+---++1()2()().()()a c t ab a c c a e a c ba b a c ---⎡⎤-+---++=⎢⎥-⎣⎦1()1()a c t a a e a c b a c ---⎡⎤=+-⎢⎥--⎣⎦即:1()1()()t y t e b λμλλλμλμ---⎡⎤=+-⎢⎥--⎣⎦。
当(1)λμ≠时,1()1()()t y t e b λμλλλμλμ---⎡⎤=+-⎢⎥--⎣⎦;(2)λμ=时,>> clear>> h2=dsolve('Dy=a*y*(1-y)-a*y','y(0)=b','t') h2 =1/(a*t+1/b)即:11()y t t b λ-⎡⎤=+⎢⎥⎣⎦。
定义λσμ=:一个传染期内每个病人有效接触的平均人数。
则:11,(1)()0(1)y σσσ⎧->⎪∞=⎨⎪≤⎩,用MATLAB 作图像:令0.01λ=,0.05μ=,0.7b =(0.21σ=<) >> clear>> a=0.01;b=0.7;c=0.05;>> h2=dsolve('Dy=a*y*(1-y)-c*y','y(0)=b','t'); >> h22=subs(h2)t3/20/(3/10-3/35 exp(-3/20 t))t3/20/(3/10+1/5 exp(-3/20 t))h22 =-1/25/(1/100-47/700*exp(1/25*t)) >> ezplot(h22,[0,120]) >> grid on0.21σ=<的图像令0.3λ=,0.15μ=,0.7b =或0.3b =分别作图(21σ=>) >> a=0.3;b=0.7;c=0.15;>> h2=dsolve('Dy=a*y*(1-y)-c*y','y(0)=b','t'); >> h23=subs(h2) h23 =3/20/(3/10-3/35*exp(-3/20*t)) >> subplot(2,1,1)>> ezplot(h23,[0,25])>> grid on>> b=0.3; >> h24=subs(h2); >> subplot(2,1,2) >> ezplot(h24,[0,25])grid on21σ=>的图像(上面0.7b =,下面0.3b =)模型分析:(1)1λσμ=≤时,病人比例越来越少,最终趋于零,这是因为传染期内经有效接触从而使健康者变为病人数不超过原来病人数的缘故。
(2)1λσμ=>时,病人比例()y t 增减性是由b 来决定,其极限值1()1y σ∞=-随着σ的增加而增加。
3、模型3:SIR 模型。
假设:(1)人群分为健康者,其比例()s t 、病人()i t 、病愈免疫的移出者()r t 。
(2)病人的日接触率为λ,日治愈率为μ,传染期接触数为λμ。
则()()()1s t i t r t ++=, 对于病愈者而言,dry dtμ=, 设初始时刻的健康者和病人的比例为0s 和0y ,则建立微分方程模型为:00(0),(0)dysy y dt ds sy dt y y s s λμλ⎧=-⎪⎪⎪=-⎨⎪==⎪⎪⎩由于此微分方程组的解析解无法求出,则转为相平面sy 上讨论解的性质。
相轨线的定义域(,)s y D ∈应为:{}(,)0,0,1D s y s y s y =≥≥+≤,由方程组消去dt 并将λσμ=得: 0011s s dy ds s y y σ=⎧=-⎪⎨⎪=⎩用matlb 求解:>> dsolve('Dy=1/cma/s-1','y(s0)=y0','s') ans =1/cma*log(s)-s-1/cma*log(s0)+s0+y0>> pretty(ans)log(s) log(s0)------ - s - ------- + s0 + y0 cma cma 即0001()()lnsy s s y s s σ=+-+(相轨线) 定义域内,1σ=时,00(,)y s 分别取(0.3,0.65),(0.4,0.35),(0.5,0.45),(0.7,0.25)s1-s在同一直角坐标系中作出其图像: >> cma=1;y0=0.3;s0=0.65; >> clear>> f=dsolve('Dy=1/cma/s-1','y(s0)=y0','s'); >> cma=1;y0=0.3;s0=0.65; >> f1=subs(f);>> ezplot(f1,[0,1]) >> hold on>> y0=0.4;s0=0.35; >> f2=subs(f);>> ezplot(f2,[0,1]) >> hold on>> y0=0.5;s0=0.45; >> f3=subs(f);>> ezplot(f3,[0,1]) >> hold onSIR 模型的相轨线>> y0=0.7;s0=0.25; >> f4=subs(f);>> ezplot(f4,[0,1]) >> hold on>> ezplot('1-s',[0,1]) >> grid on模型分析:(1)不论初始条件0s ,0y 如何,病人比例越来越少,最终消失。
(2)最终未被感染的健康者的比例是s ∞,在0001()()lnsy s s y s s σ=+-+中。
令()0y s ∞=时,0001()ln0s s y s s σ∞∞+-+=的单根即为s ∞:最终未被感染的健康者的比例。