当前位置:文档之家› 中考数学综合练习题

中考数学综合练习题

中考数学综合练习题
中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF,

①求证:AF=BE,并求∠APB的度数;

②若AE=2,试求AP?AF的值;

(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长.

43.合作学习

如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数

的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题:

①该反比例函数的解析式是什么?

②当四边形AEGF为正方形时,点F的坐标是多少?

(1)阅读合作学习内容,请解答其中的问题;

(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”

针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.

44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘

制成如下统计图.

根据统计图,解答下列问题:

(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定?

45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?

(2)若用餐的人数有90人,则这样的餐桌需要多少张?

46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0).

(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;

(2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可).

47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为

(1)当时,求的值.

(2)求关于的函数解析式.

(3)①若时,求的值;

②当时,设,猜想与的数量关系并证明.

48.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形” .

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.

(2)在探究“等对角四边形”性质时:

①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;

②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等” .你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.

(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

49.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5小时后(包括 1.5

小时)与可近似地用反比例函数刻画(如图所示).

(1)根据上述数学模型计算:

①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?

②当时,,求的值.

(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

50.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元。

(1)求每辆A型车和B型车的售价各为多少元。

(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元。则有哪几种购车方案?

答案

42.考点:等腰三角形

试题解析:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求

得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目

不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,AB=AC,∠BAE=∠CAF,AE =CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°-∠APE=120°.②∵∠C=∠APE=60°,

∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP?AF=12, (2)若AF=BE,

有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠ABP=30°,∴∠AOB=120°,又∵AB=6,∴OA=2,点P的路径是l=

.②当AE=BF时,点P的路径就是过点B向AC做的垂线段的长度;因

为等边三角形ABC的边长为6,所以点P的路径的长度为:.所以,点P经过的

路径长为或3.

答案:(1)①证明,120°;②12;(2).

43.考点:反比例函数的实际应用

试题解析:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、矩形的性质和图形全等的性质、相似的性质;理解图形与坐标的关系;会解一元二次方程.(1)①先根据矩形的性质得到D(2,3),然后利用反比例函数图象上点的坐标特征计算出k=6,

则得到反比例函数解析式为y=;②设正方形AEGF的边长为a,则AE=AF=6,根据坐标

与图形的关系得到B(2+a,0)),A(2+a,3),所以F点坐标为(2+a,3-a),于是利用反比例函数图象上点的坐标特征得(2+a)(3-a)=6,然后解一元二次方程可确定a的值,从而得到F点坐标;(2)当AE>EG时,假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,则得到F点坐标为(3,3),根据反比例函数图象上点的坐标特征可判断点F(3,

3)不在反比例函数y=的图象上,由此得到矩形AEGF与矩形DOHE不能全等;当AE>

EG时,若矩形AEGF与矩形DOHE相似,根据相似的性质得AE:OD=AF:DE,即,设AE=3t,则AF=2t,得到F点坐标为(2+3t,3-2t),利用反比例函数图象上点的坐标特征得(2+3t)(3-2t)=6,解得t1=0(舍去),t2=,则AE=3t=,于是得到相似比=.解:(1)①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=(x>0);②设正方形AEGF的边长为a,则AE=AF=a,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3-a),把F(2+a,3-a)

代入y=得(2+a)(3-a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2);(2)①当

AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE 全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(3,3),而3×3=9≠6,

∴F点不在反比例函数y=的图象上,∴矩形AEGF与矩形DOHE不能全等;②当AE>EG

时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴设AE=3t,则AF=2t,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,

3-2t),把F(2+3t,3-2t)代入y=得(2+3t)(3-2t)=6,解得t1=0(舍去),t2=,∴AE=3t=,∴相似比=.

答案:(1)①;②;(2)这两个矩形不能全等,这两个矩形的相似比为.

44.考点:平均数、众数、中位数统计图的分析

试题解析:本题考查了优秀率、平均数和方差等概念以及运用.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.解:(1)总人数:(5+6)÷55%=20(人),第三次的优秀率:(8+5)÷20×100%=65%,第四次乙组的优秀人数为:20×85%-8=17-8=9(人).补全条形统计图,如图所示:

(2)=(6+8+5+9)÷4=7,S2乙组=×[(6-7)2+(8-7)2+

(5-7)2+(9-7)2]=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.

答案:(1)65%,(2)甲组.

45.考点:代数式及其求值一次方程及其解法

试题解析:此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可;(2)由(1)中的规律列方程解答即可.解:(1)1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;所以4张长方形餐桌的四周可坐4×4+2=18人,8张长方形餐桌的四周可坐4×8+2=34人;(2)设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.答案:(1)18,34;(2)22.

46.考点:轴对称与轴对称图形

试题解析:此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.解:(1)如图②所示,C点的位置为(-1,2),A,O,

B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;(2)如图①所示:P(0,-1),P′(-1,-1)都符合题意.

答案:(1)答案见图解(答案不唯一);(2)(2,1),(0,-1)(答案不唯一).

47.考点:二次函数的图像及其性质全等三角形的性质相似三角形判定及性质

试题解析:本题考查了二次函数的综合应用,涉及了三角形的面积、比例的性质及相似三角

形的判定与性质、全等三角形的性质,(1)首先可得点A的坐标为(m,m2),继而可得

点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;(2)分两种情况讨论,(I)当0<m<2时,将BE?DO转化为AE?BO,求解;(II)当m>2时,由(I)的解法,可得S关于m的函数解

析式;(3)①首先可确定点A的坐标,根据,可得

,从而可得,代入即可得出k的值;②可得

,因为点A的坐标为(m,m2),S=m,代入可得k与m

的关系.解: :(1)∵点A在二次函数y=x2的图象上,AE⊥y轴于点E,且AE=m,∴点

A的坐标为(m,m2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),

∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,

∴(2)(I)当0<m<2时(如图1),∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴,即BE?DO=AE?BO=2m.∴S=BE?DO=×2m=m;(II)当m>2时(如图2),同(I)解法得:S=BE?DO=AE?OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接

AD,∵△BED的面积为,∴S=m=,∴点A的坐标为(),

∵∴S△ADF=k?S△BDF S△AEF=k?S△BEF,

∴∴=②k

与m之间的数量关系为k=m2,如图4,连接AD,

∵∴S△ADF=k?S△BDF S△AEF=k?S△BEF,

∴∵点A的坐标为(m,m2),S=m,∴.

答案:(1);(2)S=m(m>0且m≠2);(3)①,②(m>2)

48.考点:四边形

试题解析:本题主要考查了四边形的综合题,(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.证明::(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°-70°-80°-80°=130°;

(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,

∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如

图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,

∠DAB=60°,AB=5,∴AE=10,∴DE=AE-AD=10-4=6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB

于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,

∴BE=AB-AE=5-2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=,∴AC=.

答案:(1)∠D=80°,∠C=130°(2)①证明见解析过程,②不正确,反例见解析过程;(3)

49.考点:反比例函数的实际应用二次函数的实际应用

试题解析:此题主要考查了反比例函数与二次函数综合应用,(1)①利用y=-200x2+400x=-200(x-1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解:(1)①y=-200x2+400x=-200(x-1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,

y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二

天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00

不能驾车去上班.

答案:(1) ①喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②k=225(2) 不能驾车上班,理由见解析过程

50.考点:一元一次不等式的应用一次方程(组)的应用

试题解析:本题考查了一元一次不等式组的应用和二元一次方程组的应用.(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6-a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解:(1)每辆A型车和B型车的售价分别是x万

元、y万元.则解得

.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A 型车a辆,则购买B型车(6-a)辆,则依题意得

,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.

答案:(1)A型车为18万元,B型车为26万元;(2)共有两种方案:方案一:购买2辆A 型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

数学中考总复习基础测试题(全套)

九年级数学复习测试四《代数的初步知识》基础复习测试 一填空题(本题20分,每题4分): 1.正方形的边长为a cm,若把正方形的每边减少1cm,则减少后正方形的面积为 cm2; 2.a,b,c表示3个有理数,用 a,b,c 表示加法结合律是; 3.x的与y的7倍的差表示为; 4.当时,代数式的值是; 5.方程x-3 =7的解是. 答案: 1.(a-1)2; 2.a+(b+c)=(a+b)+c; 3. x-7y; 4.1; 5.10. 二选择题(本题30分,每小题6分): 1.下列各式是代数式的是…………………………………………………………()(A)S =πr (B)5>3 (C)3x-2 (D)a<b+c 2.甲数比乙数的大2,若乙数为y,则甲数可以表示为………………………()(A)y+2 (B)y-2 (C)7y+2 (D)7y-2 3.下列各式中,是方程的是………………………………………………………()(A)2+5=7 (B)x+8 (C)5x+y=7 (D)ax+b 4.一个三位数,个位数是a,十位数是b,百位数是c,这个三位数可以表示为()

(A)abc (B)100a+10b+c (C)100abc (D)100c+10b+a 5.某厂一月份产值为a万元,二月份增产了15%,二月份的产值可以表示为()(A)(1+15%)× a 万元(B)15%×a 万元 (C)(1+a)×15% 万元(D)(1+15%)2 ×a 万元 答案: 1.C;2.A;3.C;4.D;5.A. 三求下列代数式的值(本题10分,每小题5分): 1.2×x2+x-1 (其中x =); 解:2×x2+x-1 = =2×+-1=+-1=0; 2.(其中). 解:==. 四(本题10分) 如图,等腰梯形中有一个最大的圆,梯形的上底为5cm,下底为7cm,圆的半径为3cm,求图中阴影部分的面积. =×( a+b )×h =×( 5+7)×6 = 36(cm2). 圆的面积为 (cm2). 所以阴影部分的面积为

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

最新数学中考总复习基础题分类练习题库模拟试卷大全

最新中考数学总复习资料大全 中考数学基础题分类训练+10套中考数学模拟试卷及答案 (均为Word版,可修改)

中考数学基础题分类训练(一) 实数的混合运算 一、选择题 1.计算(-2)0+9÷(-3)的结果是( ) A.-1 B.-2 C.-3 D.-4 2.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( ) A.+B.-C.×D.÷ 3.计算(1 2 - 5 6 + 5 12 - 7 24 )×24的结果是( ) A.-5 B.-4 C.-8 D.8 4.计算(-12)×16-16÷23的结果是( ) A.0 B.14 C.-4 D.-18 5+的结果是( ) A.6 B.C.+6 D.12 6( ) A.6至7之间B.7至8之间C.8至9之间D.9至10之间 7.计算-22+(|-3|2-42× 1 16 -8.5)÷(- 1 2 )3的结果是( ) A.0 B.1 C.2 D.3 二、填空题 8.计算:-0.252÷(-1 2 )4×(-1)27=______. 9.计算:(-2980 81 )×(-9)=______. 10.计算:-13×2 3 -0.34× 2 7 + 1 3 ×(-13)- 5 7 ×0.34=______. 112-12|+(-1 3 )0=______. 12.计算:=______. 13.若a+1,则a3-5a+2015=______. 三、解答题 14.计算6÷(-1 2 + 1 3 ). 方方同学的计算过程如下:原式=6÷(-1 2 )+6÷ 1 3 =-12+18 =6. 请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2020中考数学 计算基础专题练习(含答案)

2020中考数学 计算基础专题练习(含答案) 一、单选题(共有7道小题) 1.下列运算正确的是( ) A .21-= a a B .22+=a b ab C .()347=a a D .235()()--=-a a a g 2.关于x 的分式方程11 m x =-+的解是负数,则m 的取值范围是( ) A .1m >- B .10m m >-≠且 C .1m ≥- D .10m m ≥-≠且 3.关于x 的方程的解是( ) A . B . C . D . 4.下列计算正确的是( ) A .2242a a a += B .4961x x x =-+ C .()326328x y x y =-- D .632a a a ÷= 5. 若2a b ab +==,则22a b +的值为( ) A. 6 B. 4 C. 6.解分式方程 22311x x x ++=--时,去分母后变形正确的为( ) A.()()2231x x ++=- B.()2231x x +=-- C.()223x -+= D.()()2231x x -+=- 7.若1m n -=-,则()222m n m n --+的值是( ) A .3 B .2 C .1 D .-1 二、多选题(共有1道小题) 8.()()5353p p ---= ; 三、填空题(共有8道小题) 9.分解因式:22 31212a ab b -+ =__________. 10.计算:327232a a a a ?-÷= . 12.小明上周三在超市恰好用10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比上周三便宜0.5元,结果小明只比上次多用了2元钱,却比上次多211 x =-4x =3x =2x =1x =

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学基础训练题及答案1.doc

2019-2020 年中考数学基础训练题及答案 1 班级 姓名 学号 成绩 一、精心选一选 1.图( 1)所示几何体的左视图 是( B ) ... 图( 1) A B C D 2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排 3 块分别写有“ 20”、“ 08”、“北 京”的字块.假如小孩将字块横着正排,则该小孩能够排成“ 2008 北京”或“北京 2008” 的概率是( C ) A. 1 B. 1 C. 1 D. 1 6 4 3 2 3 .一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为 6.1 104 千米和 6.10 104 千米,这两组数据之间( A ) y A.有差别 B.无差别 l ′ 4 C.差别是 0.001 104 千米 l 3 D.差别是 100 千米 2 1 4.如图,把直线 l 向上平移 2 个单位得到直 O 线 l ′ l ′ 2 1 x ,则 的表达式为( D ) 1 2 A. y x 1 3 2 4 B. y 1 x 1 2 1 1 C. y 1 D. y 1 x x 2 2 5.汽车以 72 千米 /时的速度在公路上行驶,开向寂静的山谷, 驾驶员揿一下喇叭, 4 秒后听 到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为 340 米 /秒.设听到回响时, 汽车离山谷 x 米,根据题意,列出方程为( A ) A. C. 2x 4 20 4 340 2x 4 72 4 340 B. D. 2x 4 72 4 340 2x 4 20 4 340 6.某公园计划砌一个形状如图( 1)所示的喷水池,后来有人建议改为图( 2)的形状,且 外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( C ) A.图( 1)需要的材料多 B.图( 2)需要的材料多 C.图( 1)、图( 2)需要的材料一样多

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

人教版中考数学总复习专项练习

(一) 数与式的化简与求值 (参考用时:40分钟) 一、实数的混合运算 1.(2019长沙)计算:|-√2|+1 2 -1-√6÷√3-2cos 60°. 2.(2019滨州)计算:-1 2-2-|√3-2|+√3 2 ÷√1 18 . 3.(2019巴中)计算-1 2 2+(3-π)0+|√3-2|+2sin 60°-√8. 4.计算:√(1-√2)2-1-√2 20+sin 45°+1 2 -1.

5.计算:|3.14-π|+3.14÷ √3 2 +10-2cos 45°+(√2-1)-1+(-1)2 019. 二、整式的化简与求值 1.如果x-2y=2 019,求[(3x+2y )(3x-2y )-(x+2y )(5x-2y )]÷2x 的值. 2.先化简,再求值: (m-n )(m+n )+(m+n )2-2m 2,其中m ,n 满足方程组{m +2n =1, 3m -2n =11. 3.已知实数a 是1 2x 2-5 2x-7=0的根,不解方程,求多项式(a-1)(2a-1)-(a+1)2+1的值.

三、分式的化简与求值 1.(2019长沙)先化简,再求值: a+3a -1-1 a -1 ÷ a 2+4a+4 a 2-a ,其中a=3. 2.(2019黄石)先化简,再求值: 3 x+2 +x-2÷ x 2-2x+1 x+2 ,其中|x|=2. 3.先化简,再求值: x -1x -x -2x+1 ÷2x 2-x x 2+2x+1 ,其中x 满足x 2-2x-2=0. 4.(2019常德)先化简,再选一个合适的数代入求值: x -1x 2+x -x -3 x 2-1 ÷ 2x 2+x+1 x 2-x -1.

相关主题
相关文档 最新文档