承载力及桩数、抗浮计算
- 格式:doc
- 大小:72.00 KB
- 文档页数:5
地下室抗浮计算整体抗浮计算:抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。
单位面积水浮力:6.5x10=65KN单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67整体抗浮满足要求,底板局部抗浮计算:抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。
单位面积水浮力:6.5x10=65KN单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。
防水底板需计算配筋。
单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8=40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8=967.6KNm柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9)=483.8/(0.9*360*1150*3.9)=332.9mm <Ф16@200As1’=M1/(0.9*fy*h1’*3.9)=483.8/(0.9*360*350* 3.9)=1039mm 基本等于Ф16@200上部为:As2=M2/(0.9*fy*h2* 3.9)=212.9/(0.9*360*350* 3.9)=481.4mm <Ф16@200上式配筋计算中分母3.9为柱下板带宽度。
原设计防水底板配筋满足要求。
独立基础计算阶梯基础计算项目名称_____________日期_____________设计者_____________校对者_____________一、设计依据《建筑地基基础设计规范》 (GB50007-2002)①《混凝土结构设计规范》 (GB50010-2002)②二、示意图三、计算信息构件编号: JC-1 计算类型: 验算截面尺寸1. 几何参数台阶数n=3矩形柱宽bc=600mm 矩形柱高hc=600mm基础高度h1=300mm基础高度h2=400mm基础高度h3=500mm基础长度b1=750mm 基础宽度a1=750mm基础长度b2=725mm 基础宽度a2=725mm基础长度b3=725mm 基础宽度a3=725mm2. 材料信息基础混凝土等级: C35 ft_b=1.57N/mm2fc_b=16.7N/mm2柱混凝土等级: C40 ft_c=1.71N/mm2fc_c=19.1N/mm2钢筋级别: RRB400 fy=360N/mm23. 计算信息结构重要性系数: γo=1.0基础埋深: dh=1.500m纵筋合力点至近边距离: as=50mm基础及其上覆土的平均容重: γ=20.000kN/m3最小配筋率: ρmin=0.150%4. 作用在基础顶部荷载标准值考虑水浮力作用:水浮力标准值为:65-31.2=33.8Kpa覆土及自重荷载标准值为:1.6x18+0.4x25=38.8Kpa活荷载标准值为:4KPaFgk=304.000kN Fqk=243.400kNMgxk=0.000kN*m Mqxk=0.000kN*mMgyk=0.000kN*m Mqyk=0.000kN*mVgxk=0.000kN Vqxk=0.000kNVgyk=0.000kN Vqyk=0.000kN永久荷载分项系数rg=1.20可变荷载分项系数rq=1.40Fk=Fgk+Fqk=304.000+243.400=547.400kNMxk=Mgxk+Mqxk=0.000+(0.000)=0.000kN*mMyk=Mgyk+Mqyk=0.000+(0.000)=0.000kN*mVxk=Vgxk+Vqxk=0.000+(0.000)=0.000kNVyk=Vgyk+Vqyk=0.000+(0.000)=0.000kNF1=rg*Fgk+rq*Fqk=1.20*304.000+1.40*243.400=705.560kNMx1=rg*Mgxk+rq*Mqxk=1.20*(0.000)+1.40*(0.000)=0.000kN*mMy1=rg*Mgyk+rq*Mqyk=1.20*(0.000)+1.40*(0.000)=0.000kN*mVx1=rg*Vgxk+rq*Vqxk=1.20*(0.000)+1.40*(0.000)=0.000kNVy1=rg*Vgyk+rq*Vqyk=1.20*(0.000)+1.40*(0.000)=0.000kNF2=1.35*Fk=1.35*547.400=738.990kNMx2=1.35*Mxk=1.35*(0.000)=0.000kN*mMy2=1.35*Myk=1.35*(0.000)=0.000kN*mVx2=1.35*Vxk=1.35*(0.000)=0.000kNVy2=1.35*Vyk=1.35*(0.000)=0.000kNF=max(|F1|,|F2|)=max(|705.560|,|738.990|)=738.990kNMx=max(|Mx1|,|Mx2|)=max(|0.000|,|0.000|)=0.000kN*mMy=max(|My1|,|My2|)=max(|0.000|,|0.000|)=0.000kN*mVx=max(|Vx1|,|Vx2|)=max(|0.000|,|0.000|)=0.000kNVy=max(|Vy1|,|Vy2|)=max(|0.000|,|0.000|)=0.000kN5. 修正后的地基承载力特征值fa=135.000kPa四、计算参数1. 基础总长 Bx=2*b1+2*b2+2*b3+bc=2*0.750+2*0.725+2*0.725+0.600=5.000m2. 基础总宽 By=2*a1+2*a2+2*a3+hc=2*0.750+2*0.725+2*0.725+0.600=5.000m3. 基础总高 H=h1+h2+h3=0.300+0.400+0.500=1.200m4. 底板配筋计算高度 ho=h1+h2+h3-as=0.300+0.400+0.500-0.050=1.150m5. 基础底面积 A=Bx*By=5.000*5.000=25.000m26. Gk=γ*Bx*By*dh=20.000*5.000*5.000*1.500=750.000kNG=1.35*Gk=1.35*750.000=1012.500kN五、计算作用在基础底部弯矩值Mdxk=Mxk-Vyk*H=0.000-0.000*1.200=0.000kN*mMdyk=Myk+Vxk*H=0.000+0.000*1.200=0.000kN*mMdx=Mx-Vy*H=0.000-0.000*1.200=0.000kN*mMdy=My+Vx*H=0.000+0.000*1.200=0.000kN*m六、验算地基承载力1. 验算轴心荷载作用下地基承载力pk=(Fk+Gk)/A=(547.400+750.000)/25.000=51.896kPa 【①5.2.1-2】因γo*pk=1.0*51.896=51.896kPa≤fa=135.000kPa轴心荷载作用下地基承载力满足要求因Mdyk=0, Mdxk=0Pkmax=(Fk+Gk)/A=(547.400+750.000)/25.000=51.896kPa七、基础冲切验算1. 计算基础底面反力设计值因 Mdx=0 并且 Mdy=0Pmax=Pmin=(F+G)/A=(738.990+1012.500)/25.000=70.060kPaPjmax=Pmax-G/A=70.060-1012.500/25.000=29.560kPa2. 验算柱边冲切YH=h1+h2+h3=1.200m, YB=bc=0.600m, YL=hc=0.600mYHo=YH-as=1.150m2.1 因800<YH<2000 βhp=0.9672.2 x方向柱对基础的冲切验算x冲切位置斜截面上边长bt=YB=0.600mx冲切位置斜截面下边长bb=YB+2*YHo=2.900mx冲切不利位置bm=(bt+bb)/2=(0.600+2.900)/2=1.750mx冲切面积(By≥Bx)Alx=(By/2-YL/2-YHo)*Bx-(Bx/2-YB/2-YHo)2=(5.000/2-0.600/2-1.150)*5.000-(5.000/2-0.600/2-1.150)2=4.148m2x冲切截面上的地基净反力设计值Flx=Alx*Pjmax=4.148*29.560=122.598kNγo*Flx=1.0*122.598=122.60kNγo*Flx≤0.7*βhp*ft_b*bm*YHo=0.7*0.967*1.57*1750*1150=2138.01kNx方向柱对基础的冲切满足规范要求2.3 y方向柱对基础的冲切验算y冲切位置斜截面上边长at=YL=0.600my冲切位置斜截面下边长ab=YL+2*YHo=2.900my冲切不利位置am=(at+ab)/2=1.750my冲切面积(Bx≥By)Aly=(Bx/2-YB/2-YHo)*By-(By/2-YL/2-YHo)2=(5.000/2-0.600/2-1.150)*5.000-(5.000/2-0.600/2-1.150)2=4.148m2y冲切截面上的地基净反力设计值Fly=Aly*Pjmax=4.148*29.560=122.598kNγo*Fly=1.0*122.598=122.60kNγo*Fly≤0.7*βhp*ft_b*am*YHo=0.7*0.967*1.57*1750*1150=2138.01kNy方向柱对基础的冲切满足规范要求3. 验算h2处冲切YH=h2+h3=0.900mYB=bc+2*b3=2.050mYL=hc+2*a3=2.050mYHo=YH-as=0.850m3.1 因800<YH<2000 βhp=0.9923.2 x方向变阶处对基础的冲切验算x冲切位置斜截面上边长bt=YB=2.050mx冲切位置斜截面下边长bb=YB+2*YHo=3.750mx冲切不利位置bm=(bt+bb)/2=(2.050+3.750)/2=2.900mx冲切面积(By≥Bx)Alx=(By/2-YL/2-YHo)*Bx-(Bx/2-YB/2-YHo)2=(5.000/2-2.050/2-0.850)*5.000-(5.000/2-2.050/2-0.850)2=2.734m2x冲切截面上的地基净反力设计值Flx=Alx*Pjmax=2.734*29.560=80.827kNγo*Flx=1.0*80.827=80.83kNγo*Flx≤0.7*βhp*ft_b*bm*YHo=0.7*0.992*1.57*2900*850=2686.46kNx方向变阶处对基础的冲切满足规范要求3.3 y方向变阶处对基础的冲切验算y冲切位置斜截面上边长at=YL=2.050my冲切位置斜截面下边长ab=YL+2*YHo=3.750my冲切不利位置am=(at+ab)/2=2.900my冲切面积(Bx≥By)Aly=(Bx/2-YB/2-YHo)*By-(By/2-YL/2-YHo)2=(5.000/2-2.050/2-0.850)*5.000-(5.000/2-2.050/2-0.850)2=2.734m2y冲切截面上的地基净反力设计值Fly=Aly*Pjmax=2.734*29.560=80.827kNγo*Fly=1.0*80.827=80.83kNγo*Fly≤0.7*βhp*ft_b*am*YHo=0.7*0.992*1.57*2900*850=2686.46kNy方向变阶处对基础的冲切满足规范要求4. 验算h3处冲切YH=h3=0.500mYB=bc+2*b2+2*b3=3.500mYL=hc+2*a2+2*a3=3.500mYHo=YH-as=0.450m4.1 因(YH≤800) βhp=1.04.2 x方向变阶处对基础的冲切验算x冲切位置斜截面上边长bt=YB=3.500mx冲切位置斜截面下边长bb=YB+2*YHo=4.400mx冲切不利位置bm=(bt+bb)/2=(3.500+4.400)/2=3.950mx冲切面积(By≥Bx)Alx=(By/2-YL/2-YHo)*Bx-(Bx/2-YB/2-YHo)2=(5.000/2-3.500/2-0.450)*5.000-(5.000/2-3.500/2-0.450)2=1.410m2x冲切截面上的地基净反力设计值Flx=Alx*Pjmax=1.410*29.560=41.679kNγo*Flx=1.0*41.679=41.68kNγo*Flx≤0.7*βhp*ft_b*bm*YHo=0.7*1.000*1.57*3950*450=1953.47kNx方向变阶处对基础的冲切满足规范要求4.3 y方向变阶处对基础的冲切验算y冲切位置斜截面上边长at=YL=3.500my冲切位置斜截面下边长ab=YL+2*YHo=4.400my冲切不利位置am=(at+ab)/2=3.950my冲切面积(Bx≥By)Aly=(Bx/2-YB/2-YHo)*By-(By/2-YL/2-YHo)2=(5.000/2-3.500/2-0.450)*5.000-(5.000/2-3.500/2-0.450)2=1.410m2y冲切截面上的地基净反力设计值Fly=Aly*Pjmax=1.410*29.560=41.679kNγo*Fly=1.0*41.679=41.68kNγo*Fly≤0.7*βhp*ft_b*am*YHo=0.7*1.000*1.57*3950*450=1953.47kNy方向变阶处对基础的冲切满足规范要求八、柱下基础的局部受压验算因为基础的混凝土强度等级小于柱的混凝土强度等级,验算柱下扩展基础顶面的局部受压承载力。
抗浮计算书一、基本设计数据:基础底标高:-7.650m,±0.000相应绝对高程:420.40m,抗浮设计水位:418.80m,覆土容重:18.00;水位高差:7.65-(420.40-418.80)=6.050m,建筑完成面标高:-6.30m;主楼基础筏板厚:600mm,主楼基础覆土厚度:0.750m;抗水板厚度:450mm;地下室顶板覆土厚度:1.20m。
二、水浮力计算F=1.0x10x6.05=60.50KN/m2三、建筑物自重(按照最不利位置消防水池计算)消防水池底标高:-6.800m,(基础顶覆土)(7.65-6.80-0.45) x18+(筏板自重)0.45x25+(顶板覆土)1.20x18+(顶板自重)0.18x25=7.20+11.25+21.60+4.50=44.55 KN/m2四、整体抗浮计算G/F=44.55÷60.50=0.74<1.05,不满足《建筑地基基础设计规范》第5.4.3条规范,必须进行抗浮设计。
五、局部抗浮设计(基础)抗水板所受水浮力N=(水浮力)60.50-(基础顶覆土+筏板自重)18.45=42.05KN/m2六、抗拔桩设计整体抗浮时,底板所受水浮力N=60.50-42.40=18.10 KN/m2;除主楼外,沿地下室外墙间隔6.00~8.00m,设置一抗拔桩,单根抗拔桩承担的面积为30 m2左右;所受拔力大小为540KN;根据上部荷载,取单桩竖向承载力特征值不小于1300KN,取桩长L=20m,桩径600mm,根据《建筑桩基技术规范》5.3.6估算单桩抗压极限承载力标准值为:Q uk= Q sk + Q pk =u∑ψsi q sik l i+ψp q pk A p=3.14x0.60x(40x6.0+8.9x65+5x78)+3.14x0.602/4x1300=2276.814+367.38=2644.20Kpa.单桩抗拔极限承载力标准值为:T uk= u∑ψsi q sik liλi=3.14x0.60x(40x6.0+8.9x65+5x78)x0.7=1593.77 Kpa 抗拔桩单桩抗拉承载力特征值N=600KN,极限抗拉承载力1200KN;抗拔桩试桩配筋计算根据《建筑地基基础设计规范》附录T,f y A s/1.25=1200KN得A s=1200x1.25/400=3750mm2,取12根20,A s=3768.00 mm2.抗拔桩工程桩配筋计算单桩抗拔设计值600x1.25=750KN,抗拔荷载全部由桩身钢筋承担,根据f y A s>750KN得:A s>750x1000/360=2084 mm2;取12根16,A s=2411.52 mm2>2084 mm2。
宝安公路2号地块地下车库计算原则1.计算水位:抗浮水位:4.8米,抗压水位3.8米。
2.排桩计算:2.1抗浮桩计算:顶板覆土厚1.5米,容重16kN/m3, 底板、顶板和柱按自重实取,混凝土容重取25kN/m3,活荷载均不计,水位按抗浮水位。
抗浮桩数n浮=(1.05F浮-1.0G自重)/R拔R拔为桩抗拔承载力设计值F浮为抗浮水位水浮力标准值G自重为底板、顶板和柱自重2.2抗压桩计算:顶板覆土厚1.5米,容重18kN/m3,底板、顶板和柱按实际尺寸布置,混凝土容重取26kN/m3,顶板活荷载10kN/m2,底板活荷载按车库布置实取(2.5kN/m3),水位按抗压水位。
抗压桩数n压=(1.0G k+1.0F活-1.0F压)/R 压R压为桩抗压承载力设计值F压为抗压水位水浮力标准值G k为恒载标准值F活为活载标准值3.地下室底板(含承台):底板厚400mm,柱下设反帽式承台,承台大小及厚度按柱冲切、桩冲切及底板有限元计算结果定。
3.1强度计算:抗浮水位:工况一内力按1.0*F浮- 1.0G k1 的值按恒荷载输入计算底板内力(F浮为抗浮水位水浮力标准值,G k1为底板自重+底板面层一半自重之和标准值)工况二内力按承台处桩实际作用力计算承台内力设计值承台内力按工况一和工况二的叠加结果定低水位时:(仅用于设备用房处底板强度计算)工况一内力按1.35F恒1+1.4F活1-1.0*F浮1(F恒1为底板恒荷载荷载标准值,F活1为底板活荷载标准值,F浮1为低水位水浮力标准值)工况二内力按承台处桩实际作用力计算承台内力设计值底板内力按工况一和工况二的叠加结果定3.2裂缝验算(底板迎水面裂缝不大于0.2mm,按标准值,底板迎水面保护层厚度50mm,底板内侧裂缝不大于0.3mm,底板内侧保护层厚20mm,计算裂缝时,计算迎水面裂缝时,计算保护层厚度按30mm考虑,算法同地下室外墙)仅考虑底板跨中及底板与承台相交处的底板裂缝控制工况一按1.0F浮(抗浮水位水浮力)-1.0G K1(F浮为抗浮水位水浮力标准值,G k1 为底板自重+底板面层一半自重之和的标准值)工况二按承台处桩实际作用力计算承台内力标准值底板内力按工况一和工况二的叠加结果定,验算各位置(跨中及承台边)裂缝。
桩基承载能力计算和验算要求
桩基承载能力计算和验算要求有哪些,下面本店铺为大家简单介绍。
1 应根据桩基的使用功能和受力特征分别进行桩基的竖向承载力计算和水平承载力计算;
2 应对桩身和承台承载力进行计算;对于桩身露出地面或桩侧为可液化土、土的不排水剪切强度小于10kPa土层中的细长桩应进行桩身曲屈验算;对于混凝土预制桩应按施工阶段吊装、运输和锤击作用进行强度验算;对于钢管桩应进行局部曲屈验算;
3 当桩端平面以下存在软弱下卧层时应进行软弱下卧层承载力验算;
4 对位于坡地、岸边的桩基应进行整体稳定性验算;
5 对于抗浮桩基,应进行基桩和群桩的抗拔承载力计算;
6 对于抗震设防区的桩基应按现行《建筑抗震设计规范》的规定进行抗震承载力验算。
第 1 页共1 页。
抗浮桩计算+有实列----难得啊!一般抗浮计算:(局部抗浮)1.05F浮力-0.9G自重<0 即可(整体抗浮)1.2F浮力-0.9G自重<0 即可如果抗浮计算不满足的话,地下室底板外挑比较经济同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多【原创】抗浮锚杆设计总结抗浮锚杆设计总结1 适用的规范抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。
对于锚杆估算,推荐使用《建筑边坡工程技术规范GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。
2 锚杆需要验算的内容1)锚杆钢筋截面面积;2)锚杆锚固体与土层的锚固长度;3)锚杆钢筋与锚固砂浆间的锚固长度;4)土体或者岩体的强度验算;3 锚杆的布置方式与优缺点1) 集中点状布置,一般布置在柱下;优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。
缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。
2) 集中线状布置,一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。
缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。
地下室抗浮计算书图一地下室剖面示意图图二计算平面一、条件:取跨度最大的区域进行计算,选择如图二所示计算区域。
地面标高H1=0.000m,顶板标高H2=-0.650m,底板标高H3=-4.850m,设计水位标高Hw=-1.550m;顶板厚度d1=250mm,考虑梁高,折算厚度取d1=300mm,底板厚度d2=400mm,挡土墙墙厚度d3=300,地下室层高h=4200mm。
底板建筑垫层厚d4=100mm,覆土容重γ`=20kN/m;二、计算:1、水浮力F w=|h3+d2-h w|×10=|-4.850+0.4+1.550|×10=37.00 kN/m2、抗浮力:(1)、顶板自重:G1=d1×25=300×0.001×25=7.5 kN/m(2)、底板自重:G2=d2×25=400×0.001×25=10.0 kN/m(3)、覆土重量:G o=d o×γ=0.650×18=11.70 kN/m抗浮力G=∑(G o+G1+G2+G3+G4+G5+G6)=∑(7.50+10+11.7)=29.2kN/m3、抗拔桩需承担浮力:nR>F w-G/K=37-29.2/1.05=9.2 kN/m图二所示中间桩,桩径1000,桩长取6m,根据《全国民用建筑工程设计技术措施》(地基与基础)(2009版)基桩抗拔承载力特征值:R tk=T ua+G=∑λi q sik u i l i=0.75*45*3.14*1*2+0.7*35*3.14*1*4=520kN其中抗拔系数λ在残积粉质粘土层取0.75,圆砾层取0.7,桩位于残积粉质粘土层桩长取2m,圆砾层取4m。
图二所示,中间桩需承担抗浮面积为:s=14.4*14.2/4=51m2(取周边面积的四分之一)单桩需抵抗浮力为R=51*9.2=469.2kN< R tk=520kN满足要求正截面受拉承载力验算:N=1.35*469.2=634kN≤f y A s=300*3016=905kN满足要求。
地下室抗浮计算地下室是一种常见的建筑结构,它位于地面以下,常常用于储物、停车等功能。
然而,在地下室建造的过程中,我们必须考虑到地下室的抗浮性能,以确保其建筑安全和可靠性。
本文将探讨地下室抗浮的计算方法和相关参数。
一、地下室抗浮计算方法地下室的抗浮计算是指在地下室设计过程中,通过计算地下室底板所受到的浮力,以确定地下室是否能够抵抗浮力而保持稳定。
常用的地下室抗浮计算方法有两种:浮力平衡法和弹性基底法。
1. 浮力平衡法浮力平衡法是一种基于物体浸没原理的计算方法。
其基本思想是,当地下室底板受到水压时,其下方的土壤会受到一定的压力,形成一种趋向平衡的状态。
通过计算地下室底板所受到的浮力,并与该平衡状态进行比较,可以确定地下室的抗浮性能。
2. 弹性基底法弹性基底法是一种基于土壤基底的弹性特性来计算地下室抗浮的方法。
在该方法中,将地下室底板视为弹性体,通过分析底板可能产生的位移和变形情况,以及土壤对底板的反力,来评估地下室的抗浮性能。
二、地下室抗浮计算参数地下室抗浮计算需要考虑一些重要的参数,包括:地下室底板面积、土壤承载力、水压力、地下室底板深度和抗浮水平等。
1. 地下室底板面积地下室底板面积是指地下室底部的水平投影面积,它决定了地下室受到的总浮力大小。
2. 土壤承载力土壤承载力是指土壤的承受能力,它对地下室底板的压力起到了很大的影响。
3. 水压力水压力是指地下室底板所受到的水的压力,主要取决于地下室所处的水平位置以及周围水位的高低。
4. 地下室底板深度地下室底板深度是指地下室底部距离地面或地下水位的垂直距离,它也是地下室抗浮计算时的重要参数。
5. 抗浮水平抗浮水平是指地下室底板所能承受的最大浮力大小,它通常由设计规范或地下室结构设计要求来确定。
三、地下室抗浮计算实例为了更好地理解地下室抗浮计算的过程,我们将给出一个简单的实例。
假设某地下室的底板面积为100平方米,土壤承载力为200kN/m²,水压力为10kN/m²,地下室底板深度为3米。
一.抗浮计算(顶板覆土1500):[ 地下室抗浮荷载 ] 自然地面整平下500。
柱网:8.1x6.35=51.435m2地下室自重为:1、土重 1.5X18=27KN/m22、板重 (0.3+0.40)x25=17.5 KN/m23、梁+柱重: X向截面500X1000,Y向截面450X800 梁自重:(0.5X0.8X8.1+0.45X0.5X6.35)X25/8.1X6.35=2.27 KN/m2柱自重:0.5X0.6X4.0X25/8.1X6.35=0.58 KN/m2面层:0.05x23=1.15 KN/m2总计: Q w= (27+17.5+2.27+0.58+1.15)=48.5KN/m2 [ 地下室水浮力荷载 ]Q f=(4.3+1.5+0.45-0.5)x10=57.5KN/m2[ 抗浮验算 ]Qw=48.5KN/ m2< Qf=57.5KN/ m2自重抗浮不满足!抗拔力为1.05X(57.5-48.5)x51.435=486KN二.边跨抗浮计算:边跨跨度:8.1x3.25地下室自重为:1、土重 1.5X18=27KN/m22、板重 (0.3+0.40)x25=17.5 KN/m23.墙:0.3x8.1x4.3x25/8.1x3.25=9.9 KN/m24.挑边土:0.5x(8x5.3+18x0.5)x8.1/8.1x3.25=7.9 KN/m25.面层: 0.05x23=1.15 KN/m2总计: Q w=63.45KN/m2>57.5x1.05 KN/m2边跨抗浮满足。
三.四层框架部分地下室自重为:1、土重 1.8X18=32.4KN/m22、板重 (0.3+0.40)x25=17.5 KN/m23.四层框架梁板:0.15x4x25=15 KN/m24.面层: 0.05x23=1.15 KN/m2总计: Q w=66.05KN/m2>57.5x1.05 KN/m2抗浮满足。
最新天然地基承载力计算公式天然地基承载力计算是工程建设的重要内容之一,它涉及到建筑物的稳定性和安全性问题。
计算地基承载力的公式主要基于土壤力学原理和实际工程经验,下面将介绍目前常用的最新天然地基承载力计算公式。
竖向承载力是指建筑物立柱在地基上所能承受的最大竖向荷载。
常用的最新竖向承载力计算公式是根据摩尔-库仑(Mohr-Coulomb)准则得出的,其公式表达式如下:Qult = cNc + γDNq + 0.5γBNγ其中,Qult为立柱的承载力,c、γD、γB为土壤参数,Nc、Nq、Nγ为规范系数。
这个公式考虑到了土壤的凝聚力、摩擦角和土压力的贡献,可以较准确地计算出立柱的承载力。
2.地基沉降计算公式地基沉降是指土壤在承受建筑物荷载后发生的变形或沉降。
最新的地基沉降计算公式是由综合地基测试和数值模拟方法得出的,常用公式如下:Δh = Σ[(qn + Δq)hi] / EI其中,Δh为总沉降量,qi为不同深度处的荷载,Δq为附加荷载,hi为各层地基的厚度,E为地基土壤的弹性模量,I为地基土壤的次刚度。
地基抗浮力是指建筑物所受到的上浮力,它是建筑物稳定性的重要指标之一、常用的最新地基抗浮力计算公式如下:Fb=γwAu其中,Fb为地基抗浮力,γw为水的单位重量,A为地基底面积,u 为有效重度。
这个公式主要考虑到了土壤浸润的影响,能够较准确地计算出地基的抗浮力。
除了以上介绍的公式,还有一些特殊情况下的计算公式,如地基承载力计算公式适用于不同土质和建筑结构,地基抗滑移计算公式适用于斜坡和边坡等区域。
这些公式都经过实际工程验证和修正,在工程实践中得到了广泛应用。
需要注意的是,地基承载力的计算不仅仅依靠公式,还需要考虑其他因素,如地质勘察结果、建筑结构、荷载特征等。
因此,在实际工程中,需要综合运用多种计算方法和工程经验,来确保计算结果的准确性和可靠性。
前一段时间做了几个项目,都涉及到地下室抗浮设计的问题,整理了一个大个地下室的计算思路。
先说一下规范的一些要求,规范对抗浮设计一直没有特别明确的计算建议,很多的设计建议都是编者自己的理解,所以大家的计算结果就会有很大差异。
1)《建筑结构荷载规范》GB 50009-2001(2006年版)第3.2.5条第3款规定:“对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关的结构设计规范的规定采用”。
2)《砌体结构设计规范》GB 50003-2001第4.1.6条当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下式验算:γ0(1.2SG2k+1.4SQ1k+SQik) ≤0.8SG1k式中SG1k----起有利作用的永久荷载标准值的效应;SG2k----起不利作用的永久荷载标准值的效应;3)北京市标准《北京地区建筑地基基础勘察设计规范》DBJ 11-501-2009第8.8.2条,抗浮公式为:Nwk ≤γGk式中Nwk——地下水浮力标准值;Gk——建筑物自重及压重之和;γ——永久荷载的影响系数,取0.9~1.0;结合上述原则,计算目前在做的南方某大剧院舞台下台仓的抗浮情况,由于整个台仓位于城市河道边,且上部恒荷载的不确定性,因此永久荷载的影响系数取的是0.8,比北京规范还要低一些:台仓深度较大,台仓底板顶标高为-14.8米,存在抗浮设计要求,根据地质勘察报告数据,设计最高抗浮水位绝对标高为2.36米相对标高-1.54米,经计算,上部结构传至台仓底板顶面处0.8倍恒荷载值为65200kN,台仓底板面积约为663平米,考虑台仓底板厚度为1.6米重力效应,尚有水浮力约为((14.8+1.6-1.54)×10-0.8×1.6×25)×663-65200=12106 kN。
根据地质勘察报告提供的勘探点平面布置图,台仓位于18、19、25、26号孔附近,抗拔桩长为9.5米,直径0.4米,计算抗拔承载力特征值为220 kN,考虑结构重要性系数1.1,需要不少于60根抗拔桩。
金都大厦地下室抗浮验算一、中柱局部抗浮取底板含一根柱的8.4X8.1单元格计算,板顶覆土1m,抗浮水位标高6m(绝对高程,室外地面标高6.8m(绝对高程(±0.000相当于黄海高程7.400,基础底标高-3.0m(绝对高程。
地下一层顶板厚400,梁板式楼盖,主梁800X900。
地下二层顶板350厚,面层50厚,梁板式楼盖,主梁800X700。
底板筏板厚400,覆土及其地面做法共400。
抗浮计算如下:柱重:=0.6*0.6*25*(4.3+3.7-0.4-0.35=65KN上部覆土+地面做法:=18*0.8+8*0.2=16KN/M2地下一层顶板:=25*0.4=10 KN/M2地下一层顶梁:=25*0.8*(0.9-0.4*(8.4+8.1-1.2 =153KN地下二层板+50厚面层:=25*0.4+0.05*20=11KN/M2地下二层梁:=25*0.8*(0.7-0.35*(8.4+8.1-1.2 =107.1KN室内覆土400厚:=20*0.2+18*0.2=7.6 KN/M2底板:=25*0.4=10 KN/M2总重量:=(16+10+11+7.6+10*8.1*8.4+65+153+107.1=4040KN总浮力:=90*8.1*8.4=6124KN取安全系数1.05,则=1.05*6124-4040=2390KN取每柱下3根抗拔桩,桩径600,间距2250,则单桩抗拔=2390/3=797KN。
采用扩底桩,底端直径1.4m,桩长暂取15m,由《建筑桩基技术规范》表5.4.6-1,自桩底起算长度按5d=3m.由非整体破坏控制,《建筑桩基技术规范》式5.4.5-1,取地堪17号孔,后压浆:Tuk=(3.14*0.6*(36*4.1+48*2.9+46*5*1.4+3.14*1.4*(46*0.9+52*2.1*0.75=1518KNG p=3.14*0.3*0.3*12*15+3.14*0.7*0.7*3 *10=97KNT uk /2+ G p=1518/2+97=856KN〉797KN满足抗浮要求。
抗浮桩抗拔桩的抗压承载力计算抗浮桩和抗拔桩是土木工程领域中重要的抗压承载力计算问题。
本文将详细介绍这两种桩的概念、计算方法以及相关指导意义,旨在帮助工程师和学生更好地理解和应用这些知识。
抗浮桩是指在水下工程中,为了抵抗水流或地下水的浮力作用而设计和施工的桩基础。
水的浮力对桩基础产生的压力可以是极大的,如果不采取适当的措施,可能会导致桩基础浮起,损害工程的稳定性。
因此,正确计算抗浮桩的抗压承载力非常重要。
对于抗浮桩的抗压承载力计算,一般采用经验公式或理论公式进行。
其中,经验公式主要根据历史工程经验总结得出,适用于一定范围的工程。
而理论公式则基于力学原理和土力学理论,通过对土体和水的力学特性进行分析和计算,得出更为精确的结果。
抗浮桩的抗压承载力计算主要涉及以下几个因素。
首先是桩的净侧阻力,即土体对桩身产生的抵抗力。
其次是桩的端阻力,即桩端与土体之间的摩擦力。
此外,还需要考虑桩体的自重和水流对桩身的冲刷力。
对于抗拔桩的抗压承载力计算,主要考虑桩的净侧阻力和桩的端阻力。
净侧阻力是土体对桩身产生的阻力,其大小取决于土壤类型和桩身的变形。
端阻力则是桩端与土体之间的摩擦力,也受土壤类型和桩身变形的影响。
因此,对于抗拔桩的抗压承载力计算,需要准确评估土壤的性质和桩身变形情况。
在进行抗浮桩和抗拔桩的抗压承载力计算时,工程师需要掌握土力学和结构力学等方面的知识,能够准确评估土体的力学特性,并使用适当的公式和方法进行计算。
此外,还需要合理选择桩的尺寸和布置方式,以及采取合理的加固措施,确保桩基础的稳定性和安全性。
总之,抗浮桩和抗拔桩的抗压承载力计算是土木工程领域中非常重要的问题。
正确计算和评估桩基础的抗压承载力,能够为工程的设计和施工提供指导,确保工程的稳定性和安全性。
因此,工程师和学生需要深入研究和理解相关知识,并灵活应用于实际工程中。
通过不断探索和实践,我们将能够更好地应对和解决相关问题,为社会发展做出贡献。
抗浮计算公式在哪个规范《抗浮计算公式》在《建筑工程验收规范》中为标题。
在建筑工程中,抗浮是一个重要的概念。
抗浮是指建筑物在受到外部水压作用时,能够保持稳定不发生浮动的能力。
为了确保建筑物的安全稳定,需要对建筑物的抗浮能力进行计算和验算。
而抗浮计算公式则是用来计算建筑物抗浮能力的重要工具之一。
抗浮计算公式的相关内容在《建筑工程验收规范》中有详细的规定。
本文将从该规范中摘取相关内容,对抗浮计算公式进行详细的介绍和解析。
首先,根据《建筑工程验收规范》的规定,抗浮计算公式的主要内容包括建筑物的自重、外部水压力、地基承载力等因素。
抗浮计算公式的一般形式如下:F = W P R。
其中,F为建筑物的抗浮力,单位为N;W为建筑物的自重,单位为N;P为外部水压力,单位为N;R为地基承载力,单位为N。
根据《建筑工程验收规范》的规定,建筑物的自重可以根据建筑物的结构形式和材料进行计算。
外部水压力则是根据建筑物所处的水域深度和水压系数进行计算。
地基承载力则是根据地基的土壤类型和承载力系数进行计算。
在实际的抗浮计算中,需要根据具体的建筑物情况和环境条件进行详细的计算和分析。
同时,还需要考虑建筑物的使用要求和安全标准,确保建筑物的抗浮能力符合相关的规定和要求。
另外,根据《建筑工程验收规范》的规定,抗浮计算公式还需要考虑建筑物的变形和位移。
在实际的抗浮计算中,需要对建筑物的变形和位移进行详细的分析和考虑,确保建筑物在受到外部水压作用时能够保持稳定不发生变形和位移。
总之,《建筑工程验收规范》对抗浮计算公式的相关内容进行了详细的规定和要求。
在实际的抗浮计算中,需要严格按照规范的要求进行计算和分析,确保建筑物的抗浮能力符合相关的规定和要求,保障建筑物的安全稳定。
抗拔桩计算公式规范抗拔桩抗浮计算抗浮验算内容《建筑工程抗浮技术标准》7.6.21 单桩竖向抗拔承载力和群桩的抗拔承载力计算;2 桩身受拉承载力计算;3 桩身抗裂验算和裂缝宽度计算。
条件设定1 局部抗浮验算结果:单根柱下差965.757kN,设3根抗拔桩,单桩抗拔承载力特征值为330kN。
2 取桩边长400mm。
3 桩长为14m。
(伸入3-2层5.6m)4 做预应力方桩。
5 桩侧抗压极限侧阻力标准值土层土层厚度(m) 预制桩(kPa)2-1 粉质黏土 2.4 352-2 黏土 2.5 403-1 黏土 3.5 503-2 含砂姜黏土 6.5 723-3 中粗砂3.7 663-4 黏土/ 78————————————————计算·单桩竖向抗拔承载力《建筑桩基技术规范》5.4.5-2Nk≤Tuk/2+GpNk = 330kNTuk = Σλiqsikuili =4×0.4×(0.68×35×2.4+0.68×40×2.5+0.72×50×3.5+0.72×72×5.6) = 866.28kN Gp = 0.4×0.4×14×(25-10) = 33.6kNTuk/2+Gp = 1129.32/2+39.58 = 466.74kN>330kN满足·群桩竖向抗拔承载力《建筑桩基技术规范》5.4.5-1Nk≤Tgk/2+GgpNk = 330kNn = 3Tgk = ulΣλiqsikli /n=5.2×(0.68×35×2.4+0.68×40×2.5+0.72×50×3.5+0.72×72×5.6) = 938.47kNGgp = 1.68×14×(20-10)/3 = 78.4kNTgk/2+Ggp = 938.47/2+78.4 = 547.14kN>330kN满足·桩身受拉承载力《建筑桩基技术规范》5.8.7拉力全部由钢筋提供,已知桩所受轴向拉力N = 330kN。
抗拔桩抗浮计算书一、工程概况:本工程±0.00相对标高为100.55m,依据地质勘查报告,抗浮设计水位为98.00m,即±0.00以下2.55m。
本工程主楼为地上16层,地下两层,抗浮满足要求,不需要进行抗浮计算;本工程副楼为地上三层,地下两层,对于纯地下两层地下室,由于上部无建筑物,无覆土,现进行抗浮计算如下:二、浮力计算基础底板顶标高为:-(4.5+5.4+0.4)=-10.30m基础底板垫层底标高为:-(4.5+5.4+0.4+0.6+0.15)=-11.05m浮力为F浮=rh=10x(11.05-2.55)=85KN/m²1.主楼地上16层,能满足抗浮要求,不做计算;2.副楼抗浮计算:(副楼立面示意如下图)副楼地上3层部分,面积为401m²故上部三层q1=(486+550+550)x9.8/401=38.76KN/ m²地下一层面荷载为:q2=16 KN/ m²地下二层面荷载为:q3=14 KN/ m²基础回填土垫层:q4=15x0.4=6 KN/ m²基础底板:q5=25x0.6=15 KN/ m²则F抗= q=38.76+16+14+6+15=89.76KN/ m²F抗/F浮=89.76/85=1.056>1.05故副楼有地上3层部分不需要设置抗拔桩副楼立面示意3.对地上无上部结构的纯地下车库(下图阴影所示):F抗=16+14+6+15=51 KN/ m²F1=F浮-F抗=85-51=34 KN/ m²既不满足抗浮要求,需要设计抗拔桩进行抗浮三、抗拔桩计算依据《建筑桩基技术规范》第5.4.5条N k≤2T uk+Gp抗拔桩桩型采用钻孔灌注桩,桩经采用d=600mm桩顶标高为筏板底标高:89.50m,桩长L=15m。
依据《建筑桩基技术规范》,地质报告,抗拔系数λ=0.5 1)群桩呈非整体破坏时,基桩的抗拔极限承载力标准值- 1 -- 2 -Tuk=∑λi q siku il i=0.5x70x1.884x15 =989.1 KNG p=AL γ=(25-10)x 41x ∏x 6.02x15=63.6 KN 则2T uk +G p =21.989+63.6=558.15 KN 综上考虑,Nk=500KN则抗拔桩数n=NF k1xAA1区域需要桩数n 1=500341353x =92.01 取≥93根 A2区域需要桩数n 1=50034112x =7.616 取≥8根A3区域需要桩数n 1=50034343x =23.32 取≥24根平面桩布置示意图如下平面桩布置示意图四、 桩对筏板冲切计算框架柱对于基础筏板h=600mm 时,冲切不满足的情况下,加设刚性上柱墩,经复核,满足冲切要求,详见基础计算书对于桩冲切筏板,计算如下:抗拔桩承载力特征值R a =500KN 即F L =500KN依据《混凝土结构设计规范》6.5.1条FL≤0.7βh ηf tu m h 0βh=1.0ft=1.71N/mm ²um=4x1200=4800mmh 0=600-50=550mmη1=0.4+βs2.1=0.4+22.1=1.0- 3 -η2=0.5+uh ms 40α=0.5+4800455020x x =0.5+0.573=1.073 η= min [η1 η2]=1.0则0.7βh ηf tu m h 0=0.7x1.0x1.71x1.0x4800x550=3160KN >F L 即桩冲切筏板满足要求 五、 桩间筏板局部抗浮计算对于桩间支座处筏板,按纯浮力进行配筋复核按无梁楼盖进行计算,桩为支座,l x =3.6m ,l y =3.6m采用经验系数法:X 、Y 向M 0=81q l x l y ²=85x3.6x3.6 ²/8=495.72KN ·m 最大支座截面弯矩M=0.5M 0=248 KN ·m (柱上板带)A s =M/(0.9fy h 0)=248x 106/(0.9x360x550)=1392mm ²(3.6m 宽范围内)每延米:387 mm ²<基础筏板构造配筋=0.15xh=900 mm ² 即筏板配筋满足要求六、 桩身配筋1) 按正截面配筋率0.65%xA =1838mm ² 2) 按轴心受拉,抗拔桩所需配筋百分比A s=fyN=500x1000/360=1389mm ²综合取A s =8∅18=2036 mm ² 满足要求。
已知条件锚杆计算结论地下车库抗浮锚杆计算(地面-7.3m,板顶-3.5m,无覆土)1、基础底标高m(绝对标高H1) 4.82、抗浮设计水位m(绝对标高H2)10.63、锚杆孔直径Dmm1504、锚杆采用HRB400级钢筋fyk(N/mm2)400 5|岩石与锚固体粘结强度特征值f(Mpa)0.186、建筑地面标高m(绝对标高H3) 6.57、底板厚度h1(m)0.48、顶板厚度h2(m)0.259、顶板上覆土h3(m)0.210、底板上覆土h4(m) 1.3 1、整体抗浮计算结构及覆土自重G=25*h1+25*h2+18*h3+18*h443.25水浮力F=10*(H2-H1)58需要采取抗浮措施净水浮力F'=F-(25*h1+18*h4)*0.927.94 2、锚杆杆体截面面积计算锚杆横向间距S1 2.1锚杆竖向间距S12锚杆的轴向拉力标准值Ntk=F*S1*S2 (KN)117.348锚杆的轴向拉力设计值Nt=1.35*Ntk (KN)158.4198根据《岩土锚杆技术规程》公式7.4.1 As=kt*Nt/fyk633.6792 选用3根18(As=763mm2)3、锚固段长度计算根据《岩土锚杆技术规程》公式7.5.1-1 La>k*Nt/(3.14*D*f*1.3) 3.16 公式7.5.1-1 La>k*Nt/(3*3.14*18*0.6*2.0*1.3) 1.323.163根据《地基基础设计规范》公式8.6.3 Rt<0.8*3.14*D*f*l*fl>Rt/(0.8*3.14*D*f) 2.34取上述三个锚固长度的最大值,且>3m 3.16实际取l(整数)手工填入 3.16单根锚杆抗拔承载力特征值Rt=0.8*3.14*D*f*l*f214.476 4、锚杆极限承载力R=2*Rt428.9521 R<0.8*fys*As,As>R/(0.8*fys)1340.475选用3根25做最大荷载试验锚杆孔直径D=150mm,锚筋3根18,筋体间加一根14钢筋点焊成束,锚固段长度为3.2m,单根锚杆抗拔承载力特征值为200kN,锚杆间距2.1mx2m。
抗拔桩抗浮计算书之袁州冬雪创作一、工程概况:本工程±0.00相对标高为100.55m,依据地质勘查陈述,抗浮设计水位为98.00m,即±0.00以下2.55m.本工程主楼为地上16层,地下两层,抗浮知足要求,不需要停止抗浮计算;本工程副楼为地上三层,地下两层,对于纯地下两层地下室,由于上部无建筑物,无覆土,现停止抗浮计算如下:二、浮力计算浮力为F浮=rh=10x(11.05-2.55)=85KN/m²1.主楼地上16层,能知足抗浮要求,不做计算;2.副楼抗浮计算:(副楼立面示意如下图)副楼地上3层部分,面积为401m²故上部三层q 1²地下一层面荷载为:q2=16KN/m²地下二层面荷载为:q3=14KN/m²基础回填土垫层:q4=15x0.4=6KN/m²基础底板:q5=25x0.6=15KN/m²则F抗=∑q²故副楼有地上3层部分不需要设置抗拔桩副楼立面示意3.对地上无上部布局的纯地下车库(下图阴影所示):F抗=16+14+6+15=51 KN/ m²F1=F浮-F抗=85-51=34 KN/ m²既不知足抗浮要求,需要设计抗拔桩停止抗浮三、抗拔桩计算N k≤2T uk+G p抗拔桩桩型采取钻孔灌注桩,桩经采取d=600mm桩顶标高为筏板底标高:89.50m,桩长L=15m.依据《建筑桩基技术规范》,地质陈述,抗拔系数λ1)群桩呈非整体破坏时,基桩的抗拔极限承载力尺度值T uk=∑λi q sik u i l i=989.1 KNG p=ALγ=(25-10)x41x∏x6.02x15=63.6 KN则2T uk+G p=21.989+63.6=558.15 KN综上思索,N k=500KN则抗拔桩数n=NFk1xAA1区域需要桩数n1=500341353x=92.01 取≥93根A2区域需要桩数n1=50034112x=7.616 取≥8根A3区域需要桩数n1=50034343x=23.32 取≥24根平面桩安插示意图如下平面桩安插示意图四、桩对筏板冲切计算框架柱对于基础筏板h=600mm 时,冲切不知足的情况下,加设刚性上柱墩,经复核,知足冲切要求,详见基础计算书 对于桩冲切筏板,计算如下: 抗拔桩承载力特征值R a =500KN 即F L =500KNF L≤βhηf tu m h 0βh =1.0 f t²u m=4x1200=4800mm h 0=600-50=550mmη1=0.4+βs 2.1=0.4+22.1η2=0.5+u h ms40α=0.5+4800455020x x η=min [η1η2=3160KN >F L 即桩冲切筏板知足要求五、 桩间筏板部分抗浮计算对于桩间支座处筏板,按纯浮力停止配筋复核 按无梁楼盖停止计算,桩为支座,l x =3.6m ,l y 采取经历系数法:X 、Y向M 0=81q l xl y²²·mM 0=248KN ·m (柱上板带)A sf yh 0)=248x 106/(0.9x360x550)=1392mm ²(3.6m 宽范围内)每延米:387mm ²<基础筏板构造配筋=0.15xh=900mm ² 即筏板配筋知足要求六、 桩身配筋1) 按正截面配筋率0.65%xA =1838mm ² 2) 按轴心受拉,抗拔桩所需配筋百分比A s=f yN=500x1000/360=1389mm ²综合取A s =8∅18=2036mm ² 知足要求。
管桩抗浮及承重承载力计算
1.抗浮验算:
1.1底板面-3.950
1.结构自重:
覆土1.0m : 16×1.0=16.0kN/m 2
顶板自重(厚度0.25m): 25×0.25=6.25kN/m 2
底板自重(厚度0.50m): 25×0.50=12.5 kN/m 2
面层150mm 0.15×20=3 kN/m 2
柱、梁重 约3 kN/m 2
ΣN=40.75 kN/m 2
2.水浮力
F 浮=1.2×(5.45-0.5)×10=59.4kN/m 2
∵F 浮>ΣN ∴不满足抗浮要求
F 拔=(59.4-40.75)×7.8×7.8=1134kN
3.抗拔桩计算
取直径400预应力管桩, 桩长24m 单桩设计抗拔承载力:∑+=p i si i s p d G l f U R λγ'=6.06
.14.0⨯⨯π(7.1×15+7.3×20+3.9×50+5.7×55) +π×0.4×0.08×13×24=358.5kN+31.3=390kN
单根柱下抗拔桩根数=1134/390.0=2.90取3根
1.2底板面-3.30
1.结构自重:
覆土1.0m : 16×1.0=16.0kN/m 2
顶板自重(厚度0.25m): 25×0.25=6.25kN/m 2
底板自重(厚度0.50m): 25×0.50=12.5 kN/m 2
面层150mm 0.15×20=3 kN/m 2
柱、梁重 约3 kN/m 2
ΣN=40.75 kN/m 2
2.水浮力
F 浮=1.2×(4.8-0.5)×10=51.6kN/m 2
∵F 浮>ΣN ∴不满足抗浮要求
F 拔=(51.6-40.75)×7.8×7.8=660kN
3.抗拔桩计算
取直径400预应力管桩, 桩长24m 单桩设计抗拔承载力:∑+=p i si i s p
d G l f U R λγ'=6.06
.14.0⨯⨯π(7.6×15+7.3×20+3.9×50+5.1×55) +π×0.4×0.08×13×24=346.4kN+31.3=377.8kN
单根柱下抗拔桩根数=660/377.8=1.747取2根
1.3靠外墙处抗浮计算(以-3.95算)
1.结构自重:ΣN=40.75 kN/m 2
每沿米40.75×5.1/2=103.9kN/m
外墙自重0.3×25×3.55=26.625 kN/m
外挑土重0.5×16×4.8=38.kN/m
合计168.5 kN/m
2.水浮力 F 浮=1.2×(5.45-0.5)×10=59.4kN/m 2
每沿米59.4×5.1/2=151.4kN/m
∵F 浮<ΣN ∴满足抗浮要求
靠外墙抗浮满足要求,可不打桩,考虑沿外墙下每1~2跨打一根桩,以保持整个车库的变形协调。
1.4.抗浮桩身强度及配筋计算 选用PHC-AB400
查DBJT08-92-2000图集知:单桩结构强度1640 kN 混凝土有效预压应力5.30MPa 桩身受拉强度设计值
7.0==P py A f N ×1420×9×63.6=568 kN >390 kN 满足要求
桩身抗裂计算
混凝土有效预压应力5.30Mpa
则桩抗裂值为 5.3 Mpa ×3.1415926×400×80=532 kN 满足要求
1.5试桩承载力计算
单桩设计抗拔承载力:∑+=p i si i p d G l f U R λ'= π⨯4.0×0.6 (2.4×15+8.8×15+7.3×20+3.9×50+5.7×55) +π×0.4×0.08×13×29=620kN+37.9=657.9kN
试桩配筋及桩身强度计算 试桩选用PHC-B400
7.0==P py A f N ×1420×9×89.9=804 kN >658kN 满足要求
试桩桩身抗裂计算
混凝土有效预压应力7.15Mpa
则桩抗裂值为 7.15Mpa ×3.1415926×400×80=718 kN 满足要求
2.承重计算:
2.1桩长30m 承载力计算
取直径400预应力管桩, 桩长30m
∑=i si p sk l f U R '=π⨯4.0×(7.1×15+7.3×20+3.9×50+7.8×55+3.9×50) =1364.5kN =⨯⨯⨯==12002.02.0'πp p pk f A R 150.8kN
=+=PK
SK PK p R R R ρ0.099 s γ=1.70 P γ=1.05
=+=P PK s SK
d R R R γγ946 kN
根据计算取单桩承载力946kN
桩身强度及配筋计算 选用PHC-AB400
查DBJT08-92-2000图集知:单桩结构强度1640 kN 满足要求
2.2桩长30m 试桩承载力极限值计算
∑=i si p sk l f U R '=π⨯4.0×(2.4×15+8.8×15+7.3×20+3.9×50+7.8×55+3.9×50) =1423kN
=⨯⨯⨯==12002.02.0'πp p pk f A R 150.8kN
R=1573 kN
桩身强度及配筋计算 选用PHC-AB400
查DBJT08-92-2000图集知:单桩结构强度1640 kN 满足要求
2.3锚桩抗拔力计算
单根锚桩试桩抗拔承载力1573/4=393KN,由前抗浮计算可知,锚桩可承受此抗拔力。
2.4桩长24m 承载力计算
取直径400预应力管桩, 桩长24m
∑=i si p sk l f U R '=π⨯4.0×(7.1×15+7.3×20+3.9×50+5.7×55) =942.5kN
=⨯⨯⨯==26002.02.0'πp p pk f A R 326.7kN
=+=PK
SK PK p R R R ρ0.257 s γ=1.82 P γ=1.18
=+=P PK s SK
d R R R γγ794 kN
根据计算取单桩承载力794kN
桩身强度及配筋计算 选用PHC-AB400
查DBJT08-92-2000图集知:单桩结构强度1640 kN 满足要求
2.4桩长24m 承载力极限值计算
∑=i si p sk l f U R '=π⨯4.0×(2.4×15+8.8×15+7.3×20+3.9×50+5.7×55) =1019kN =⨯⨯⨯==26002.02.0'πp p pk f A R 326.7kN
R=1346 kN
桩身强度及配筋计算 选用PHC-AB400
查DBJT08-92-2000图集知:单桩结构强度1640 kN 满足要求
2.5桩长24m 承重桩的锚桩抗拔力计算
单根锚桩试桩抗拔承载力1346/4=336KN,由前抗浮计算可知,锚桩可承受此抗拔力。