6教育统计学第六章
- 格式:ppt
- 大小:1.60 MB
- 文档页数:1
第六章方差分析(五)[测量实验设计的方差分析一、重复测量的方差分析(一)重复测量实验设计的相关含义⑴重复测量实验设计的定义又叫:被试内设计、受试者内设计、单组实验设计、相关样本设计。
是每个被试或每组被试必须接受自变量的所有情况的处理(每个被试接受所有的实验处理水平或处理水平的结合)。
由于被试的行为是重复测量的,所以被试内实验设计也称重复测量实验设计。
(2)重复测量设计的基本原理每个被试者参与所有的实验处理,然后比较相同被试者在不同处理下的行为变化。
这种实验设计下的同一被试者既为实验组提供数据,也为控制组提供数据。
因此,被试者内设计无需另找控制组的被试者。
被试内设计不但节省了被试人数,而且不同组的被试个体差异也得到了最好的控制,被试内设计比被试间设计更有力,能更好的考察实验组和控制组之间的差异,这个优点使得许多研究者更倾向于使用被试内设计。
和被试间设计相反,被试内设计不会受到来自被试个体差异的困扰但却必需面对实验处理之间相互污染的问题。
可以采用平衡技术来控制这些差异。
(3)使用重复测量设计的主要目的重复测量实验设计的目的是所有被试自已做控制,使被试的各方面特点在该因素所有水平上保持恒定,克服被试间设计中存在的被试不同质的问题,以最大限度地控制由被试的个体差异带来的变异。
如果实验者主要想研究一个被试者对实验处理所引起的行为上的变化,一般可以考虑采用被试者内设计。
(二)重复测量实验设计的方差分析的条件重复测量实验设计方差分析是一般方差分析的深化,也具有正态性、变异的可加性和方差齐性等先决条件,还要求各重复测量数据组成的协方差矩阵满足球形性假设。
博克斯指出,若球状性假设得不到满足,则方差分析的F值是有偏的,会增加犯I类错误的可能。
(三)重复测量实验设计的方差分析的过程①建立检验假设;②计算离差平方和与均方;③进行F检验;④列出方差分析表。
二、单因素重复测量的方差分析(一)重复测量实验设计的基本方法实验中每个被试接受所有的处理水平。
第一章绪论1,教育统计学是运用数理统计学的原理来研究教育问题的一门应用科学。
2,教育统计学分为描述统计、推断统计和实验设计三类。
(1)描述统计:计算集中量(算术平均数、中位数、众数、加权算术平均数、几何平均数、调和平均数)来反映集中趋势;计算差异量(全距、四分位距、百分位距、平均差、标准差、差异系数)反映离散程度;计算偏态量及峰态量反映分布形态;计算相关量(积差相关系数、等级、点二列、二列、四分、C相关系数、肯德尔和谐系数、多系列相关系数)反映一致性程度。
(2)推断统计包括总体参数估计和假设检验两部分。
3,随机现象三个特性:一,一次试验有多种可能的结果,其所有结果是已知的;二,试验之前不能预料那一种结果会出现;三,在相同条件下可以重复试验。
随机事件:随机现象的每一种结果。
随机变量:把能表示随机现象各种结果的变量称之4,总体:是我们研究的具有某种共同特性的个体的总和。
样本数目大于30称为大样本,小于等于30称为小样本。
第二章数据的初步整理1,教统资料来源有经常性资料和专题性资料。
专题性资料包括(1)教育调查。
按调查方法分为现情调查、回顾调查和追踪调查;按调查范围分全面调查和非全面调查(抽样调查和典型调查)。
(2)教育实验。
分为单组实验(指对同一实验对象先后实施两种实验处理)、等组实验(指在甲乙两组条件基本相同的情况下,对之实行不同的实验处理)和轮组实验(指在实验组和对照组分别进行两种实验处理,并且每种处理各重复一次,也即每个或多个单组实验的联合)2,数据的分类。
按来源分为点计数据和度量数据;按随机变量取值情况分为间断型随机变量(取值个数有限、独立的、两个单位之间不能再划分细小单位、一般用整数表示,如优劣程度、品德爱好打分)和连续性随机变量(个数无限、单位之间可以再划分、可以用小数表示如身高体重、完成作业的时间等)。
3,频数分布表制作步骤:求全距;决定组数和组距;决定组限;登记频数。
4,用累计频数表示的频数分布表称为累计频数分布表。
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
第六章方差分析(六)第五节多因素方差分析一、多因素方差分析的定义多因素方差分析是用来研究两个及两个以上控制变量是否会对观测变量产生显著影响。
多因素方差分析不仅能够分析多个因素对观测变量 的独立影响,更能够分析多个控制因素的交互作用是否对观测变量的分布产生显著影响,进而最终找到利于观测变量的最优组合。
多因素 方差分析包括完全随机设出随机区组设计。
二、平均数差异检验、单因素方差分析、多因素方差分析比较当需要比较两个以上平均数的差异时,要使用单因素方差分析,而不进行多次平均数差异检验,这样就可以降低统计误差。
如果单次进行 平均数比较率,即显著性水平是a ,进行两两平均数比较的次数是N ,多次两两平均数差异的错误率:P N =l-(l-a)n o 同理多因素方差由于 同时进行两个因素以上的方差分析,亦能降低统计误差,同时,也能处理交互作用。
第六节事后检验(多个平均数之间的比较)一、事后检验[事后多重比较]事后检验的定义:方差分析所要检验的零假设是所有k 个处理的总体平均数没有显著性差异,相应的备择假设是k 个处理中至少有2个处 理的总体平均数之间存在显著差异。
但方差分析不拒绝零假设时,表明至少有2个处理的总体平均数不等,若方差分析F 检验的结果表明 差异显著就必须对各实验处理组的多对平均数进一步分析,做深入比较,判断究竟哪一对或哪几对的差异显著,确定两变量关系的本质。
事后检验也被称作事后多重比较,在这也叫做多个平均数之间的比较。
事后检验的目的:当方差分析表明一个主效应显著时,它只能提供几个变量之间是否存在显著差异的结果,又因为多重t 检验会使得I 型 错误发生的概率大大增加[吃1-Q :业L 因而我们只能采取事后检验。
二、事后检验的方法[1]N-K 法,也叫q 检验法;[2]HSD 检验(又叫Turkey 真实检验,更敏感,统计检验力更强,要求各组容量相等);[3]Scheffe 检验(匕啜保守,适用于样本容量不等,最大限降低了第一类误差a 水平,可能最安全);⑷费舍的最小显著差异法(LSD);一、协方差分析协方差分析的定义:协方差表示的是交互效应项,将处理引起的变异分解为处理在变量x 上引起的变异、在变量y 上引起的变异和在交互效应项xy 上引起的 变异。
第六章相关与回归分析习题一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值范围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系B圆周的长度决定于它的半径C家庭的收入和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元B减少70元C增加80元D减少80元4.假设要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。
华东师大心理统计学大纲教材:《教育统计学》(王孝玲编著,修订版)华东师范大学出版社 1993年6月第一版第一章绪论第一节什么是统计学和心理统计学一、什么是统计学 统计学是研究统计原理和方法的科学。
具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。
统计学分为两大类。
一类是数理统计学。
它主要是以概率论为基础,对统计数据数量关系的模式加以解释,对统计原理和方法给予数学的证明。
它是数学的一个分支。
另一类是应用统计学。
它是数理统计原理和方法在各个领域中的应用,如数理统计的原理和方法应用到工业领域,称为工业统计学;应用到医学领域,称为医学统计学;应用到心理学领域,称为心理统计学,等等。
应用统计学是与研究对象密切结合的各科专门统计学。
二、统计学和心理统计学的内容 统计学和心理统计学的研究内容,从不同角度来分,可以分为不同的类型。
从具体应用的角度来分,可以分成描述统计,推断统计和实验设计三部分。
1.描述统计 对已获得的数据进行整理、概括,显示其分布特征的统计方法,称为描述统计。
2.推断统计 根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。
推断统计的内容包括总体参数估计和假设检验两部分。
3.实验设计 实验者为了揭示试验中自变量和因变量的关系,在实验之前所制定的实验计划,称为实验设计。
其中包括选择怎样的抽样方式;如何计算样本容量;确定怎样的实验对照形式;如何实现实验组和对照组的等组化;如何安排实验因素和如何控制无关因素;用什么统计方法处理及分析实验结果,等等。
以上三部分内容,不是截然分开,而是相互联系的。
第二节统计学中的几个基本概念 一、随机变量 具有以下三个特性的现象,成为随机变量。
第一,一次试验有多中可能结果,其所有可能结果是已知的;第二,试验之前不能预料哪一种结果会出现;第三,在相同的条件下可以重复试验。
华东师大心理统计学大纲教材:《教育统计学》(王孝玲编著,修订版)华东师范大学出版社1993年6月第一版第一章绪论第一节什么是统计学和心理统计学一、什么是统计学统计学是研究统计原理和方法的科学。
具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。
统计学分为两大类。
一类是数理统计学。
它主要是以概率论为基础,对统计数据数量关系的模式加以解释,对统计原理和方法给予数学的证明。
它是数学的一个分支。
另一类是应用统计学。
它是数理统计原理和方法在各个领域中的应用,如数理统计的原理和方法应用到工业领域,称为工业统计学;应用到医学领域,称为医学统计学;应用到心理学领域,称为心理统计学,等等。
应用统计学是与研究对象密切结合的各科专门统计学。
二、统计学和心理统计学的内容统计学和心理统计学的研究内容,从不同角度来分,可以分为不同的类型。
从具体应用的角度来分,可以分成描述统计,推断统计和实验设计三部分。
1.描述统计对已获得的数据进行整理、概括,显示其分布特征的统计方法,称为描述统计。
2.推断统计根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。
推断统计的内容包括总体参数估计和假设检验两部分。
3.实验设计实验者为了揭示试验中自变量和因变量的关系,在实验之前所制定的实验计划,称为实验设计。
其中包括选择怎样的抽样方式;如何计算样本容量;确定怎样的实验对照形式;如何实现实验组和对照组的等组化;如何安排实验因素和如何控制无关因素;用什么统计方法处理及分析实验结果,等等。
以上三部分内容,不是截然分开,而是相互联系的。
第二节统计学中的几个基本概念一、随机变量具有以下三个特性的现象,成为随机变量。
第一,一次试验有多中可能结果,其所有可能结果是已知的;第二,试验之前不能预料哪一种结果会出现;第三,在相同的条件下可以重复试验。