化工热力学第七章3
- 格式:ppt
- 大小:505.50 KB
- 文档页数:3
一, 课程简介化工热力学是化学工程学科的一个重要分支,是化工类专业学生必修的基础技术课程。
化工热力学课程结合化工过程阐述热力学基本原理, 定理及其应用,是解决工业过程(特殊是化工过程)中热力学性质的计算和预料, 相平衡计算, 能量的有效利用等实际问题的。
二, 教学目的培育学生运用热力学定律和有关理论知识,初步驾驭化学工程设计及探讨中获得物性数据;对化工过程中能量和汽液平衡等有关问题进行计算的方法,以及对化工过程进行热力学分析的基本实力,为后续专业课的学习及参与实际工作奠定基础。
三, 教学要求化工热力学是在基本热力学关系基础上,重点探讨能量关系和组成关系。
本课程学习须要具备肯定背景知识,如高等数学和物理化学等方面的基础知识。
采纳敏捷的课程教学方法,使学生能正确理解基本概念,娴熟驾驭各种基本公式的应用领域及应用技巧,驾驭化学工程设计及探讨中求取物性数据及平衡数据的各种方法。
以课堂讲解, 自学和作业等多种方式进行。
四, 教学内容第一章绪论本章学习目的及要求:了解化工热力学的发展简史, 主要内容及探讨方法。
第二章流体的P-V-T关系本章学习目的及要求:了解纯物质PVT的有关相图中点, 线, 面的物理意义,驾驭临界点的物理意义及其数学特征;理解志向气体的基本概念和数学表达方法,驾驭采纳状态方程式计算纯物质PVT性质的方法;了解对比态原理,驾驭用三参数对比态原理计算纯物质PVT性质的方法;了解真实气体混合物PVT性质的计算方法。
第一节纯物质的PVT关系1. 主要内容: P-V相图,流体。
2. 基本概念和知识点:临界点。
3. 实力要求:驾驭临界点的物理意义及其数学特征。
第二节气体的状态方程式1. 主要内容:志向气体状态方程,维里方程,R-K方程。
2. 基本概念和知识点:志向气体的数学表达方法,维里方程,van der Waals方程,R-K方程。
3. 实力要求:驾驭采纳状态方程式计算纯物质PVT性质的方法。
第三节对比态原理及其应用1. 主要内容:三参数对比态原理,普遍化状态方程。
第7章 相平衡与化学反应平衡一、是否题1. 在一定温度T (但T <T c )下,纯物质的饱和蒸汽压只可以从诸如Antoine 等蒸汽压方程求得,而不能从已知常数的状态方程(如PR 方程)求出,因为状态方程有三个未知数(P 、V 、T )中,只给定了温度T ,不可能唯一地确定P 和V 。
(错,因为纯物质的饱和蒸汽压代表了汽液平衡时的压力。
由相律可知,纯物质汽液平衡状态时自由度为1,若已知T ,其蒸汽压就确定下来了。
已知常数的状态方程中,虽然有P 、V 、T 三个变量,但有状态方程和汽液平衡准则两个方程,所以,就能计算出一定温度下的蒸汽压。
) 2. 混合物汽液相图中的泡点曲线表示的是饱和汽相,而露点曲线表示的是饱和液相。
(错) 3. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。
(错,在共沸点时相同)4. 一定压力下,纯物质的泡点温度和露点温度是相同的,且等于沸点。
(对)5. 由(1),(2)两组分组成的二元混合物,在一定T 、P 下达到汽液平衡,液相和汽相组成分别为11,y x ,若体系加入10 mol 的组分(1),在相同T 、P 下使体系重新达到汽液平衡,此时汽、液相的组成分别为'1'1,y x ,则1'1x x >和1'1y y >。
(错,二元汽液平衡系统的自由度是2,在T ,P 给定的条件下,系统的状态就确定下来了。
) 6. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。
(错,若系统存在共沸点,就可以出现相反的情况)7. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大。
(错,若系统存在共沸点,就可以出现相反的情况)8. 纯物质的汽液平衡常数K 等于1。
(对,因为111==y x )9. 理想系统的汽液平衡K i 等于1。
第7章 节流膨胀与制冷循环一、选择题1. 蒸汽压缩制冷循环过程中,制冷剂蒸发吸收的热量一定( C )制冷剂冷却和冷凝放出的热量A 大于B 等于C 小于书294页 上部2. 卡诺制冷循环的制冷系数与( B )有关。
A 制冷剂的性质B 制冷剂的工作温度C 制冷剂的循环速率D 压缩机的功率书294页 中部3.理想气体流过节流阀,其参数变化为( B ) 。
A ⊿T = 0, ⊿S = 0B ⊿T = 0, ⊿S > 0C ⊿T ≠ 0, ⊿S > 0D ⊿T = 0, ⊿S < 0书278页 中部,书277页 下边,二、简答及计算题1. 从制冷原理和生产应用方面说明制冷剂的选择原则。
书300页答(1)潜热要大。
因为潜热大,冷冻剂的循环量可以减小。
氨在这方面具有显著的优点,它的潜热比氟里昂约大10倍,常用于大型制冷设备。
(2)操作压力要合适。
即冷凝压力(高压)不要过高,蒸发压力(低压)不要过低。
因为冷凝压力高将增加压缩机和冷凝器的设备费用,功率消耗也会增加;而蒸发压力低于大气压力,容易造成空气漏入真空操作的蒸发系统,不利于操作稳定。
在这方面氨和氟里昂也是比较理想的。
(3)冷冻剂应该具有化学稳定性。
冷冻剂对于设备不应该有显著的腐蚀作用。
氨对铜有强烈的腐蚀作用,对碳钢则腐蚀不强;氟里昂则无腐蚀。
(4)冷冻剂不应有易燃和易爆性。
(5)冷冻剂对环境应该无公害。
氟里昂F11、F12对大气臭氧的破坏已被公认,将逐渐被禁用,无公害的氟里昂替代品已大量应用。
综合以上各点,氨作为冷冻剂常用于大型冷库和工业装置。
而无公害氟里昂常用于小型冷冻机和家用电器。
2. 在25℃时,某气体的P-V-T 可表达为pV=RT +6.4×104p ,在25℃,30MPa 时将该气体进行节流膨胀,向膨胀后气体的温度上升还是下降?解;判断节流膨胀的温度变化,依据Joule-Thomson 效应系数μJ 。
书278页 由热力学基本关系式可得到:pP H J C V T V T P T -∂∂=∂∂=)()()(μ 将P-V-T 关系式代入上式,P RT PV 4104.6⨯+=→4104.6⨯+=P RT V ,其中PR T V P =∂∂)( 0104.6104.644<⨯-=⨯-=⨯-=-⨯=p p p p J C C C P PV RT C V P R T μ 可见,节流膨胀后,温度比开始为高。
习 题 七 及 答 案一、问答题7-1. Rankine 循环与卡诺循环有何区别与联系? 实际动力循环为什么不采用卡诺循环?答:两种循环都是由四步组成,二个等压过程和二个等熵(可逆绝热)过程完成一个循环。
但卡诺循环的二个等压过程是等温的,全过程完全可逆;Rankine 循环的二个等压过程变温,全过程只有二个等熵过程可逆。
卡诺循环中压缩机压缩的是湿蒸汽,因气蚀损坏压缩机;且绝热可逆过程难于实现。
因此,实际动力循环不采用卡诺循环。
7-2. Rankine 循环的缺点是什么? 如何对其进行改进?答:Rankine 循环的吸热温度比高温燃气温度低很多,热效率低下,传热损失极大。
可通过:提高蒸汽的平均吸热温度、提高蒸汽的平均压力及降低乏汽的压力等方法进行改进。
7-3.影响循环热效率的因素有哪些?如何分析?答:影响循环热效率的因素有工质的温度、压力等。
具体可利用下式1L HT T η=- 分析确定哪些因素会改变L H T T 或,从而得到进一步工作的方案。
7-4.蒸汽动力循环中,若将膨胀做功后的乏气直接送人锅炉中使之吸热变为新蒸汽,从而避免在冷凝器中放热,不是可大大提高热效率吗? 这种想法对否? 为什么?答:不合理。
蒸汽动力循环以水为工质,只有在高压下才能提高水温;乏汽的压力过低,不能直接变成高压蒸汽。
与压缩水相比较,压缩蒸汽消耗的工太大,不仅不会提高热效率,反而会大大降低热效率。
7-5.蒸气压缩制冷循环与逆向卡诺循环有何区别与联系? 实际制冷循环为什么不采用逆向卡诺循环?答:两种循环都是由四步组成,二个等压过程和二个等熵(可逆绝热)过程完成一次循环。
但逆向卡诺循环的二个等压过程是等温的,全过程完全可逆;蒸气压缩制冷循环的二个等压过程变温,全过程只有二个等熵过程可逆。
Carnot 制冷循环在实际应用中是有困难的,因为在湿蒸汽区域压缩和膨胀会在压缩机和膨胀机汽缸中形成液滴,造成“汽蚀”现象,容易损坏机器;同时压缩机汽缸里液滴的迅速蒸发会使压缩机的容积效率降低。