TP2实验报告_V1
- 格式:pdf
- 大小:1.83 MB
- 文档页数:11
光纤通信实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII光纤通信实验报告课程名称光纤通信实验实验一光源的P-I特性、光发射机消光比测试一、实验目的1、了解半导体激光器LD的P-I特性、光发射机消光比。
2、掌握光源P-I特性曲线、光发射机消光比的测试方法。
二、实验器材1、主控&信号源模块、2号、25号模块各一块2、23号模块(光功率计)一块3、FC/PC型光纤跳线、连接线若干4、万用表一个三、实验原理数字光发射机的指标包括:半导体光源的P -I 特性曲线测试、消光比(EXT )测试和平均光功率的测试。
1、半导体光源的P-I 特性I(mA)LD 半导体激光器P-I 曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。
在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系类似于正向二极管的特性。
该实验就是对该线性关系进行测量,以验证P -I 的线性关系。
P -I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th 尽可能小,没有扭折点, P-I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
二极管双平衡混频器一、实验目的1、掌握二极管双平衡混频器频率变换的物理过程。
2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流I e对中频转出电压大小的影响。
3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。
4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。
二、实验内容1、研究二极管双平衡混频器频率变换过程和此种混频器的优缺点。
2、研究这种混频器输出频谱与本振电压大小的关系。
三、实验仪器1、1号板1块2、6号板1块3、3 号板1块4、7 号板1块5、双踪示波器1台四、实验原理与电路1、二极管双平衡混频原理图1 二极管双平衡混频器二极管双平衡混频器的电路图示见图1。
图中V S 为输入信号电压,V L 为本机振荡电压。
在负载R L 上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出)。
二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。
图1中的变压器一般为传输线变压器。
二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。
众所周知,二极管的伏安特性为指数律,用幂级数展开为⋯+⋯++=-=n TT T S S V vn V v V v I eI i Tv)(1)(21[)1(2!! 当加到二极管两端的电压v 为输入信号V S 和本振电压V L 之和时,V 2项产生差频与和频。
其它项产生不需要的频率分量。
由于上式中u 的阶次越高,系数越小。
因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v 2项大一倍)产生的输入信号频率分量和本振频率分量。
用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。
双平衡混频器的输出仅包含(p ωL ±ωS )(p 为奇数)的组合频率分量,而抵消了 ωL 、ωC 以及p 为偶数(p ωL ±ωS )众多组合频率分量。
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
实训报告-RIPv1与RIPv2实践分析NEW《RIPv1与RIPv2实践分析》实训报告课程名称网络交换与路由章节第5-6章RIPv1-RIPv2 系部计算机与电子电气工程系专业计算机科学与技术班级计算机121 姓名邢再寿学号201216021103 机房304 周次10 节次6,7实训名称RIPv1与RIPv2实践分析成绩评定实训目标了解RIPv1与RIPv2特点、协议封装格式与路由表结构,理解计时器、被动接口、连续子网编址、非连续子网编址、VLSM编址、CIDR编址、自动总结、静态路由重分布等相关概念,理解RIPv1的局限性及其本质原因,理解RIPv1路由更新发送与接收处理规则,掌握在实际网络环境中配置RIP协议的基本操作,能够动态分析RIPv1与RIPv2路由更新信息。
针对相关故障,能够合理分析故障原因,并迅速排除故障,保证网络畅通。
网络拓扑备注:X指自己学号后3位,若学号后3位大于255,则X指自己学号后2位。
任务要求1、IP编址网络地址分配如图所示;其中,点对点链路上,DCE端口分配网段中最小主机地址,另一端口分配网段中最大主机地址;以太网中,路由器接口(FastEthernet 端口)分配网段中最大主机地址,主机分配网段中最小主机地址。
2、路由配置(1)配置RIPv1——默认路由重分布在R1、R2上启用RIPv1,宣告所有直连网络,在R3上启用RIPv1,不宣告网络20.X.1.12/30,宣告其他所有直连网络。
在R3上配置默认路由,下一跳路由器为R4,并配置该路由在RIPv1更新中传递。
在R4上配置默认路由,下一跳路由器为R3。
在R1、R2和R3上禁止通过以太网接口向外发送路由更新。
Packet Tracer保存命名“学号-姓名-RIPv1默认路由重分布”;(2)配置RIPv1——静态路由重分布在(1)的基础上修改网络配置:在R3上配置两条静态路由到网络200.X.40.0和200.X.46.0,下一跳路由器为R4,并配置这两条静态路由在RIPv1更新中传递。
二端口网络测试实验报告二端口网络测试实验报告一、实验目的二端口网络测试是计算机网络领域中的一项重要实验,旨在通过建立两台计算机之间的网络连接,测试网络的性能和稳定性。
本实验报告将详细介绍实验所涉及的步骤、方法和结果,以及对实验结果的分析和讨论。
二、实验步骤1. 实验环境搭建为了进行二端口网络测试,我们需要准备两台计算机,并确保它们能够相互通信。
在实验开始之前,我们先检查网络连接是否正常,确保两台计算机能够互相ping通。
2. 测试网络带宽为了测试网络的带宽,我们使用了一款专业的网络测试工具。
首先,在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
然后,在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过在两台计算机之间传输大量数据包,我们可以测量网络的带宽。
3. 测试网络延迟除了测试带宽外,我们还需要测试网络的延迟。
延迟是指从发送端发送数据包到接收端接收到数据包之间的时间间隔。
为了测量延迟,我们使用了另一款专业的网络测试工具。
在发送端计算机上运行该工具,并设置好发送数据包的大小和发送速率。
在接收端计算机上同样运行该工具,并指定接收数据包的端口。
通过测量数据包往返所需的时间,我们可以得出网络的延迟。
4. 分析和记录实验结果在进行网络测试的过程中,我们需要记录各项指标的数值,并进行分析。
通过对实验结果的分析,我们可以评估网络的性能和稳定性,并找出可能存在的问题。
三、实验结果在进行二端口网络测试的过程中,我们得到了以下结果:1. 带宽测试结果通过测试工具测量,我们得出了网络的带宽为X Mbps。
这个数值代表了网络在传输数据时的最大速率。
通过与预期的带宽进行比较,我们可以评估网络的性能。
2. 延迟测试结果通过测试工具测量,我们得出了网络的延迟为X 毫秒。
这个数值代表了数据包从发送端到接收端所需的时间间隔。
通过与预期的延迟进行比较,我们可以评估网络的稳定性。
四、结果分析和讨论根据实验结果,我们可以对网络的性能和稳定性进行分析和讨论。
无线测试实验报告模板1. 实验目的本次实验的主要目的是对无线网络进行测试,评估网络的性能和稳定性。
2. 实验环境- 硬件设备:一台电脑、无线路由器、手机- 软件工具:网络测试工具、浏览器3. 实验步骤1. 确定实验的测试内容和指标,如网络速度、延迟等。
2. 配置无线路由器的参数,如网络名称、加密方式、信道等,并启动路由器。
3. 通过电脑连接到无线路由器的网络。
4. 使用网络测试工具测量网络速度和延迟,记录测试结果。
5. 在不同位置(如离路由器远近、有无障碍物等)进行测试,观察网络性能的变化。
6. 使用手机连接到无线路由器的网络,测试手机上网速度和延迟。
7. 使用浏览器打开不同网站,观察页面加载速度和网络稳定性。
8. 结合实际需求,对测试结果进行分析和评估。
4. 实验结果根据实验步骤进行测试后,得到以下结果:- 在近距离(约5米)测试时,无线网络的下载速度为10Mbps,延迟为20ms,上传速度为5Mbps。
- 在远距离(约10米)测试时,无线网络的下载速度为8Mbps,延迟为30ms,上传速度为4Mbps。
- 在有障碍物(如墙壁)阻挡的情况下,无线网络的性能有所下降,下载速度为6Mbps,延迟为40ms,上传速度为3Mbps。
- 手机连接到无线网络后,上网速度和延迟与电脑连接类似,但在远距离测试时稍微有些下降。
- 在浏览器打开不同网站时,页面加载速度在1-3秒之间,网络稳定性良好。
5. 实验分析和改进通过以上实验结果分析,可以得出以下结论:- 在短距离内,无线网络的性能良好,满足常规上网需求。
- 随着距离的增加,无线网络的性能下降,可能会影响在线游戏、高清视频等对网络速度和延迟要求较高的应用。
- 障碍物对无线信号传输有一定影响,建议在布置网络时避免障碍物的阻挡。
- 手机连接无线网络后,网络性能基本与电脑连接类似,但信号强度稍弱。
针对以上分析结果,可以提出以下改进方案:- 在网络布置时,根据实际情况选择合适的信道,避免信道拥塞。
实验二实验报告实验目的:本实验旨在通过实际操作,加深对实验原理的理解,掌握实验操作技巧,以及学习如何正确记录和分析实验结果。
实验仪器与材料:1. XXX型实验仪器2. XXX材料13. XXX材料24. XXX试剂5. 实验记录表格实验步骤:1. 材料准备在实验前,首先需要准备好所需的材料和试剂。
确保所有材料和试剂的质量和数量均符合实验要求。
2. 实验操作2.1 步骤一:XXX操作根据实验原理,操作XXX设备,将材料1与材料2进行混合,并设置相应的条件和参数。
注意在操作过程中保持安全和环境卫生。
2.2 步骤二:XXX操作根据实验原理,进行XXX操作,如加热、冷却、搅拌等,以促使反应发生,并观察反应情况。
2.3 步骤三:XXX操作根据实验原理,对实验结果进行采集和记录。
注意准确记录所用的仪器、试剂、操作条件等信息。
3. 数据处理与分析根据实验记录表格中的数据,进行数据处理和分析。
计算相关的实验参数,并绘制相应的图表和曲线。
对实验结果进行解读和讨论,提出可能的误差来源,并进行系统误差和随机误差的分析。
4. 实验结论经过实验数据的分析和讨论,得出以下结论:(1)总结实验结果的主要发现和规律。
(2)分析实验结果与预期目标之间的差异,并给出可能的原因和解释。
(3)对实验中存在的问题和改进的方向提出建议。
5. 实验总结通过本次实验,我深入理解了实验原理,并掌握了实验操作技巧。
同时,我也学会了如何正确记录和分析实验结果。
实验过程中的困难和挑战,让我更好地理解了科学研究的严谨性和耐心性。
通过对实验结果的评估和讨论,我可以应用所学的知识和技能,为将来的实验工作提供参考和改进方向。
6. 参考文献[1] 作者1. 文章标题1. 期刊名称,年份,卷号(期号):起止页码。
[2] 作者2. 文章标题2. 期刊名称,年份,卷号(期号):起止页码。
...以上实验报告按照一般实验报告的格式进行编写,旨在使读者能迅速了解实验目的、步骤、结果和结论。
二端口网络实验报告二端口网络实验报告引言:网络技术的不断发展和普及,使得人们的生活和工作方式发生了翻天覆地的变化。
作为网络的基础,二端口网络在各个领域中起着至关重要的作用。
本报告旨在通过对二端口网络的实验研究,深入了解其原理和应用。
一、实验目的本次实验的主要目的是通过搭建二端口网络,探究其工作原理和性能表现。
具体目标如下:1.了解二端口网络的基本概念和特点;2.掌握二端口网络的搭建和配置方法;3.研究二端口网络的传输性能和稳定性。
二、实验原理1.二端口网络的定义二端口网络是指具有两个输入端口和两个输出端口的网络系统。
它可以用来连接不同的设备和主机,实现数据的传输和通信。
2.二端口网络的结构二端口网络由两个端口和中间的网络设备组成。
其中,端口可以是计算机、路由器、交换机等,而网络设备则负责将数据从一个端口传输到另一个端口。
3.二端口网络的工作原理当数据从一个端口输入到网络中时,网络设备会根据设定的规则和路由表,将数据传输到目标端口。
这个过程中,网络设备会根据网络拓扑和传输协议,进行数据的分组、转发和路由选择。
三、实验步骤1.准备工作在进行实验之前,需要准备好所需的硬件设备和软件工具。
硬件设备包括计算机、路由器、交换机等,而软件工具则包括网络配置软件和数据传输工具。
2.搭建二端口网络首先,将计算机、路由器和交换机等设备连接起来,形成一个网络拓扑结构。
然后,通过网络配置软件对设备进行配置,设置IP地址、子网掩码和默认网关等参数。
3.测试网络传输性能使用数据传输工具,对二端口网络进行性能测试。
可以通过发送大文件、测量传输速度和延迟等指标,评估网络的传输性能和稳定性。
四、实验结果与分析通过实验,我们得到了以下结果:1.二端口网络可以实现不同设备之间的数据传输和通信,具有较高的灵活性和可扩展性;2.网络的传输性能和稳定性受到多种因素的影响,包括网络拓扑、设备配置和传输协议等;3.合理配置和管理二端口网络,可以提高网络的传输效率和安全性。
.路由器技术实验报告《路由器技术》实验指导书一.实验总学时(课外学时/课内学时):22开实验个数: 7二.适用专业:计算机专业三.考核方式及办法:在规定实验时间内完成实验要求,依据实验过程、实验结果和实验报告综合考核。
四.配套的实验教材或指导书:自编实验指导书五. 实验项目:实验一:Packet Tracer软件使用交换机的配置与管理(内容一):认识 Packet Tracer软件Packet Tracher介绍Packet Tracer 是 Cisco 公司针对CCNA认证开发的一个用来设计、配置和故障排除网络的模拟软件。
Packer Tracer 模拟器软件比 Boson 功能强大,比 Dynamips 操作简单,非常适合网络设备初学者使用。
学习任务:1、安装 Packer Tracer;2、利用一台型号为 2960 的交换机将 2pc机互连组建一个小型局域网;3、分别设置pc机的ip 地址;4、验证 pc 机间可以互通。
实验设备:Switch_2960 1 台;PC 2 台;直连线配置信息:PC1IP: 192.168.1.2Submask: 255.255.255.0Gateway: 192.168.1.1PC2IP: 192.168.1.3Submask: 255.255.255.0Gateway: 192.168.1.1(内容二):交换机的基本配置与管理1.实验目标:掌握交换机基本信息的配置管理。
2.实验背景:某公司新进一批交换机,在投入网络以后要进行初始配置与管理,你作为网络管理员,对交换机进行基本的配置与管理。
3.技术原理:交换机的管理方式基本分为两种:带内管理和带外管理。
1.通过交换机的 Console 端口管理交换机属于带外管理;这种管理方式不占用交换机的网络端口,第一次配置交换机必须利用 Console端口进行配置。
2.通过Telnet、拨号等方式属于带内管理。
交换机的命令行操作模式主要包括:●用户模式 Switch>●特权模式 Switch#●全局配置模式 Switch(config)#●端口模式 Switch(config-if)#4.实验步骤:●新建Packet Tracer 拓扑图●了解交换机命令行●进入特权模式(en)●进入全局配置模式(conf t)●进入交换机端口视图模式(int f0/1)●返回到上级模式(exit)●从全局以下模式返回到特权模式(end)●帮助信息(如? 、co?、copy?)●●命令简写(如 conf t)●命令自动补全(Tab)●快捷键(ctrl+c 中断测试,ctrl+z 退回到特权视图)●●Reload重启。
实验2实验报告在我们探索知识的道路上,实验就像是一个个神秘的冒险,每一次都充满了未知和惊喜。
今天,我要和大家分享的就是实验 2 的奇妙之旅。
这次实验的主题是关于具体实验主题。
为了能顺利完成这个实验,我们可是做了充分的准备。
老师提前给我们讲解了实验的原理和步骤,让我们心里有了个底。
实验开始啦!我紧张又兴奋地摆弄着实验器材,就像一个即将出征的战士在检查自己的武器装备。
我小心翼翼地拿起实验器材名称,眼睛紧紧盯着它,生怕一个不小心就出了差错。
旁边的小伙伴也都全神贯注,教室里安静得只能听到我们紧张的呼吸声。
按照预定的步骤,我先进行了第一步操作。
这一步看起来简单,可真做起来还真不容易。
我得控制好操作的关键因素,稍微有一点偏差,可能就会影响整个实验结果。
我深吸一口气,告诉自己要稳住。
经过几次尝试,终于成功地完成了这一步,心里不禁小小地欢呼了一下。
接下来的步骤越来越复杂,我感觉自己的大脑在飞速运转。
在进行关键步骤名称的时候,我遇到了一个大难题。
怎么都达不到预期的效果,我急得满头大汗。
这时,我想起老师说过的话:“遇到问题不要慌,要冷静思考。
”于是,我停下手中的动作,重新审视了一遍实验步骤,仔细观察了其他同学的操作,终于发现了自己的错误。
原来是我在错误的具体方面上出了岔子。
找到问题所在后,我迅速调整,终于顺利地度过了这个难关。
在整个实验过程中,我和小伙伴们互相帮助,互相鼓励。
当有人遇到困难时,大家都会停下自己的工作,一起出谋划策。
这种团队合作的氛围让我感到特别温暖,也让我明白了在学习的道路上,我们不是一个人在战斗。
经过一番努力,实验终于接近尾声。
当看到最终的实验结果时,那种成就感简直无法用言语来形容。
我们的努力没有白费,实验成功啦!通过这次实验,我不仅学到了知识,还锻炼了自己的动手能力和解决问题的能力。
更重要的是,我明白了做任何事情都要有耐心、细心,遇到困难不能轻易放弃。
这就是我的实验 2 之旅,充满了挑战和收获。
实验报告课程名称: 营养与食品卫生学 指导老师: 焦晶晶 成绩:__________________ 实验名称: 维生素B2负荷尿试验与应用 实验类型: 应用型一、实验目的和要求(必填) 二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、通过负荷尿试验测定尿中核黄素排出量,评价人体核黄素营养状况。
2、掌握荧光分析法的基本原理及方法。
3、熟悉荧光分光光度计的使用方法。
二、实验原理1、核黄素为荧光化合物,在紫外线下发黄绿色荧光,在稀溶液中荧光强度与核黄素浓度成正比。
2、核黄素可被低亚硫酸钠还原而失去荧光,故测定还原前后的荧光强度可去除干扰性荧光物质的影响。
3、核黄素属于水溶性维生素,易从尿中排出体外,在满足人体组织方面的需要后,多余的都将从尿中排出。
在服用大剂量核黄素后,若人体组织中核黄素充足,则尿中排出核黄素含量高;若人体中缺乏核黄素,则给予的核黄素将大量被组织利用,尿中排出量少。
因此人体核黄素营养水平可在通过负荷尿试验检测,24小时负荷尿核黄素排出量在200μg 及以上视为人体核黄素营养水平充足,200μg 以下视为不足。
三、仪器与试剂1、荧光光度计2、酸性水:浓硫酸0.3ml 加蒸馏水至200ml 。
3、核黄素标准储备液:精密称取25mg 核黄素于1000ml 容量瓶中,用酸性水稀释至刻度,移植棕色瓶内,冷藏备用。
4、核黄素标准应用液:吸取上液4ml ,用酸性水稀释至100ml ,临用时配置。
5、低亚硫酸钠。
四、操作方法和实验步骤1、取尿样1ml 加酸性水19ml 于一具塞试管内,混匀,在激发波长420mm 和发射波长530mm 处测定荧光强度,记作读数A 。
再取10mg 低亚硫酸钠直接加入比色杯内,摇匀,立即测定荧光强度,记作读数B 。
2、取尿样1.0ml 加核黄素标准应用液1.5ml ,加酸性水17.5ml 于一具塞试管内,混匀,在激发波长420mm 和发射波长530mm 处测定荧光强度,记作读数C 。
实验八 三点式LC 振荡器及压控振荡器一、实验目的1、掌握三点式LC 振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式LC 振荡器和压控振荡器的设计方法。
二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;三、实验仪器20MHz 示波器一台、数字式万用表一块、调试工具一套四、实验原理1、三点式LC 振荡器三点式LC 振荡器的实验原理图如图8-1所示。
图 8-1 三点式LC 振荡器实验原理图图中,T2为可调电感,Q1组成振荡器,Q2组成隔离器,Q3组成放大器。
C6=100pF ,C7=200pF ,C8=330pF ,C40=1nF 。
通过改变K6、K7、K8的拨动方向,可改变振荡器的反馈系数。
设C7、C8、C40的组合电容为C ∑,则振荡器的反馈系数F =C6/ C ∑。
通常F 约在0.01~0.5之间。
同时,为减小晶体管输入输出电容对回路振荡频率的影响,C6和C ∑取值要大。
当振荡频率较高时,有时可不加C6和C ∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。
忽略三极管输入输出电容的影响,则三点式LC 振荡器的交流等效电路图如图8-2所示。
C6图8-2 三点式LC 振荡器交流等效电路图图8-2中,C5=33pF ,由于C6和C ∑均比C5大的多,则回路总电容450C C C += 则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ调节T2则振荡器的振荡频率变化,当T2变大时,f 0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。
实际中C6和C ∑也往往不是远远大于C5,且由于三极管输入输出电容的影响,在改变C ∑,即改变反馈系数的时候,振荡器的频率也会变化。
五、实验步骤1、三点式LC 振荡器(1)连接实验电路在主板上正确插好正弦波振荡器模块,开关K1、K9、K10、K11、K12向左拨,K2、K3、K4、K7、K8向下拨,K5、K6向上拨。
TP2 Compton 散射和散射角研究报告姓名马蓓蓓学号15213695院系中法核工程与技术学院专业核能与核技术研究Compton散射在辐射与材料中有着非常重要的意义。
经Compton散射后的γ射线会以一定的散射角出射出金属箔片,这就是Klein-Nishina 公式所描述的现象。
为研究出射γ射线的能量和Compton散射角之间的关系,我们使用法国CEA开发的Tripoli软件来实现在近似真空的环境中模拟0.511MeVγ射线在铝箔中发生Compton散射现象。
结果证明了Klein-Nishina 公式的结论,随着散射角在0到180度之间变大,射出的γ射线能量越来越低;Compton散射的反应截面在不断减小,且在0°附近下降很快,而后逐渐变趋向稳定值。
关键词:Compton散射;Klein-Nishina 公式;Tripoli;γ射线;散射角目录摘要 (2)引言 (3)模型与方法 (4)Tripoli模型的建立介绍 (5)散射效应 (6)结果与讨论 (8)Comtpon散射在0° (8)Comtpon散射的反应截面 (9)误差分析 (15)结论 (15)参考资料: (15)代码 (15)1923年,美国物理学家Arthur Compthon在研究X射线与较轻物质的相互作用中发现散射谱线中除了有波长与入射波波长相同的成分外,还有波长更长的成分。
他在1923年5月的《物理评论》上写道“任一特殊的X射线(光子)不是被靶物质中的所有电子散射,而是把他的全部能量耗散在某个特殊的电子上,这个电子又将射线向某一特殊的方向散射,这个方向与入射射线成某个角度。
辐射量子路径的弯折引起动量的变化。
结果,散射电子以一等于X射线动量变化的动量反冲。
散射射线的能量等于入射射线的能量减去散射电子反冲的动能。
”1在1920年代,虽有光电效应支持,光的粒子性理论依然备受争议,Compton散射第一次从实验上清晰明确地证实了光子具有动量的假设,这在物理学史波粒二象性的发展有着重要意义。
tp抗体滴度测定报告(实用版)目录一、引言1.1 背景介绍1.2 目的和意义二、tp 抗体滴度测定方法2.1 tp 抗体滴度测定的定义2.2 tp 抗体滴度测定的步骤三、tp 抗体滴度测定报告分析3.1 数据概述3.2 数据分析3.3 结果解释四、结论4.1 总结4.2 展望正文一、引言1.1 背景介绍tp 抗体滴度测定是一种用于检测人体内特定抗体滴度的实验方法,它能够有效地评估个体的免疫状态,为疫苗接种、疾病诊断和免疫治疗等提供重要依据。
1.2 目的和意义本次 tp 抗体滴度测定的目的是分析受试者体内特定抗体的滴度水平,以评估其免疫状态。
这对于疫苗接种效果的评价、疾病的诊断以及免疫治疗方案的制定具有重要意义。
二、tp 抗体滴度测定方法2.1 tp 抗体滴度测定的定义tp 抗体滴度测定是一种通过实验室方法检测特定抗体在体内的浓度,以判断个体免疫状态的实验。
2.2 tp 抗体滴度测定的步骤tp 抗体滴度测定通常包括以下几个步骤:(1)提取受试者血清样本;(2)使用特定抗原进行免疫反应;(3)通过酶联免疫吸附试验等方法检测抗体滴度;(4)根据检测结果分析受试者免疫状态。
三、tp 抗体滴度测定报告分析3.1 数据概述本次测定共收集了 n 份受试者血清样本,经过测定,得到了各受试者特定抗体的滴度数据。
3.2 数据分析通过对数据进行统计分析,得到以下结果:(1)受试者特定抗体滴度的总体分布情况;(2)各受试者特定抗体滴度数据的差异性分析;(3)受试者特定抗体滴度与年龄、性别等因素的相关性分析。
3.3 结果解释根据数据分析结果,可以得出以下结论:(1)受试者特定抗体滴度总体上呈现正态分布,符合正常免疫状态;(2)部分受试者特定抗体滴度偏低,可能存在免疫缺陷或免疫抑制等情况;(3)特定抗体滴度与年龄、性别等因素存在一定相关性,可能与免疫状态的生理变化有关。
四、结论4.1 总结本次 tp 抗体滴度测定报告分析了受试者特定抗体的滴度水平,结果显示大部分受试者免疫状态良好,但部分受试者存在免疫缺陷或免疫抑制等情况。
实验二 高频谐振功率放大器在通信系统中, 高频谐振功率放大电路,是无线电发射机的重要组成部分,它的主要功用是实现对高频已调波信号的功率放大, 然后经天线将其转化为电磁波辐射到空间,以实现用无线信道的方式完成信息的远距离传送。
所以研究高频功率放大器的主要任务是怎样以高效率输出最大的高频功率。
因此, 高频功放常采用效率较高的丙类工作状态, 即晶体管集电极电流导通时间小于输入信号半个周期的工作状态,导通角090≤θ。
虽然功率增益比甲类和乙类小,但效率η却比甲类和乙类高。
一般可达到80%。
同时, 为了滤除丙类工作时产生的众多高次谐波分量, 采用LC 谐振回路作为选频网络, 故称为高频谐振功率放大器,显然,谐振功放属于窄带功放电路。
一、实验目的1.掌握高频谐振功率放大器的电路结构特点、基本功能与工作原理。
2.掌握高频谐振功率放大器的调谐方法和掌握高频谐振功率放大器的调谐特性,负载特性以及激励电压、偏置电压、电源电压变化时对其工作状态的影响。
3.了解高频谐振功率放大器的主要性能指标意义,掌握测试方法。
学会电路设计方法。
二、实验设备与仪器高频实验箱 WYGP-3或GP-4 一台 双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 频率特性测试仪 BT-3C 一台 万用表 一块三、实验任务与要求1、高频谐振功放的基本电路结构高频谐振功率放大器的电路构成,除电源电路外,主要由晶体管、输入激励电路、输出谐振回路三个部分组成,谐振功率放大器原理电路如图2-1所示。
图中b u 为输入交流信号,B E 是基极偏置电压,调整B E ,可改变放大器的导通角,以使放大 图2-1 谐振功率放大器的工作原理 器工作在导通角090≤θ丙类状态。
C E 是集电极电源电压。
集电极外接LC 并联谐振回路的功用是作放大器负载,实现滤波选频和阻抗匹配。
2、高频谐振功率放大器的工作原理与主要性能指标放大器工作时,设输入信号电压:t U u bm b ωcos =则加到晶体管基极,发射级的有效电压为: t U U U u u bm BB BB b BE ωcos +-=-= 由晶体管的转移特性曲线可知,如图2-2所示:当BZ BE U <u 时,管子截止,0=c i 。
实验五锯齿波同步移相触发电路实验一、实验目的1. 熟悉锯齿波同步移相触发电路的工作原理及电路中各元件的作用。
2. 掌握锯齿波同步移相触发电路的调试步骤和方法。
二、实验仪器1. DJK01电源控制屏2. DJK03晶闸管触发电路3.数字存储示波器三、实验原理锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成放大等环节组成。
其原理图如图5-1所示:图5-1: 锯齿波同步移相触发电路工作原理:由V3、VD2、C1等元件组成同步检测环节, 其作用是利用同步电压来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成恒流源电路, 当V3截止时。
恒流源对C2充电形成锯齿波;当V3导通时, 电容C2通过R3、V3放电。
调节电位器RP1可以调节恒流源的电流大小, 从而改变锯齿波的斜率。
控制电压、偏移电压和锯齿波电压在V5基极综合叠加, 从而构成移相控制环节, RP2、RP3分别调节控制电压和偏移电压的大小。
V6、V7构成脉冲形成放大环节, C5为强触发电容, 改善脉冲的前沿, 由脉冲变压器输出触发脉冲。
电位器RP1、RP2、RP3均已安装在挂箱的面板上, 同步变压器副边已在挂箱内部接好, 所有的测试信号都在面板上引出。
四、实验内容1.锯齿波同步移相触发电路的调试。
2.锯齿波同步移相触发电路各点电压波形的观察和分析。
五、实验步骤1.将DJK01电源控制屏的电源选择开关打到“直流调速”侧, 使输出电压为200V。
不能打到“交流调速”侧, 它的输出电压为240V。
2.用两根导线将200V交流电压(A.B.C任选两相)接到DJK03的“外接220V”端。
3.按下“启动”按钮, 打开DJK03的电源开关, 这时挂件中所有触发电路都开始工作。
用数字存储示波器观察正弦波触发电路各观察点的电压波形。
4.同时观察同步电压和“TP1”点的电压波形, 了解“TP1”波形形成的原因;观察“TP1”、“TP2”点的电压波形, 了解锯齿波宽度和“TP1”点电压波形的关系;调节电位器RP1, 观测“TP2”点锯齿波斜率的变化;观察“TP3”-“TP6”点和输出电压的波形, 记下各波形的幅值和宽度, 并比较“TP3”点电压和“TP6”点电压的对应关系。
《VLSI》第一次实验报告系别:电子工程系班级:微电子11002学号:11160600230 姓名:赵良一、实验内容:1.对反相器电路进行Hspice仿真2.自己设计一个反相器电路版图。
3.用calibre工具绘制版图二、实验完成步骤及结果:1、反相器电路结构(绘制电路图)2、反相器电路的瞬态仿真1)仿真结果波形图截图2)测量t PLH和t PHL值、计算t P3)当t PLH =t PHL时P管和N管的宽度和长度1)2)t PLH=2 t PHL=2.46 t P =2.233)当t PLH =t PHL时P管=0.5u N管=1.5u3、反相器电路的直流仿真1)仿真结果波形图截图2)读取V M值3)改变W P/W N的大小,分别为2,3,4,记录V M的值。
1)2)V M=3)为2时V M=为3时V M=为4时V M=4、Hspice 网表文件(最终版)INVTER.protect.lib './TD-LO18-SP-2003v4R/l018ll_io50_v1p3.lib' TT.unprotect.temp 25.subckt invter in out vdd vssM0 out in vss vss n18ll L=0.18u W=0.72uM1 out in vdd vdd p18ll L=0.18u W=0.18u.endsx1 in out vdd vss invterC1 out vss 0.5pfVDD vdd 0 dc 'vddvalue_vdd'.param vddvalue_vdd=1.8vVSS vss 0 dc 'vddvalue_vss'.param vddvalue_vss=0vvin1 in 0 PWL 10ns 0v, 11ns 1.8v, 30ns 1.8v, 31ns 0v, 50ns 0v.dc vin1 0,1.8,.1 .tran 1ns 60ns.PROBE v(out) v(in) .end5、反相器版图三、调试和运行程序过程中产生的问题及采取的措施:问题:t PLH 和t PHL 的值一直不相等措施:多次取值选择其中最接近的一项。
二氧化氯消毒剂的社会实践调查报告1、急性毒理实验,属无毒。
2、致突变实验,无。
3、Ames实验,阴性。
应用二氧化氯的优势:易溶于水,但不水解,溶解度是氯气的5倍杀菌力强能迅速地杀死病毒、细菌、原生生物、藻类和真菌能有效地杀死贾弟虫孢子、隐孢子和孢子形成菌 PH适应范围广,能在很宽的PH范围内保持很高的杀菌效率不会产生有机氯化物,不会形成三卤甲烷不会与氨反应能快速去除水中铁及锰能破坏酚、硫化物、氰化物和其它许多有机物具有漂白脱色作用腐蚀性低ClO2结构中有一个带有孤对电子的氯氧双键结构,极不稳定,光反应会产生氧自由基,具有强的氧化性。
下表列出了二氧化氯与其它氧化类消毒剂的氧化能力,亦即杀菌能力的比较(用有效氯表示)。
氧化剂ClO2H2O2NaClO2KMnO4Cl2NaClO氧化能力263%209%157%111%100%93%国外大量的实验研究显示,二氧化氯是安全、无毒的消毒剂,更无三致效应(致癌、致畸、致突变),同时在消毒过程中也不与有机物发生氯代反应生成可产生三致作用的有机氯化物或其他有毒类物质。
由于二氧化氯具有极强的氧化能力,在高浓度时(500mg/l)会对健康产生不利影响。
当使用浓度低于500mg/l时,其影响可以忽略,在100mg/l以下时不会对人体产生任何的影响,包括生理生化方面的影响,对皮肤亦无任何致敏作用。
事实上,二氧化氯的常规使用浓度要远远底于500mg/l,一般仅在几十mg/l左右。
因此,二氧化氯被国际上公认为安全、无毒的绿色消毒剂。
稳定性二氧化氯通过活化释放出游离态二氧化氯,游离态二氧化氯不稳定释放出新生态氧原子;新生态氧原子具有强烈的氧化作用,其通过氧化微生物、细菌细胞中可溶性部分(包括酶系统)而达到快速抑制微生物蛋白质的合成,杀灭细菌、病毒的目的。
国内外许多的研究结果表明,二氧化氯在极低浓度(0.1mg/l)下,即可杀灭许多种诸如大肠杆菌、金黄色葡萄球菌等致病菌。
即使在有机物等干扰下,在使用浓度为几十mg/l时,也可完全杀灭细菌繁殖体、肝炎病毒、噬菌体和细菌芽胞等所有微生物。