最新弧度制和弧度和角度的转换
- 格式:ppt
- 大小:349.00 KB
- 文档页数:4
第2讲弧度制和弧度制与角度制的换算一、基本内容1、角度制:角度制规定60分等于,60秒等于 .2、弧度制:(1)长度等于半径的长的圆弧所对的圆心角叫做的角,记作 ,这种以弧度为单位来度量角的制度叫做 .(2)在半径为r的圆中,弧长为L的弧所对的圆心角为rad,则=.3、角度制与弧度制的换算= rad,=rad rad,1rad= .4、弧度制下扇形的面积公式为 S=LR=∣∣.二课堂探究互动题型一弧度制的概念问题例1、下列各命题中,假命题是()A、“度”与“弧度”是度量角度的两种不同的度量单位;B、1度的角是周角的,1弧度的角是周角的;C、根据弧度的定义,一定等于弧度;D、不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关.解析:思考题1、下列各种说法中正确的是()A、一弧度是一度的圆心角所对的弧;B、一弧度是长为半径的弧;C、一弧度是一度的弧与一度的角之和;D、一弧度是长度等于半径的弧所对的圆心角,它是角的一种度量单位.解析:题型二角度与弧度的互化问题例2、(1)将化成弧度;解析:(2)将13.5 rad化成度;解析:(3)时间经过4小时,时针、分针个转过多少度?等于多少弧度?解析:思考题2、(1)把化成弧度;(精确到0.001)解析:(2)把-化成度.解析:题型三用弧度制表示终边相同的角、象限角及区间角例3、把下列各角化成0到2的角加上2k(k)的形式,并指出它们是第几象限角.(1);(2)-;(3);(4)-.解析:思考题3、将下列用弧度制表示的角化为2k,,的形式,并指出它们所在的象限.(1)-;(2);(3)-20;(4)-2.解析:题型四扇形的弧长与面积公式的运用问题例4、求下列各题:(1)已知扇形的周长为20cm,面积为9,求扇形圆心角的弧度数;解析:(2)若某扇形的圆心角为,半径为15cm,求扇形面积;解析:(3)若一扇形的周长为60cm,那么当它的半径和圆心角各为多少时,扇形面积达到最大?最大值是多少?解析:思考题4、已知圆上的一段弧长等于该圆的内接正方形的边长,求这段弧所对的圆周角的弧度数.解析:题型五弧度制下角的集合关系问题例5、集合M={x∣x=,},N={x∣x=,}.则()A、M=N; B、M N; C、N M; D、M.解析:思考题5、已知集合M={x∣x=,},P={x∣x=,},则P与M 之间的关系是()A、P M;B、M P;C、M=P;D、M N=.解析:三课堂练习1、终边在第三象限的角平分线上的角的集合为()A、{∣=2k+,k};B、{∣=2k+,k};C、{∣=2k-,k};D、{∣=2k-,k}.解析:2、与角终边相同的最小正角是 .解析:3、扇形圆心角为2弧度,所对弦长为2,求所对的弧长.解析:4、如图,动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q方向每秒钟转弧度,求P、Q时间及P、Q点各自走过的弧度.解析:5、已知扇形OAB的圆心角为=,半径为6,求扇形弧长及所含弓形的面积. 解析:弧长L=r=,OA=OB=6,∴AB=6,圆心到AB的距离d=3,∴弓形的面积S=扇形=.。
弧度制与⾓度制的换算公式
弧度制与⾓度制的换算公式:1度=π/180≈0.01745弧度,1弧度=180/π≈57.3度。
⾓的度量单位通常有两种,⼀种是⾓度制,另⼀种就是弧度制。
弧度制
⽤弧长与半径之⽐度量对应圆⼼⾓⾓度的⽅式,叫做弧度制,⽤符号rad表⽰,读作弧度。
等于半径长的圆弧所对的圆⼼⾓叫做1弧度的⾓。
由于圆弧长短与圆半径之⽐,不因为圆的⼤⼩⽽改变,所以弧度数也是⼀个与圆的半径⽆关的量。
⾓度以弧度给出时,通常不写弧度单位。
弧度制的精髓就在于统⼀了度量弧与⾓的单位,从⽽⼤⼤简化了有关公式及运算,尤其在⾼等数学中,其优点就格外明显。
⾓度制
⽤度(°)、分(′)、秒(″)来测量⾓的⼤⼩的制度叫做⾓度制。
⾓度制:规定周⾓的360分之⼀为1度的⾓,⽤度作为单位来度量⾓的单位制叫做⾓度制。
单位换算
⾓度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
⾓度制就是运⽤60进制的例⼦。
运算法则
两个⾓相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。
两个⾓相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上⼀个单位退1当作60。
弧度制与角度制之间的换算
1、定义:长度等于半径长的弧所对的圆心角称为1它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.
⑴平角=π rad 、周角=2π rad
⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0
⑶圆心角α的弧度数的绝对值 r
l =α(l 为弧长,r 为半径) 2. 角度制与弧度制的换算:
∵ 360︒=2π rad ∴180︒=π rad
∴ 1︒=rad rad 017453.0180≈π
8.447157)180(1'''︒≈︒=π
rad 3.(1)弧长公式:α⋅=r l
比公式180
r n l π=
简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积
(2)扇形面积公式 lR S 21= 其中l 是扇形弧长,R 是圆的半径 这比扇形面积公式 360
2
R n S π=扇 要简单 注意:常用特殊角的角度制与弧度制之间的转化
例1用弧度制表示:
1 终边在x 轴上的角的集合
2 终边在y 轴上的角的集合
3 终边在坐标轴上的角的集合
例2.求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位
为:m ?
例3已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
1.1.2 弧度制和弧度制与角度制的换算新知提炼1.弧度制(1)定义:以 为单位来度量角的制度叫做弧度制.(2)度量方法:长度等于 的圆弧所对的圆心角叫做1弧度的角.(3)记法:弧度单位用符号“ ”表示,或用弧度两个字表示.在用弧度制表示角的大小时,通常单位省略不写.(4)求法:正角的弧度数是一个 ,负角的弧度数是一个负数,零角的弧度数是 .如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值|α|= .2.角度制与弧度制的换算(1)弧度制与角度制的互化(换算)360°= rad ;180°= rad ;1°= rad ≈0.01745 rad ;1 rad =⎝⎛⎭⎫180π°≈57.30°=57°18′.(2)特殊角的度数与弧度数的对应表3.扇形的弧长及面积公式设扇形的半径为r ,弧长为l ,α为其圆心角的弧度数,n 为圆心角的角度数.则扇形的弧长:l =n πr 180= ;扇形的面积:S = = = . 小试身手1.-75°的弧度数是( )A .-π3B .-5π12C .-5π6D .-5π72.半径为2,圆心角为π3的扇形的面积是( ) A .4π3B .πC .2π3D .π33.(1)18°=________rad ;(2)310π=________. 题型探究题型一 弧度制的概念[学生用书P4]例1 下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1度的角是圆周的1360所对的圆心角,1弧度的角是圆周的12π所对的圆心角 C .根据弧度的定义,180°一定等于π radD .不论是用角度制还是用弧度制度量角,它们都与圆的半径大小有关方法归纳必须牢记弧度制的定义,并在解决问题时有意识地加强对这一新概念的利用,才能快速地掌握.跟踪训练 下列四个命题中,不正确的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度题型二 角度制与弧度制的互化[学生用书P5]例2 将下列角度与弧度进行互化:(1)20°;(2)-15°;(3)7π12;(4)-11π5.方法归纳角度制与弧度制的互化原则(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝⎛⎭⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =⎝⎛⎭⎫α·180π°;n °=n ·π180rad. (3)在某一指定范围内求某种特性的角:①解不等式求对应k 的值;②将k 赋值找出相应的角.跟踪训练 1.把-1 125°化为2k π+α(k ∈Z ,0≤α<2π)的形式是( )A .-6π-π4B .-6π+7π4C .-8π-π4D .-8π+7π42.在0°~720°范围内,找出与角2π5终边相同的角.题型三 扇形的弧长和面积问题[学生用书P5]例3 (1)已知扇形的圆心角为120°,半径为 3 cm ,则此扇形的面积为________cm 2.(2)已知扇形的周长为10 cm ,面积为4 cm 2,求扇形圆心角的弧度数.求解策略扇形的弧长和面积的求解策略(1)记公式:弧度制下扇形的面积公式是S =12lR =12αR 2(其中l 是扇形的弧长,α是扇形圆心角的弧度数,0<α<2π).(2)找关键:涉及扇形的半径、周长、弧长、圆心角、面积等的计算问题,关键是分析题目中已知哪些量、求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.跟踪训练 1.半径为π cm ,圆心角为120°的扇形的弧长为( )A .π3 cmB .π23cm C .2π3 cm D .2π23cm 2.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?当堂检测1.把-8π3化成角度是( ) A .-960°B .-480°C .-120°D .-60°2.将245°化为弧度为________.3.角-2912π的终边在第________象限. 4.圆的半径是6 cm ,则圆心角为π12的扇形面积是________ cm 2.【参考答案】新知提炼1.(1)弧度(2)半径长(3) “rad ”(4)正数,负数, 02. (1) 2π;π;π1803. |α|·r ; n πr 2360 12l ·r 12|α|·r 2. 小试身手1.B2.C3.(1)π10(2)54° 题型探究例1 D【解析】 根据角度、弧度的定义,可知无论角度制还是弧度制,角的大小都与圆的半径大小无关,而与弧长与半径的比值有关,所以D 错误.跟踪训练 D【解析】选D.本题考查弧度制下角的度量单位:1弧度的概念.根据1弧度的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角.对照各选项,可知D 不正确.例2【解】 (1)20°=20180π=π9. (2)-15°=-15×π180=-π12. (3)7π12=⎝⎛⎭⎫7π12×180π°=⎝⎛⎭⎫712×180°=105°. (4)-115π=⎝⎛⎭⎫-115π×180π°=-396°. 跟踪训练 1.D【解析】因为-1 125°=-4×360°+315°,315°=315×π180=7π4,所以-1 125°=-8π+7π4. 2.解:因为2π5=25×180°=72°, 所以与角2π5终边相同的角构成集合{θ|θ=72°+k ·360°,k ∈Z }. 当k =0时,θ=72°;当k =1时,θ=432°,所以在0°~720°范围内,与角2π5终边相同的角为72°,432°. 例3 π.【解析】 (1)设扇形弧长为l ,因为120°=120×π180 rad =2π3(rad), 所以l =αR =2π3×3=23π3(cm). 所以S =12lR =12×23π3×3=π(cm 2). (2)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为R ,依题意有⎩⎪⎨⎪⎧l +2R =10,①12lR =4.② ①代入②得R 2-5R +4=0,解之得R 1=1,R 2=4.当R =1时,l =8(cm),此时,θ=8 rad >2π rad 舍去.当R =4时,l =2(cm),此时,θ=24=12(rad). 综上可知,扇形圆心角的弧度数为12rad. 跟踪训练 1.D【解析】因为120°=2π3, 即|α|=2π3, 所以弧长l =|α|·r =2π3·π=2π23(cm).故选D. 2.解:设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,所以l =40-2r ,所以S =12lr =12×(40-2r )r =-(r -10)2+100. 所以当半径r =10 cm 时,扇形的面积最大, 这个最大值为100 cm 2,这时θ=l r =40-2×1010=2 rad. 当堂检测1. B【解析】-8π3=-83×180°=-480°. 2.49π36【解析】245°=245×π180=49π36. 3.四【解析】-2912π=-4π+1912π,1912π的终边位于第四象限. 4.32π 【解析】S =12|α|r 2=12×π12×62=32π.。
角度制与弧度制的换算公式
弧度制与角度制的换算公式:1度=π/180≈0.01745弧度,1弧度=180/π≈57.3度。
角的度量单位通常有两种,一种是角度制,另一种就是弧度制。
1、弧度制
用弧长与半径之比度量对应圆心角角度的方式,叫做弧度制,用符号rad表示,读作弧度。
等于半径长的圆弧所对的圆心角叫做1弧度的角。
由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。
角度以弧度给出时,通常不写弧度单位。
弧度制的精髓就在于统一了度量弧与角的单位,从而大大简化了有关公式及运算,尤其在高等数学中,其优点就格外明显。
2、角度制
用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。
角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。
单位换算
角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
角度制就是运用60进制的例子。
运算法则
两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。
两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。
2.将下列角度与弧度互化.;2210°;3错误!;4错误!.;6-1120°;7-错误!;8错误!.3.把下列各角化成2kπ+α0≤α<2π,k∈Z的形式,并指出它们是第几象限角.;2-1600°;32005π;4-5.3求下列各角所在的象限.错误!;2错误!;3-错误!;4-错误!. 4.一扇形周长为20,问扇形的半径和圆心角各取何值时,才能使扇形的面积最大4.已知扇形的半径为10,圆心角为错误!,求该扇形的周长及面积.作业2:§1.1.2 弧度制和弧度制与角度制的换算1.-225°化为弧度为B.-错误!C.-错误!D.-错误!化为角度为A.75°B.105°C.135°D.175°3.下列各对角中,终边相同的是与错误!B.-错误!与错误!C.-错误!与错误!错误!与错误!4.下列所给角中,是第二象限角的是B.-错误!C.-错误!错误!5.一钟表的分针长10 cm,经过35分钟,分针的端点所转过的长为A.70 cm cm cm cm6.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数为C.1 D.π7.已知集合M={x|x=kπ+错误!,k∈Z},N={x|x=错误!+π,k∈Z},则A.M=N B.M⊆NC.M⊇N D.M∩N=∅8.圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则A.扇形的面积不变B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍9.如果一扇形的圆心角是72°,半径是20 cm,则扇形的面积为________.10.已知一扇形所在圆的半径为10 cm,扇形的周长是45 cm,那么这个扇形的圆心角为________弧度.11. 已知扇形内切圆半径与扇形半径之比为13,则内切圆面积与扇形面积之比为________.12.如图,用弧度制表示下列终边落在阴影部分的角的集合不包括边界.13.已知一扇形AOB的周长为8,若这个扇形的面积为3,求圆心角的大小.14.圆心在原点的单位圆上两个动点M、N,同时从P1,0点出发,沿圆周运动,M点按逆时针方向旋转错误!弧度/秒,N点按顺时针转错误!弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.。