ch1 模式与模式识别概论 (13)
- 格式:ppt
- 大小:2.46 MB
- 文档页数:13
第一章 绪论1.1模式和模式识别模式识别是一门很受人们重视的学科。
早在30年代就有人试图以当时的技术解决一些识别问题,在近代,随着计算机科学技术的发展和应用,模式识别才真正发展起来。
从60年代至今,在模式识别领域中已取得了不少成果。
它的迅速发展和广泛应用前景引起各方面的关注。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
例如:通过视觉、听觉、触觉等感官接受图象、文字、声音等各种自然信息去认识外界环境的能力;将感性知识加工成理性知识的能力,即经过分析、推理、判断等思维过程而形成概念、建立方法和作出决策的能力;经过教育、训练、学习不断提高认识与改造客观环境的能力‘对外界环境的变化和干扰作出适应性反应的能力等。
模式识别就是要用机器去完成人类智能中通过视觉、听觉、触觉等感官去识别外界环境的自然信息的那些工作。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式的概念:模式这个概念的内涵是很丰富的。
“我们把凡是人类能用其感官直接或间接接受的外界信息都称为模式”。
比如:文字、图片、景物;声音、语言;心电图、脑电图、地震波等;社会经济现象、某个系统的状态等,都是模式。
模式识别:模式识别是一门研究对象描述和分类方法的科学。
如,我们要听某一门课,必须做以下识别:1)看课表—文字识别;2)找教室和座位—景物识别;3)听课—声音识别。
再比如,医生给病人看病:1)首先要了解病情;问2)再做一些必要的检验;查3)根据找到的能够诊断病情的主要特征,如体温、血压、血相等,做出分类决策,即诊断。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
模式识别的含义及其主要理论(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!模式识别的含义及其主要理论在心理学记忆的分类中,按照记忆内容保持的时间长短可以将记忆分成瞬时记忆、短时记忆和长时记忆,而在瞬时记忆的影响因素中我们常常会看到模式识别这一名词,这里主要来介绍一下模式识别的含义以及其相关理论。
《模式识别》课程教学大纲课程编号:04226课程名称:模式识别英文名称:Pattern Recognition课程类型:专业课课程要求:选修学时/学分:32/2 (讲课学时:28 实验学时:4)适用专业:智能科学与技术一、课程性质与任务模式识别课程是智能科学与技术专业的•门选修课,是研究计算机模式识别的基本理论和方法、应用。
模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。
这门课的教学目的是让学生掌握统计模式识别和结构模式识别基本原理和方法。
本课程的主要任务是通过对模式识别的基本理论和方法、运用实例的学习,使学生掌握模式识别的基本理论与方法,培养学生利用模式识别方法、运用技能解决本专业及相关领域实际问题的能力,为将来继续深入学习或进行科学研究打下坚实的基础。
本课程的教学目的是为了使学生能应用模式识别处理计算机自动识别事物,机器学习数据分析中有关的技术问题。
由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。
学生在学习过程中还会用到一些概率论的最基本知识,线性代数中的部分知识,对学生在数学课中学到知识的进一步理解与巩固起到温故而知新的作用。
(该门课程支撑毕业要求中1.1, 2.1, 3.1, 3.3, 4.1, 6.1, 10.1和12.1)二、课程与其他课程的联系先修课程:概率论与数理统计、线性代数、机器学习后续课程:智能感知综合实践先修课程概率论与数理统计和线性代数为学生学习模式识别技术中最基本的概念,必要的数学推导打下基础,机器学习可以使学生建立整体思考问题的方法,并具有系统性能优化的概念。
本课程为后续智能优化方法打下理论基础。
三、课程教学目标1. 学习模式识别基本理论知识,理解参数估计的基本思想,掌握最大似然和贝叶斯儿种典型算法,理解聚类分析的的基本思想,掌握聚类分析的几种典型算法:(支撑毕业要求1.1,2.1)2. 具有数学分析和识别的基本能力;(支撑毕业要求1.1)3. 掌握基本的识别优化创新方法,培养学生追求创新的态度和意识;(支撑毕业要求3.1)4. 培养学生树立正确的分析和识别思想,了解设计过程中国家有关的经济、环境、法律、安全、健康、伦理等政策和制约因素;(支撑毕业要求3.3)5. 培养学生的工程实践学习能力,使学生具有运用标准、规范、手册、图册和查阅有关技术资料的能力;(支撑毕业要求4.1, 6.1)6, 了解模式识别方法前沿和新发展动向;(支撑毕业要求10.1, 12.1)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)无六、教学方法本课程以课堂教学为主,结合作业、自学及洲验等教学手段和形式完成课程教学任务。
《模式识别原理》考试大纲第一章模式识别的基本问题
1.1 什么是模式识别
1.2 模式识别的基本概念
1.3 模式识别的系统组成
1.4 模式识别方法分类
第二章 Bayes决策理论
2.1 二类问题的最小错误决策
2.2 二类问题的最小风险决策
2.3 Neyman-Pearson决策
2.4 最小最大决策
2.5 多类问题的决策
第三章正态分布的判别函数
3.1 N维正态分布
3.2 正态分布的判别函数
3.3 讨论
第四章线性判别函数
4.1 线性判别函数及广义线性判别函数
4.2 线性分类器设计
4.3 梯度法与牛顿法
4.4 最小平方误差准则函数与H-K算法
4.5 Fisher线性判别函数
4.6 广义线性判别函数
第五章 K-近邻法
5.1 密度估计
5.2 后验概率估计
5.3 最近邻法则与K-近邻法则
5.4 加权K-近邻法则
第六章聚类分析
6.1 类似性度量
6.2 准则函数
6.3 聚类算法
第七章特征提取与选择
7.1 图像的特征提取
7.2 特征选择
参考书目:1. 李金宗. 模式识别导论. 高等教育出版社. 1994.
2. 边肇祺等编著. 模式识别. 清华大学出版社. 2000.。
复习要点绪论1、举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。
答:我的本科毕设内容和以后的研究方向为重症监护病人的状态监测及预诊断,其中的第一步就是进展病人的死亡率预测,及模式识别理论密切相关。
主要的任务是分析数据库的8000名病人,统计分析死亡及非死亡的生理特征,用于分析预测新进病人的病情状态。
按照模式识别的方法步骤,首先从数据库中采集数据,包括病人的固有信息,生理信息,事件信息等并分为死亡组和非死亡组,然后分别进展数据的预处理,剔除不正常数据,对数据进展插值并取中值进展第一次特征提取,然后利用非监视学习的方法即聚类分析进展第二次特征提取,得到训练样本集和测试样本集。
分别利用判别分析,人工神经网络,支持向量机的方法进展训练,测试,得到分类器,实验效果比传统中采用的评价预测系统好一些。
由于两组数据具有较大重叠,特征提取,即提取模式特征就变得尤为重要。
语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别;① 文字识别汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和开展有着不可磨灭的功勋。
所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。
目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。
其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。
从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。
到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。
②语音识别语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。
名词解释:1样本:对任一个具体的事物,在这门课中都称为一个样本,它是一类事物的一个具体体现,它与模式这个概念联用,则模式表示一类事物的统称,而样本则是该类事物的一个具体体现。
2模式:英语是pattern,表示一类事物,如印刷体A与手写体A属同一模式。
B与A则属于不同模式,而每一个具体的字母A、B则是它的模式的具体体现,称之为样本。
因此模式与样本共同使用时,样本是具体的事物,而模式是对同一类事物概念性的概况。
一个人的许多照片是这个人的许多样本,而这个人本身是一个模式。
3模式类:这个词与模式联合使用,此时模式表示具体的事物,而模式类则是对这一类事物的概念性描述。
4模式识别:人们在见到一个具体的物品时会分辨出它的类名,如方桌与圆桌都会归结为是桌子。
这是人们所具有的认识事物的功能,在这门课中就称为是模式识别。
具体的说是从具体事物辨别出它的概念。
这门课讨论的是让机器实现事物的分类,因此由机器实现模式识别。
这门课就是讨论机器认识事物的基本概念、基本方法。
5分类器:用来识别具体事物的类别的系统称为分类器6模式识别系统:用来实现对所见事物(样本)确定其类别的系统,也称为分类器。
7特征:一个事件(样本)有若干属性称为特征,对属性要进行度量,一般有两种方法,一种是定量的,如长度、体积、重量等,可用具体的数量表示,但也可用粗略的方法表示,如一个物体可用“重”、“轻”、“中等”表示,前种方法为定量表示,而后种方法则是定性表示。
重与轻变成了一种离散的,或称符号性的表示,它们在数值上有内在的联系。
在本门课中一般偏重定量的表示。
8特征向量:对一个具体事物(样本)往往可用其多个属性来描述,因此,描述该事物用了多个特征,将这些特征有序地排列起来,如一个桌子用长、宽、高三种属性的度量值有序地排列起来,就成为一个向量。
这种向量就称为特征向量。
每个属性称为它的一个分量,或一个元素。
9维数:一个向量具有的分量数目,如向量,则该向量的维数是3。