锅炉NOx控制影响及分析
- 格式:doc
- 大小:44.00 KB
- 文档页数:5
氮氧化物(NOX)的危害及治理方法氮氧化物(NOX)的危害及治理方法氮氧化物(NOX)是造成大气污染的主要污染源之一,造成NOX的产生的原因可分为两个方面:自然发生源和人为发生源。
自然发生源除了因雷电和臭氧的作用外,还有细菌的作用。
自然界形成的NOX由于自然选择能达到生态平衡,故对大气没有多大的污染。
然而人为发生源主要是由于燃料燃烧及化学工业生产所产生的。
例如:火力发电厂、炼铁厂、化工厂等有燃料燃烧的固定发生源和汽车等移动发生源以及工业流程中产生的中间产物,排放NOX的量占到人为排放总量的90%以上。
据统计全球每年排入到大气的NOX总量达5000万t,而且还在持续增长。
研究与治理NOX成已经成为国际环保领域的主要方向,也是我国“十二五”期间需要降低排放量的主要污染物之一。
一、主要危害:通常所说的氮氧化物(NOx)主要包括NO、NO2、N2O、N2O3、N2O4、N2O5等几种。
这些氮氧化物的危害主要包括: ①NOX 对人体及动物的致毒作用; ②对植物的损害作用;③NOX是形成酸雨、酸雾的主要原因之一; ④NOX 与碳氢化合物形成光化学烟雾;⑤NOX 亦参与臭氧层的破坏。
1.1、对动物和人体的危害N0对血红蛋白的亲和力非常强,是氧的数十万倍。
一旦NO进入血液中,就从氧化血红蛋白中将氧驱赶出来,与血红蛋白牢固地结合在一起。
长时间暴露在1~1.5mg/l 的NO。
环境中较易引起支气管炎和肺气肿等病变.这些毒害作用还会促使早衰、支气管上皮细胞发生淋巴组织增生,甚至是肺癌等症状的产生。
1.2 形成光化学烟雾N0排放到大气后有助于形成O3。
,导致光化学烟雾的形成N0+HC+02+阳光NO2+O3(光化学烟雾)这是一系列反应的总反应。
其中HC为碳氢化合物,一般指VOC(volatile organic pound)。
VOC的作用则使从NO转变为NO2时不利用03,从而使03富集。
光化学烟雾对生物有严重的危害,如1952年发生在美国洛杉矶的光化学烟雾事件致使大批居民发生眼睛红肿、咳嗽、喉痛、皮肤潮红等症状,严重者心肺衰竭,有几百名老人因此死亡。
探究锅炉氮氧化物超标的原因和处理方法由于工业生产和能源消耗的增加,锅炉在我们的生活中扮演着重要角色。
然而,锅炉排放的氮氧化物(NOx)对环境和人类健康构成潜在威胁。
本文将深入探讨锅炉氮氧化物超标的原因以及相应的处理方法。
一、原因探究1.燃料特性:不同类型的燃料在燃烧时会产生不同程度的氮氧化物排放。
煤炭燃烧中含有高硫和高氮的物质,容易生成大量NOx。
而天然气燃烧的氮氧化物排放较低。
2.燃烧温度:高燃烧温度意味着更高的燃料燃烧效率,但也会导致更多的氮氧化物生成。
当燃烧温度超过2000摄氏度时,氧气和氮气会发生反应生成大量NOx。
3.燃烧过程:不完全燃烧是产生氮氧化物的主要原因之一。
当燃料与不足的氧气接触时,会产生一系列排放物,包括一氧化氮(NO)和二氧化氮(NO2)。
4.设备运行不良:锅炉设备的运行状态也会对氮氧化物排放造成影响。
如果锅炉燃烧器调整不当或磨损严重,可能导致不均匀的燃烧和氮氧化物超标。
二、处理方法1.燃料选择和改进:选择低氮燃料是减少氮氧化物排放的关键。
使用富含氢和低硫的燃料,如天然气,可以有效减少NOx的产生。
与燃料特性相结合的燃烧技术改进也是处理氮氧化物超标的重要方法。
2.燃烧过程控制:通过优化燃烧过程,可以降低氮氧化物排放。
一种常用的方法是增加燃烧区域内的氧气供应量,以便实现更完全的燃烧。
可采用分层燃烧技术,将燃烧过程分为预混火焰区和富氧区,以降低氮氧化物生成。
3.排放控制技术:安装尾气处理装置是降低氮氧化物排放的另一种有效方法。
选择适当的催化剂用于脱硝,可将NOx转化为无害的氮气和水蒸气。
通过采用SCR(Selective Catalytic Reduction)和SNCR(Selective Non-Catalytic Reduction)等技术,可以在锅炉烟囱中对尾气进行处理。
4.定期维护和检查:保持锅炉设备的正常运行状态对于减少氮氧化物排放至关重要。
定期维护和检查锅炉燃烧器、燃料供应系统以及排放控制装置等,可以发现和纠正潜在问题,确保其高效运行。
关于锅炉烟气氮氧化物升高原因分析及预控措施一、NoX的形成与分类氮氧化物:NO,NO2,N2O、N2O3,N2O4,N2O5 等,但在燃烧过程中生成的氮氧化物,几乎全是NO和NO。
通常把这两种氮的氧化物称为NoX1、热力型NOX( Thermal NOX),它是空气中的氮气在高温下(1000 C -1400 C以上)氧化而生成的NOX2、快速型NOx ( PromPt NOX),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOX3、燃料型NOx ( Fuel NOX ),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOX二、NOX的升高的分析1、煤粉燃烧中各种类型NOX的生成量和炉膛温度的关系热力型NoX是燃烧时空气中的氮(N2)和氧(Q)在高温下生成的NO和NQO 2 十M--→ 2Q 十MQ 十N2-—→ NQ十NN 十Q --→ NQ十O因此,高温下生成NQ和NOX的总反应式为N 2 十Q --→ 2NQNQ 十1/2Q2—→ NQ2、煤粉炉的NQX排放值和燃烧方式及锅炉容量的关系NoX 为1300PPm实际上燃料N 只是一部分转变为 NOX 取转 变率为25% 则燃料 NOX 为325ppm,即650mg∕N∩3∣°2)热力NOX —般占总 NOX 的20%^ 30%现取25%即为217 mg∕Nnm o 因此,总的 NOX 生成量为 867 mg∕m 31)若燃料N 全部转变为燃料 NoX 则燃料中1%N 燃烧生成200200 «)0 600 800 IooO锅炉容锻(MW e )3) 若锅炉采用了低NoX燃烧器、顶部燃尽风等分级燃烧、以及提高煤粉细度和低α措施等,炉内脱硝率可达ηNOX≥50%因此预计NoX排放浓度≤433mg/NriION2和Q生成NO的平衡常数KP当温度低于IoooK时KP值非常小,也就是NO的分压力(浓度)很小温度和N2/Q(PPm)初始比对NO平衡浓度的影响40N2∕C2(ppm)是N2和Q之比为40:1的情况,这大致相当于过量空气系数为1.1时的烟气NO氧化成NO反应的平衡常数KP由表可以看出KP随温度的升高反而减小,因此低温有利于NO氧化成NO。
浅析锅炉燃烧调整对氮氧化物排放的影响摘要:随着我国社会经济的快速发展,人们的生活水平及思想意识都得到明显的提升,人们越来越注重低碳环保、健康舒适的居住环境,从而推动各行各业朝着绿色环保、低碳节能的方向发展。
尤其是燃煤类企业,不断优化硫氧、氮氧等化物的排放措施,降低其排放量,促进生态环境与社会经济的和谐发展。
本文主要分析并研究锅炉燃烧调整对氮氧化物排放的影响,并提出有效的解决对策,仅供参考。
关键词:锅炉燃烧;氮氧化合物;排放影响前言:近年来,环保成为各行各业生产发展的首要目标,也是衡量行业或企业发展水平的标准之一。
当前燃煤类企业成为社会关注的重点对象,在煤炭燃烧过程中会产生大量的硫氧、氮氧及碳氢等化物,引发烟气、化学烟雾或者酸雨等不良现象,对生态环境造成严重的破坏,不符合我国可持续发展的战略目标。
因此,相关燃煤企业应该充分认识到环保的重要性,完善生产流程及技术,减少氮氧化物的排放量,加大环境的保护力度,从而促进企业健康、稳定的发展。
1锅炉煤燃烧所产生的氮氧化物在锅炉煤燃烧过程中会生成大量的氮氧化物(NOx),具体分类如下:1.1热力型氮氧化物热力型氮氧化物即空气中的氮在高温环境下发生氧化反应所形成的氮氧化物,相关化学反应过程如下:N2+O2←→2NO2NO+O2→2NO。
锅炉煤燃烧温度对于热力型氮氧化合物的产量有着重要的影响,如果反应式温度低于1000°C,则NOx输出非常小,当温度高达或超出1300°C,NOx产量会急剧增加。
因此,在日常生产加工过程中,应该将控锅炉煤燃烧时炉内的温度控制在合理范围之内,减少热力型氮氧化物的产量。
1.2快速型氮氧化物快速型氮氧化物是指在碳氢化物含量丰富且含氧量较少的区域,空气中的氮与煤炭中的碳和氢发生反应形成的氮氧化物,NOx生成量相对较少。
提供过量空气或燃烧温度过高是生成NOx的主要原因。
1.3燃料型氮氧化物燃料型氮氧化物是指锅炉煤燃烧过程中燃料反应产生氮氧化物。
工业锅炉燃烧过程中CO和NOx的控制技术研究工业锅炉是现代化生产中不可缺少的设备之一,在各行各业都有着广泛的应用,但作为一种高耗能设备,工业锅炉的燃烧过程中往往会产生大量的CO和NOx等有害气体,对环境和人类的健康造成了一定的威胁。
因此,在现代化工生产中,如何有效地控制CO和NOx的排放就成为了一个重要的课题。
一、工业锅炉燃烧过程中CO和NOx的生成原因燃烧是工业锅炉运行的基本过程,其中产生的CO和NOx是由于燃烧过程中的不完全燃烧和热反应而生成的。
CO是一种无色、无味的有毒气体,它的生成源于燃烧中烃类物质不完全氧化所产生的一种一氧化碳,它不仅对人体有毒害作用,而且也对环境也有不良影响;NOx则是一种有害气体,有强烈的腐蚀性,它的生成源于氮气和氧气在高温环境下热反应而产生,它的主要成分包括一氧化氮(NO)和二氧化氮(NO2),二者对环境的危害性不相上下。
二、工业锅炉排放CO和NOx的风险分析工业锅炉燃烧过程中产生的CO和NOx,一旦排放到大气中,不仅会对环境造成污染,也会对附近的居民带来潜在的健康威胁。
由于CO是无色且无味的气体,很难被人们及时发现,一旦CO浓度超标,易引起中毒甚至危及生命;NOx则会促进光化学反应,导致大气中的污染物质扩散范围增大,同时也会引起酸雨等环境污染问题,极大地损害了大气和水资源的可持续发展。
三、工业锅炉燃烧过程中CO和NOx的控制技术为了降低CO和NOx的排放,在工业锅炉的燃烧过程中采用适当的控制技术十分必要。
目前,工业锅炉燃烧过程中CO和NOx的控制技术主要包括以下几种:1. 煤改气技术煤改气是目前广泛采用的CO和NOx控制技术之一,其基本原理是将燃料从煤改为天然气或液化气等低污染物质,减少燃烧中产生的有害气体排放。
采用煤改气技术对于大幅度降低CO和NOx的排放具有较好的效果,但其成本较高,需要对锅炉进行改造和升级。
2. 先进燃烧技术先进燃烧技术是另一种CO和NOx的控制技术,其基本原理是通过优化燃料喷射和空气分配等技术,提高燃烧效率,降低燃料的堆积和泄漏,从而减少CO和NOx的排放量。
循环流化床锅炉氮氧化物生成与控制分析
循环流化床锅炉是一种高效燃烧技术,能够有效地利用煤炭等固体燃料,但其燃烧过程中也会产生一定量的氮氧化物(NOx)。
氮氧化物主要包括氮氧(NO)和二氧化氮(NO2),它们是燃烧过程中产生的一种主要有害气体,会对环境和人体健康造成一定的影响。
循环流化床锅炉产生氮氧化物的主要机理如下:
1. 煤炭中的氮元素在燃烧过程中会生成一些氮气化物,如氨(NH3)和氢氰酸(HCN)。
2. 在高温燃烧区域,煤炭中的氮气化物会与氧气反应生成氮氧化物。
3. 在循环流化床锅炉的燃烧室和分离器中,氮氧化物的生成机制复杂,包括燃烧区域内的氮气化物氧化生成NOx、煤炭中的挥发分解产物和氨等反应生成NOx、燃烧过程中的NH3选择性催化还原产生N2等。
为了控制循环流化床锅炉产生的氮氧化物,可以采取以下措施:1. 优化燃烧过程,调整燃烧温度和氧气浓度,减少氮氧化物的生成。
如采用低氧燃烧技术,可以降低燃烧温度和氧气浓度,减少NOx的产生。
2. 使用低氮燃料,减少燃烧过程中氮气化物的生成。
例如,使用低氮煤或添加脱氮剂,如氨水等。
3. 安装烟气回收装置,减少烟气中NOx的排放。
通过烟气回收装置,将烟气中的NOx捕集回收再利用或转化为无害物质。
4. 使用氮氧化物减排装置,如选择性催化还原(SCR)系统或脱硝催化剂,将烟气中的NOx还原为N2和水。
5. 加强废气治理技术,如烟气脱硫、烟气脱氧等,降低氮氧化物的发生和排放。
循环流化床锅炉产生氮氧化物的机理复杂,但通过合理的燃烧和控制技术,可以有效地减少氮氧化物的生成和排放。
这对于保护环境和改善空气质量具有重要意义。
锅炉氮氧化物超标的原因和处理措施
一、锅炉氮氧化物超标的原因
1.1 燃料选择不当
燃料中含有较高的氮元素,如煤中的固定氮和挥发分中的氨基化合物等,易导致锅炉排放氮氧化物超标。
此外,高硫煤和高灰分煤等也会加剧锅炉NOx排放。
1.2 锅炉设计和操作不当
锅炉设计和操作不当也是导致锅炉NOx排放超标的原因之一。
例如,过量空气系数过大、过量风量、不合理的供风方式等都可能导致NOx 排放增加。
1.3 锅炉运行条件不稳定
在锅炉运行中,温度、压力、负荷等参数变化较大时,也会影响到NOx排放。
此外,锅炉维护保养不及时或者设备老化等也会导致NOx 排放超标。
二、处理措施
2.1 燃料选择优化
优选低氮含量的燃料是减少NOx排放的有效措施之一。
可采用深度脱硫脱硝技术对高硫高灰分的燃料进行处理,减少锅炉NOx排放。
2.2 锅炉设计和操作优化
通过优化锅炉设计和操作,可以有效降低NOx排放。
例如,采用低氮燃烧技术、调整过量空气系数、采用先进的供风方式等。
2.3 运行条件稳定化
保持锅炉运行条件的稳定性也是减少NOx排放的重要措施。
可采用自动控制技术、加强维护保养等手段来实现。
2.4 排放治理技术
除了以上措施外,还可以采用排放治理技术来降低NOx排放。
例如,选择适当的脱硝技术、采用SCR(选择性催化还原)技术等。
三、总结
针对锅炉NOx排放超标问题,可以从多个方面入手进行处理。
通过优化燃料选择、锅炉设计和操作、运行条件稳定化以及采用排放治理技术等手段,可以有效地降低NOx排放水平,达到环保要求。
烟气氧含量对锅炉大气污染物排放浓度的影响引言:烟气是锅炉燃烧产生的一种气体,其中含有大量的大气污染物。
烟气氧含量对锅炉大气污染物排放浓度有着重要的影响。
本文将从烟气氧含量对氮氧化物(NOx)、二氧化硫(SO2)、颗粒物(PM)、VOC等污染物的排放浓度的影响进行论述,并探讨优化燃烧工艺来减少大气污染物排放。
主体:1.烟气氧含量对氮氧化物(NOx)排放浓度的影响:氮氧化物是一类严重的大气污染物,对人体健康和环境造成较大的危害。
烟气中的氮氧化物主要由燃料中的氮气和空气中的氧气在高温条件下发生反应生成。
烟气氧含量的增加会加快反应速率,进而增加氮氧化物的生成速率和排放浓度。
因此,烟气氧含量的升高会导致氮氧化物排放量的增加。
2.烟气氧含量对二氧化硫(SO2)排放浓度的影响:二氧化硫是燃煤锅炉燃烧产生的主要大气污染物之一、烟气中的二氧化硫是由燃料中的硫化物在燃烧过程中释放出来的。
烟气氧含量的升高会加速燃料中硫化物的燃烧,导致二氧化硫的排放浓度增加。
因此,烟气氧含量对二氧化硫的排放有着直接的影响。
3.烟气氧含量对颗粒物(PM)排放浓度的影响:颗粒物是燃煤锅炉燃烧产生的重要大气污染物之一、烟气中的颗粒物主要来自燃烧产物和燃烧过程中的悬浮物质。
烟气氧含量的升高会增加燃料燃烧的完全程度,减少燃烧产物中的颗粒物含量,但同时会促使燃烧过程中的悬浮物质燃烧更充分,形成更多的颗粒物。
因此,烟气氧含量的变化对颗粒物的排放浓度有较为复杂的影响。
4.烟气氧含量对VOC排放浓度的影响:挥发性有机物(VOC)是燃烧过程中产生的另一类重要大气污染物,对大气臭氧生成和人体健康有着不可忽视的影响。
烟气氧含量的增加会加快燃料中的有机物燃烧速度,导致VOC的生成和排放增加。
因此,烟气氧含量的升高会导致VOC排放浓度的增加。
结论:为了减少大气污染物的排放浓度,我们可以通过优化锅炉的燃烧工艺来减少烟气氧含量和大气污染物的排放。
例如,采用燃烧控制技术,控制燃烧过程中的氧气供给,使烟气中的氧含量保持在适宜的范围内,以降低氮氧化物和二氧化硫的排放浓度。
锅炉NOx控制影响及分析
我公司3×240t/h循环流化床锅炉SNCR烟气脱硝工程由江苏亿金环保科技有限公司设计、施工。
目前,工程已接近尾声。
通过初步的试运行和1#炉的168试运行,发现脱硝效果并不理想。
喷入还原剂用量在设计值(249L/H)时,脱硝效率仅50%左右,出口排放NOx浓度在130mg/Nm3左右,只有当锅炉负荷低时,才勉强维持在100mg/Nm3左右。
按照当前的锅炉运行状态,如要必须达到环保要求的100 mg/Nm3以下的目标值,需要喷入约3倍用量的氨水。
通过多方咨询及查阅资料,锅炉炉膛出口温度偏低是影响脱硝效率的主要原因之一。
下面对循环流化床锅炉中的NOx生成机制进行说明,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,提高脱硝效率,为循环流化床锅炉的达标运行提供参考。
1 NOx的生成机制
煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。
和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。
在煤燃烧过程中,生成的NOx途径有三个:
(1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。
(2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。
(3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。
其中燃煤锅炉的NOx主要是燃料型的,它占总生成量约80%以上。
热力型NOx 的生成与燃烧温度的关系很大,在温度大于1000℃时,热力型NOx的生成量可占到总量的20%;快速型NOx在煤燃烧过程中的生成量很小,可忽略不计。
2 NOx排放量影响因素分析
2.1燃料特性的影响
由于NOx主要来自于燃料中的氮,因此,从总体上看,燃料氮含量越高,则NOx的排放量也越高;同时,燃料中氮的存在形态不同,NOx的排放量也不一样,以胺的形态存在于煤中的燃料氮在燃烧过程中主要生成NO,而以芳香环形式存在的燃料氮在挥发分燃烧过程中主要生成N2O。
一般来说,煤矸石、褐煤、页岩等劣质燃料中燃料氮的主要存在形态是胺,故NOx 排放量较多,N2O很少;相反,烟煤、无烟煤中燃料氮的主要存在形态是芳香环,故NOx 排放量较少,而N2O 很高。
2.2 过量空气系数的影响
当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx的生成都有一定的控制作用,采用这种方法可使NOx排放量降低15%~20%,但是CO浓度会增加,燃烧效率会下降。
当风分级时,可有效地降低NOx的排放量。
一般情况下,二次风从床上一定距离送入较好,如果过低则对NOx的排放量影响甚小。
随着一次风量的减少、二次风量的增加,N被氧化的速度下降,NOx排放量也随之下降,并在某一风量分配下达到最小值。
2.3 燃烧温度的影响
燃烧温度对NOx的生成量的影响已取得共识,即随着炉内燃烧温度的提高,NOx的生成量将升高,因此,可以通过降低床温来控制NOx的排放量。
如1#锅炉,负荷从200t/h,降到176t/h时,床温从960℃降到930℃,脱硝系统在氨水喷入量不变情况下,脱硫出口NOX浓度从130mg/Nm3降到100mg/Nm3以下。
可以看出锅炉NOx的生成量随床温的降低有明显的下降。
总体来说,对循环流化床锅炉,煤矸石和无烟煤燃料挥发份低,难以燃烧,所以燃烧温度要高于其它易燃烧的燃料。
同时,煤矸石和无烟煤燃料采用相对高的一次风量,带来高的过量氧气。
高的温度和过量的氧气,促使NOx的生成量比其它燃料高。
烟煤的情况则正好相反,低的燃烧温度和低的过量氧气。
影响循环流化床锅炉NOx 生成量的因素较多,主要因素以及对NOx 生成量的作用效果参见下表:
燃料供应决定了含氮量和挥发份。
石灰石进料量和实际使用的燃料含硫相关,也不是成为减少NOx 生成量的主要手段。
床温是循环流化床锅炉设计的一个重要参数。
床温、过量空气系数、一二次风的分配以及二次风的分级和燃烧组织相关,只能首先满足燃烧效率的要求,然后再考虑对排放的影响。
实际设计采用低一次风、二次风分级、采用火上风等因素是循环流化床锅炉实现低NOx生成量的主要手段。
3 锅炉运行存在问题分析
3×240t/h循环流化床锅炉为济南锅炉设计,于2005年相继投产。
至今未进行大修。
3.1床温过高
现阶段锅炉运行时,床温过高。
锅炉负荷180-200t/h时,床温基本在900-950℃左右;锅炉负荷220t/h左右时,床温有超1000℃现象。
根据以往经验,床温每下降10℃,NOx生成量下降20-30mg/Nm3。
3.2炉膛出口氧量高
现阶段锅炉运行时,炉膛氧量高,基本在8%左右。
锅炉带负荷,要靠大量增加一二次风量来达到锅炉的稳定运行,锅炉烟气量大于设计值约30%。
炉膛燃烧不均匀,偶尔仍有煤渣结焦现象发生。
炉膛出口左右温差较大,平均在50℃左右,最大有100℃以上的温差。
3.3锅炉负荷带不上
现阶段各锅炉运行,最高负荷仅能带到220t/h,2#炉仅最高能带到210t/h,且不能稳定。
3.4炉膛漏灰严重
炉膛出口折角外侧处有大量积灰,需进行补漏,减少漏风,控制炉膛出口氧量。
3.5锅炉效率低
2008年,委托西安安能能源技术有限公司进行锅炉效率测试,锅炉效率仅80-83%。
远低于设计值的92%。
4 控制NOx的措施
目前,随着环保排放标准的日趋严格,降低各种污染气体的排放量已显得更为紧迫。
针对影响NOx生成的因素,在循环流化床锅炉中可采取以下措施控制NOx的排放量。
4.1 锅炉进行低氮改造
低氮改造即针对燃烧过程中NOx 的生成机理,而采取的控制和减少燃烧过程中生成NOx 生成量的技术手段,是从源头上减少NOx 生成的方法。
减少NOx 生成量的关键是控制燃料着火阶段的过量空气系数以及燃料中的氮尽量随挥发份析出,因为循环流化床锅炉一次风比例要低于煤粉锅炉,所以循环流化床锅炉的NOx 生成量比煤粉锅炉低得多。
目前采用的燃烧控制方法有:降低燃烧过程气氛的含氧浓度、降低燃烧气氛的含氮浓度、降低燃烧过程温度、减少燃料和烟气在NOx 生成区域的停留时间,采用预混燃烧方式、减少过量空气系数,CFB 锅炉床层温度控制等等。
从源头上减少NOx生产量,有助于减少SNCR还原剂的使用量,减低成本。
4.2 提高炉膛出口温度
现今,江苏亿金环保科技有限公司采用为SNCR脱硝方案,在分离器区域注入氨水或者尿素、降低NOx排放量。
例如,对于NH3,其还原反应为
4NH3+4NO+O2→4N2+6H2O
推进上述反应的主要动力是反应温度,如反应温度在860-950℃,氨水作还原剂,流化床锅炉的SNCR脱硝效率可高达70%。
尿素溶液作还原剂时,考虑到尿素热解所需的反应热,反应温度为900-1050℃。
脱硝效率的提高,可以有效的降低脱硝还原剂的用量和逃逸量。
5.结束语
综上所述,建议如下:
(1)考虑到锅炉的运行成本,建议不考虑更换煤种,可适当调整配煤比例。
(2)保证锅炉稳定、高效运行的前提下,可尝试适当控制锅炉床温,以控制NOx的初始生成量。
(3)委托专业厂家对锅炉进行系统诊断,进行包括落煤口、二次风、旋风分离器等的改造,通过燃料燃烧分级、二次分合理配风、烟气再循环控制一次风氧量等,实现主燃烧区域欠氧、燃尽区富氧、燃烧火焰区域拉长提高并控制炉膛出口温度等,从而提高锅炉的燃烧效率、降低NOx的生成量、提高SNCR脱硝系统运行效率、降低还原剂氨水的用量(SNCR运行成本),保证NOx排放浓度控制在100mg/Nm3以下。
此外,7月份,我们咨询了太原锅炉,他们根据现场锅炉运行情况,表示可以提供锅炉的改造方案,将锅炉效率提高到90%以上,并通过对落煤口、二次风的配风改造,降低NOx生产量,提高炉膛出口温度。